ORIGINAL_ARTICLE
Generalized multivalued $F$-weak contractions on complete metric spaces
In this paper, we introduce the notion of generalized multivalued $F$- weak contraction and we prove some fixed point theorems related to introduced contraction for multivalued mapping in complete metric spaces. Our results extend and improve the results announced by many others with less hypothesis. Also, we give some illustrative examples.
http://scma.maragheh.ac.ir/article_12839_d544549fe3810d0d2647b7e1e1e7c186.pdf
2015-12-01T11:23:20
2019-07-20T11:23:20
1
11
Multivalued $F$- weak contraction
Fixed point
Multivalued mappings
Hossein
Piri
hossein_piri1979@yahoo.com
true
1
Department of Mathematics, Faculty of Science, University of Bonab, P.O.Box 5551-761167, Bonab, Iran.
Department of Mathematics, Faculty of Science, University of Bonab, P.O.Box 5551-761167, Bonab, Iran.
Department of Mathematics, Faculty of Science, University of Bonab, P.O.Box 5551-761167, Bonab, Iran.
LEAD_AUTHOR
Samira
Rahrovi
sarahrovi@gmail.com
true
2
Department of Mathematics, Faculty of Science, University of Bonab, P.O.Box 5551-761167, Bonab, Iran.
Department of Mathematics, Faculty of Science, University of Bonab, P.O.Box 5551-761167, Bonab, Iran.
Department of Mathematics, Faculty of Science, University of Bonab, P.O.Box 5551-761167, Bonab, Iran.
AUTHOR
[1] "{O}. Acar and I. Altun, A Fixed Point Theorem for Multivalued Mappings with $delta$-Distance. Abstr. Appl. Anal., 2014 (2014), Article ID 497092, 5 pages.
1
[2] "{O}. Acar, G. Durmaz and G Minak, Generalized multivalued F-contractions on complete metric spaces. Bull. Iranian Math. Soc., 40 (2014) 1469-1478.
2
[3] R.P. Agarwal, D. O'Regan and N. Shahzad, Fixed point theory for generalized contractive maps of Meir-Keeler type, Math. Nachr., 276 (2004) 3-22.
3
[4] I. Altun, G. Minak and H. Dau{u}g, Multivalued F-contractions on complete metric space, J. Convex Anal., Accepted.
4
[5] S. Banach, Sur les op'{e}rations dans les ensembles abstraits et leur application aux equations itegrales, Fund. Math., 3 (1922) 133--181.
5
[6] V. Berinde, On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 19 (2003) 7-22.
6
[7] V. Berinde, Iterative Approximation of Fixed Points, Springer-Verlag, Berlin, 2007.
7
[8] D.W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969) 458-464.
8
[9] L.B. '{C}iri'{c}, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974) 267-273.
9
[10] W. S. Du, Some new results and generalizations in metric fixed point theory, Nonlinear Anal., 73 (2010) 1439-1446.
10
[11] G.E. Hardy and T. D. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull., 16 (1973) 201-206.
11
[12] J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc., 62 (1977) 344-348.
12
[13] G. Minak, A. Helvac and I. Altun, '{C}iri'{c} Type Generalized F-contractions on CompleteMetric Spaces and Fixed Point Results., Filomat 28 (2014) 1143-1151.
13
[14] SB. Nadler, Multivalued contraction mappings, Pac. J. Math., 30 (1969) 475-488.
14
[15] H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., 2014, 2014:210 doi:10.1186/1687-1812-2014-210.
15
[16] S. Reich, Kannan's fixed point theorem, Boll. Un. Mat. Ital., (4) 4 (1971) 1-11.
16
[17] D. Wardowski and N. Van Dung, Fixed points of f-weak contractions on complete metric spaces, Demonstratio Math., 1 (2014) 146-155
17
[18] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl., 2012, Article ID 94 (2012).
18
ORIGINAL_ARTICLE
Some new properties of fuzzy strongly ${{g}^{*}}$-closed sets and $\delta {{g}^{*}}$-closed sets in fuzzy topological spaces
In this paper, a new class of fuzzy sets called fuzzy strongly ${{g}^{*}}$-closed sets is introduced and its properties are investigated. Moreover, we study some more properties of this type of closed spaces.
http://scma.maragheh.ac.ir/article_12838_e29b42c991ee1650228514cd68a980f2.pdf
2015-12-01T11:23:20
2019-07-20T11:23:20
13
21
Fuzzy topological spaces
Fuzzy generalized closed sets
Fuzzy ${{g}^{*}}$-closed sets
Fuzzy strongly ${{g}^{*}}$-closed sets
Hamidreza
Moradi
hrmoradi@mshdiau.ac.ir
true
1
Young Researchers and Elite Club‎, ‎Mashhad Branch‎, ‎Islamic Azad University‎, ‎Mashhad‎, ‎Iran
Young Researchers and Elite Club‎, ‎Mashhad Branch‎, ‎Islamic Azad University‎, ‎Mashhad‎, ‎Iran
Young Researchers and Elite Club‎, ‎Mashhad Branch‎, ‎Islamic Azad University‎, ‎Mashhad‎, ‎Iran
AUTHOR
Anahid
Kamali
ana.kamali.gh@gmail.com
true
2
Department of Mathematics, Khaje Nasir Toosi University of Technology, Tehran, Iran.
Department of Mathematics, Khaje Nasir Toosi University of Technology, Tehran, Iran.
Department of Mathematics, Khaje Nasir Toosi University of Technology, Tehran, Iran.
LEAD_AUTHOR
Balwinder
Singh
singhba.a@gmail.com
true
3
Department of Mathematics‎, ‎P‎. ‎M‎. ‎Thevar College‎, ‎Usilampatti‎, ‎Madurai Dt‎, ‎Tamil Nadu‎, ‎India
Department of Mathematics‎, ‎P‎. ‎M‎. ‎Thevar College‎, ‎Usilampatti‎, ‎Madurai Dt‎, ‎Tamil Nadu‎, ‎India
Department of Mathematics‎, ‎P‎. ‎M‎. ‎Thevar College‎, ‎Usilampatti‎, ‎Madurai Dt‎, ‎Tamil Nadu‎, ‎India
AUTHOR
[1] K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82 (1) (1981) 14--32.
1
[2] G. Balasubramanian, On fuzzy-pre-separation axiom, Bull., Calcutta Math Soc., 90 (6) (1998) 427--434.
2
[3] G. Balasubramanian, and V. Chandrasekar, Totally fuzzy semi continuous functions, Bull. Calcutta Mat Soc., 92 (4) (2000) 305--312.
3
[4] G. Balasubramanian and P. Sundaram, On some generalization of fuzzy continuous functions, Fuzzy Sets and Systems., 86 (1) (1997) 93--100.
4
[5] S.S. Benchalli and G.P. Siddapur, Fuzzy ${{g}^{*}}$-pre-continuous maps in fuzzy topological spaces, Int. Jou. Comp. Appl., 16 (2) (2011) 12--15.
5
[6] C. L. Chang, Fuzzy topological spaces, J. Math Anal Appl., 24 (1968) 182--190.
6
[7] W. Dunham, A new closure operator for non-$T_1$ topologies, Kyungpook Math. J., {22} (1982), 55--60.
7
[8] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo., {19} (2) (1970), 89--96.
8
[9] M. E. El-Shafei and A. Zakari, $theta $-generalized closed sets in fuzzy topological spaces, The Arabian Journal for Science and Engineering., 31 (2A) (2006) 197--206.
9
[10] H. Maki, Generalized $Lambda $-sets and the associated closure operator, Special Issue in Commemoration of Prof. Kazusada Ikeda’s Retirement 1. Oct (1986), 139--146.
10
[11] H.R. Moradi, Bounded and semi bounded inverse theorems in fuzzy normed spaces, International Journal of Fuzzy System Applications., 4 (2) (2015) 47--55.
11
[12] H.R. Moradi, Characterization of fuzzy complete normed space and fuzzy $b$-complete set, Sahand Communications in Mathematical Analysis., {1} (2) (2014) 65--75.
12
[13] S. Murugesan and P. Thangavelu, Fuzzy pre-semi-closed sets, Bull. Malays, Math Sci. Soc., 31 (2) (2008) 223--232.
13
[14] R. Parimelazhagan and V. S. Pillai, Strongly $g$-closed sets in topological spaces, Int. Jou. Of Math. Analy., 6 (30) (2012) 1481--1489.
14
[15] P.M. Pu and Y.M. Liu, Fuzzy topology I. neighbourhood structure of a fuzzy point and Moore-smith convergence, J. Math Anal Appl., 76 (2) (1980) 571--599.
15
[16] R.K. Saraf, G. Navalagi and M. Khanna, On fuzzy semi-pre-generalized closed sets, Bull. Malays. Math Sci. Soc., 28 (1) (2005) 19--30.
16
[17] R.K. Saraf and M. Khanna, On $gs$-closed set in fuzzy topology, J. Indian Acad. Math., 25 (1) (2003) 133--143.
17
[18] S.S. Thakur and S. Sing, On fuzzy semi-pre open sets and fuzzy semi-pre continuity, Fuzzy Sets and Systems., 98 (3) (1998) 383--391.
18
[19] M.K.R.S. Veerakumar, Between closed sets and g-closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 17 (21) (2000) 1--19.
19
[20] T.H. Yalvac, Semi-interior and semi-closure of a fuzzy set, J.Math. Anal. Appl., 132 (2) (1988) 356--364.
20
[21] L.A. Zadeh, Fuzzy sets, Inform and Control., 8 (1965) 338--353.
21
ORIGINAL_ARTICLE
Abstract structure of partial function $*$-algebras over semi-direct product of locally compact groups
This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $\tau:H\to Aut(K)$ be a continuous homomorphism. Let $G_\tau=H\ltimes_\tau K$ be the semi-direct product of $H$ and $K$ with respect to $\tau$. We define left and right $\tau$-convolution on $L^1(G_\tau)$ and we show that, with respect to each of them, the function space $L^1(G_\tau)$ is a Banach algebra. We define $\tau$-convolution as a linear combination of the left and right $\tau$-convolution and we show that the $\tau$-convolution is commutative if and only if $K$ is abelian. We prove that there is a $\tau$-involution on $L^1(G_\tau)$ such that with respect to the $\tau$-involution and $\tau$-convolution, $L^1(G_\tau)$ is a non-associative Banach $*$-algebra. It is also shown that when $K$ is abelian, the $\tau$-involution and $\tau$-convolution make $L^1(G_\tau)$ into a Jordan Banach $*$-algebra. Finally, we also present the generalized notation of $\tau$-convolution for other $L^p$-spaces with $p>1$.
http://scma.maragheh.ac.ir/article_15512_5770f8eeb189b81deec09dc87fdd4b39.pdf
2015-12-01T11:23:20
2019-07-20T11:23:20
23
44
Semi-direct products of groups
Left $tau$-convolution ($tau_l$-convolution)
Right $tau$-convolution
($tau_r$-convolution)
$tau$-convolution
$tau$-involution
$tau$-approximate identity
Arash
Ghaani Farashahi
arash.ghaani.farashahi@univie.ac.at
true
1
Numerical Harmonic Analysis Group (NuHAG), Faculty of Mathematics,
University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Wien, Vienna, Austria.
Numerical Harmonic Analysis Group (NuHAG), Faculty of Mathematics,
University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Wien, Vienna, Austria.
Numerical Harmonic Analysis Group (NuHAG), Faculty of Mathematics,
University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Wien, Vienna, Austria.
LEAD_AUTHOR
Rajab Ali
Kamyabi-Gol
kamyabi@ferdowsi.ac.ir
true
2
Department of Pure Mathematics, Ferdowsi University of Mashhad,
Center of Excellence in Analysis on Algebraic Structures (CEAAS), P. O. Box 1159-91775, Mashhad, Iran.
Department of Pure Mathematics, Ferdowsi University of Mashhad,
Center of Excellence in Analysis on Algebraic Structures (CEAAS), P. O. Box 1159-91775, Mashhad, Iran.
Department of Pure Mathematics, Ferdowsi University of Mashhad,
Center of Excellence in Analysis on Algebraic Structures (CEAAS), P. O. Box 1159-91775, Mashhad, Iran.
AUTHOR
[1] A.A. Arejamaal, The continuous Zak transform and generalized Gabor frames, Mediterr. J. Math. 10 (2013), No. 1, 353-365.
1
[2] A.A. Arejamaal and A. Ghaani Farashahi, Zak transform for semidirect product of locally compact groups, Anal. Math. Phys. 3 (2013), No. 3, 263-276.
2
[3] A.A. Arejamaal and R.A. Kamyabi-Gol, On the square integrability of quasi regular representation on semidirect product groups, J. Geom. Anal. 19 (2009), No. 3, 541-552.
3
[4] A.A. Arejamaal and R.A. Kamyabi-Gol, On construction of coherent states associated with semidirect products, Int. J. Wavelets Multiresolut. Inf. Process. 6 (2008), No. 5, 749-759.
4
[5] W.R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Studies in Mathematics, 20, Walter de Gruyter (1995).
5
[6] G. Chirikjian and A. Kyatkin, Engineering Applications of Noncommutative Harmonic Analysis With Emphasis on Rotation and Motion Groups, Boca Raton, FL: CRC Press. xxii, 2001.
6
[7] A. Derighetti, Convolution operators on groups, Lecture Notes of the Unione Matematica Italiana, 11. Springer, Heidelberg; UMI, Bologna, 2011. xii+171 pp. ISBN: 978-3-642-20655-9.
7
[8] J. Dixmier, C-Algebras, North-Holland and Publishing company, 1977.
8
[9] J. Fell and R. Doran, Representations of -Algebras, Locally Compact Groups,mand Banach -Algebraic Bundles, Pure and Applied Mathematics, Vol. 1, Academic Press, 1998.
9
[10] J. Fell and R. Doran, Representations of -Algebras, Locally Compact Groups, and Banach -Algebraic Bundles, Pure and Applied Mathematics, Vol. 2, Academic Press, 1998.
10
[11] G.B. Folland, A course in Abstract Harmonic Analysis, CRC press, 1995.
11
[12] A. Ghaani Farashahi, Continuous partial Gabor transform for semi-direct productm of locally compact groups, Bull. Malays. Math. Sci. Soc. 38 (2015), No. 2, 779-803.
12
[13] A. Ghaani Farashahi, A unied group theoretical method for the partial Fourier analysis on semi-direct product of locally compact groups, Results Math. 67 (2015), No. 1-2, 235-251.
13
[14] A. Ghaani Farashahi, Cyclic wave packet transform on nite Abelian groups of prime order, Int. J. Wavelets Multiresolut. Inf. Process. 12 (2014), No. 6, 1450041, 14 pp.
14
[15] A. Ghaani Farashahi, Generalized Weyl-Heisenberg (GWH) groups, Anal. Math. Phys. 4 (2014), No. 3, 187-197.
15
[16] A. Ghaani Farashahi, Convolution and involution on function spaces of homogeneous spaces, Bull. Malays. Math. Sci. Soc., (2) 36 (2013), No. 4, 1109-1122.
16
[17] A. Ghaani Farashahi, Abstract Non-Commutative Harmonic Analysis of Coherent State Transforms, Ferdowsi University of Mashhad (FUM) (2012) PhD Thesis.
17
18. A. Ghaani Farashahi and M. Mohammad-Pour, A unied theoretical harmonic analysis approach to the cyclic wavelet transform (CWT) for periodic signals of prime dimensions, Sahand Commun. Math. Anal. Vol. 1, No. 2, 1-17 (2014).
18
[19] A. Ghaani Farashahi and R.A. Kamyabi-Gol, Frames and homogeneous spaces, J. Sci. Islam. Repub. Iran., 22 (2011), No. 4, 355-361, 372.
19
[20] S. Helgason, Dierential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, San Francisco, London, 1978.
20
[21] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Vol 2, 1970.
21
[22] E. Hewitt and K.A. Ross, Absrtact Harmonic Analysis, Vol 1, 1963.
22
[23] G. Hochschild, The Structure of Lie Groups, Hpolden-day, San Francisco, 1965.
23
[24] R.I. Jewett, Spaces with an abstract convolution of measures, Advances in Math., 18 (1975), 1-101.
24
[25] R.A. Kamyabi-Gol and N. Tavallaei, Wavelet transforms via generalized quasiregular representations, Appl. Comput. Harmon. Anal., 26 (2009), No. 3, 291- 300.
25
[26] V. Kisil, Calculus of operators: covariant transform and relative convolutions, Banach J. Math. Anal. 8 (2014), No. 2, 156-184.
26
[27] V. Kisil, Geometry of Mobius transformations. Elliptic, parabolic and hyperbolic actions of SL2(R), Imperial College Press, London, 2012.
27
[28] V. Kisil, Relative convolutions. I. Properties and applications, Adv. Math. 147 (1999), No. 1, 35-73.
28
[29] V. Kisil, Connection between two-sided and one-sided convolution type operators on non-commutative groups, Integral Equations Operator Theory 22 (1995), No. 3, 317-332.
29
[30] H. Reiter and J.D. Stegeman, Classical Harmonic Analysis, 2nd Ed, Oxford University Press, New York, 2000.
30
ORIGINAL_ARTICLE
Generalized concept of $J$-basis
A generalization of Schauder basis associated with the concept of generalized analytic functions is introduced. Corresponding concepts of density, completeness, biorthogonality and basicity are defined. Also, corresponding concept of the space of coefficients is introduced. Under certain conditions for the corresponding operators, some properties of the space of coefficients and basicity criterion are considered.
http://scma.maragheh.ac.ir/article_15589_99197aff68a8d6597fafdcfe5c0fb113.pdf
2015-12-01T11:23:20
2019-07-20T11:23:20
45
59
$J$-completeness
$J$-biorthogonality
$J$-basicity
The space of coefficients
Tofig
Najafov
department2011@mail.ru
true
1
Nakhchivan State University, University campus, AZ7012 Nakhchivan,
Azerbaijan.
Nakhchivan State University, University campus, AZ7012 Nakhchivan,
Azerbaijan.
Nakhchivan State University, University campus, AZ7012 Nakhchivan,
Azerbaijan.
LEAD_AUTHOR
[1] L. Bers, Theory of pseudo-analytic functions, Lecture Notes, New York University, 1953.
1
[2] L. Bers, F. John, and M. Schechter, Partial dierential equations, Lectures in Applied Mathematics III. Interscience Publishers, New York, 1964.
2
[3] B.T. Bilalov, Bases and tensor product, Trans. of NAS of Az., XXV(4) (2005), 15-20.
3
[4] A.V. Bitsadze, Boundary value problems for second order elliptic equations, Moscow, Nauka, 1966, 204 p.
4
[5] O. Christensen, An introduction to frames and Riesz bases, Springer, 2002.
5
[6] A. Douglis, A function theoretical approach to elliptic systems of equations in two variables, Comm. Pure Math., VI (1953) 259-289.
6
[7] H.G. Feichtinger and K.H. Grochenig, Banach spaces related to integrable group representations and their atomic decompositions, Part II. Monatshefte fur Mathematik, 108(2-3) (1989), 129-148.
7
[8] S.A. Gabov and A.G. Sveshnikov, Linear problems of the theory of nonstationary internal waves, M., Nauka, 1990.
8
[9] K.H. Grochenig, Describing functions: atomic decompositions versus frames, Monatshefte fur Mathematik, 112(1) (1991), 1-42.
9
[10] Ch. Heil, A Basis Theory Primer, Springer, 2011.
10
[11] G.N. Hile, Elliptic systems in the plane with order terms and constant coecients, Comm. in Part. Di. Equat., 3(10) (1978), 949-977.
11
[12] Yu.D. Pletner, Representation of solutions of the two-dimensional gravitational-gyroscopic wave equation by generalized Taylor and Laurent series, Zh. Vychisl. Mat. Mat. Fiz., 30(11) (1990), 1728-1740.
12
[13] Yu.D. Pletner, Representation of the solutions of two-dimensional analogues of the Sobolev equation by generalized Taylor and Laurent series, Comput. Math. Math. Phys., 32(1) (1992), 51-60.
13
[14] A. Rahimi, Frames and Their Generalizations in Hilbert and Banach Spaces, Lambert Academic Publishing. 2011.
14
[15] I. Singer, Bases in Banach spaces, v.2, Springer, 1981.
15
[16] I. Singer, Bases in Banach spaces, v. 1, Springer, 1970.
16
[17] A.P. Soldatov, Second-order elliptic systems in the half-plane, Izvestiya: Mathematics, 70(6) (2006), 161-192.
17
[18] A.P. Soldatov, A function theorety method in elliptic problems in the plane, II. The piecewise smooth case, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 56(3) (1992), 566-604.
18
[19] A.P. Soldatov, A function theory method in boundary value problems in the plane, I. The smooth case, Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 55(5) (1991), 1070-1100.
19
[20] A.P. Soldatov, Boundary properties of integrals of Cauchy type, Dierential Equations, 26(1) (1990), 116-120.
20
[21] A.P. Soldatov, High-order elliptic-systems, Dierential Equations, 25(1) (1989), 109-115.
21
[22] A.G. Sveshnikov, A.B. Al'shin, M.O. Korpusov, and Yu.D. Pletner, Linear and nonlinear equations of Sobolev type, Fizmatlit, Moscow, 2007.
22
[23] I.N. Vekua, New methods of solution of elliptic equations, Moscow, Gostekhizdat, 1948.
23
[24] I.N. Vekua, Generalized Analytic Functions, Moscow, Fizmatqiz, 1959.
24
[25] R.M. Young, An Introduction to Nonharmonic Fourier series, Springer, 1980.
25
ORIGINAL_ARTICLE
A note on "Generalized bivariate copulas and their properties"
In 2004, Rodr'{i}guez-Lallena and '{U}beda-Flores have introduced a class of bivariate copulas which generalizes some known families such as the Farlie-Gumbel-Morgenstern distributions. In 2006, Dolati and '{U}beda-Flores presented multivariate generalizations of this class. Then in 2011, Kim et al. generalized Rodr'{i}guez-Lallena and '{U}beda-Flores' study to any given copula family. But there are some inaccuracies in the study by Kim et al. We mean to consider the interval for the parameter proposed by Kim et al. and show that it is inaccurate.
http://scma.maragheh.ac.ir/article_12852_c050f6758dda26d13745e4fb2c754a7a.pdf
2015-12-01T11:23:20
2019-07-20T11:23:20
61
64
Absolutely continuous functions
Bivariate distributions
Copulas
Vadoud
Najjari
fnajjary@yahoo.com
true
1
Young Researchers and Elite Club, Maragheh branch, Islamic Azad University, Maragheh, Iran.
Young Researchers and Elite Club, Maragheh branch, Islamic Azad University, Maragheh, Iran.
Young Researchers and Elite Club, Maragheh branch, Islamic Azad University, Maragheh, Iran.
LEAD_AUTHOR
Asghar
Rahimi
rahimi@maragheh.ac.ir
true
2
Department of Mathematics, University of Maragheh, P.O.Box 55181-
83111, Maragheh, Iran.
Department of Mathematics, University of Maragheh, P.O.Box 55181-
83111, Maragheh, Iran.
Department of Mathematics, University of Maragheh, P.O.Box 55181-
83111, Maragheh, Iran.
AUTHOR
[1] T. Bacig'{a}l, R. Mesiar, V. Najjari, Generators of copulas and aggregation, Information Sciences, 306 (2015) 81--87.
1
[2] T. Bacig'{a}l, V. Najjari, R. Mesiar, H. Bal, Additive generators of copulas, Fuzzy Sets and Systems, 264 (2015) 42--50.
2
[3] H. Bal, V. Najjari, Archimedean copulas family via hyperbolic generator, Gazi University Journal of Science, 26(2): (2013) 195--200.
3
[4] H. Bekrizadeh, G. A. Parham. M. R. Zadkarmi, The New Generalization of FarlieâGumbelâMorgenstern Copulas, Applied Mathematical Sciences, 6(71) (2012) 3527--3533.
4
[5] H. Bekrizadeh, G. A. Parham. M. R. Zadkarmi, A new class of positive dependent bivariate copula and its properties, Proc. of the 2nd Workshop on Copula and its Applications, (2012) 12--21.
5
[6] A. Dolati, M. '{U}beda-Flores, Some new parametric families of multivarite copulas, International Mathematical Forum, 1 (2006) 17--25.
6
[7] J. M. Kim, E. A. Sungur, T. Choi, T. Y. Heo, Generalized bivariate copulas and their properties, Model Assisted Statistics and Applications, 6 (2011) 127--136.
7
[8] R. Mesiar, J. Komorn'{i}k, M. Komorn'{i}kov'{a}, On some construction methods for bivariate copulas, Advances in Intelligent Systems and Computing, 228 (2013) 39--45.
8
[9] R. Mesiar, V. Najjari, New families of symmetric/asymmetric copulas, Fuzzy Sets and Systems, 252 (2014) 99--110.
9
[10] V. Najjari., T. Bacig'{a}l., H. Bal., An Archimedean Copula Family with Hyperbolic Cotangent Generator, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 22(5): (2014) 761--768.
10
[11] R. B. Nelsen, An Introduction to copulas, Springer, New York, (Second edition), 2006.
11
[12] J. A. Rodr'{i}guez-Lallena, M. '{U}beda-Flores, A new class of bivariate copulas, Statistics and Probability Letters, 66 (2004) 315-325.
12
[13] S. T. c{S}ahin Tekin, V. Najjari, H. H. "{O}rkc"{u}, Simulation study on copulas, Sahand Communications in Mathematical Analysis, 1(2) (2014) 55--63.
13
ORIGINAL_ARTICLE
Fixed point theorems for $\alpha$-contractive mappings
In this paper we prove existence the common fixed point with different conditions for $\alpha-\psi$-contractive mappings. And generalize weakly Zamfirescu map in to modified weakly Zamfirescu map.
http://scma.maragheh.ac.ir/article_11561_d8e26a421b7394a2d3a527c0299d3f8b.pdf
2015-12-01T11:23:20
2019-07-20T11:23:20
65
72
$alpha$-contractive map
Modified weakly Zamfirescu map
Fixed point
Hojjat
Afshari
hojat.afshari@yahoo.com
true
1
Faculty of Basic Science, University of Bonab, P.O.Box 5551761167, Bonab, Iran.
Faculty of Basic Science, University of Bonab, P.O.Box 5551761167, Bonab, Iran.
Faculty of Basic Science, University of Bonab, P.O.Box 5551761167, Bonab, Iran.
LEAD_AUTHOR
Mojtaba
Sajjadmanesh
s.sajjadmanesh@azaruniv.edu
true
2
Faculty of Basic Science, University of Bonab, P.O.Box 5551761167, Bonab, Iran.
Faculty of Basic Science, University of Bonab, P.O.Box 5551761167, Bonab, Iran.
Faculty of Basic Science, University of Bonab, P.O.Box 5551761167, Bonab, Iran.
AUTHOR
[1] D. Ariza-Ruiza, A. Jimenez-Melado, A continuation method for weakly Kannan maps, fixed point theory and applications, (2010), Art. Id 321594, 12pp.
1
[2] D. Ariza-Ruiza, A. Jimenez-Melado, Genaro Lopez-acedo, A fixed point theorem for weakly Zamfirescu mappings, Nonlinear analysis (2010).
2
[3] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fund. Math., 3 (1922) 133-181.
3
[4] S. K. Chatterjea, Fixed-point theorems, C. R. Acad. Bulgare Sci., 25 (1972) 727-730.
4
[5] J. Dugundji, A. Granas, Weakly contractive maps and elementary domain invariance theorem, Bull. Soc. Math. Greece (N. S) 19, No.1 (1978) 141-151.
5
[6] R. Kannan, Some results on fixed points, Bull Calcutta Math. Soc., 60 (1968), 71-76.
6
[7] B. Samet, C. Vetro, P. Vetro, Fixed-point theorems for α-Ψ-cotractive type mappings, Nonlinear Analysis (2011), .
7
[8] T. Zamfirescu, Fixed-point theorems in metric spacesArch. Math., 23 (1972), 292-298.
8
ORIGINAL_ARTICLE
A tensor product approach to the abstract partial fourier transforms over semi-direct product groups
In this article, by using a partial on locally compact semi-direct product groups, we present a compatible extension of the Fourier transform. As a consequence, we extend the fundamental theorems of Abelian Fourier transform to non-Abelian case.
http://scma.maragheh.ac.ir/article_15471_6cc6c314395a008f6ea2c3f1659ce258.pdf
2015-12-01T11:23:20
2019-07-20T11:23:20
73
81
Partial Fourier transform
Locally compact groups
Semi-direct product groups
Artial dual groups
Ali akbar
Arefijammal
arefijamaal@gmail.com
true
1
Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.
Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.
Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.
LEAD_AUTHOR
Fahimeh
Arabyani Neyshaburi
arabyanif@hsu.ac.ir
true
2
Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.
Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.
Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.
AUTHOR
[1] S.T. Ali, J.P. Antoine, and J.P. Gazeau, Coherent States, Wavelets and Their Generalizations, Springer-Verlag, New York, 2000.
1
[2] A. Arejamaal, The continuous Zak transform and generalized Gabor frames, Mediterr. J. Math. 10 (2013) 353-365.
2
[3] A. Arejamaal and R.A. Kamyabi-Gol, On the square integrability of quasi regular representation on semidirect product groups, J. Geom. Anal. 19 (2009) No. 3, 541-552.
3
[4] G.S. Chirikjian and A.B. Kyatkin, Engineering applications of noncommutative harmonic analysis. With emphasis on rotation and motion groups, CRC Press, 2001.
4
[5] H.G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs 24, Clarendon Press, Oxford, 2000.
5
[6] J. Dixmier, C*-Algebras, North-Holland, Amsterdam, 1977.
6
[7] J. Fell and R. Doran, Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Pure and Applied Mathematics, vol. 1, 1st edn. Academic Press, 1998.
7
[8] J. Fell and R. Doran, Representations of -Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Pure and Applied Mathematics, vol. 2, 1st edn. Academic Press, 1998.
8
[9] G.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, 1995.
9
[10] A. Ghaani Farashahi and R.A. Kamyabi-Gol, Abstract structure of partial function *-algebras over semi-direct product of locally compact groups, Sahand. Comm. Math. Anal., to be appear, 2015, (arXiv:1201.1854).
10
[11] A. Ghaani Farashahi, A unied group theoretical method for the partial Fourier analysis on semi-direct product of locally compact groups, Results. Math. 67 (2015) no. 1-2, 235-251.
11
[12] A. Ghaani Farashahi, Continuous partial Gabor transform for semi-direct product of locally compact groups, Bull. Malays. Math. Sci. Soc. 38 (2015) no. 2, 779-803.
12
[13] A. Ghaani Farashahi, Generalized Weyl-Heisenberg (GWH) groups, Anal. Math. Phys. 4 (2014) no. 3, 187-197.
13
[14] E. Hewitt and K.A. Ross, Abstract Harmonic Analysis, Springer-Verlag. Vol 2, Berlin, Springer-Verlag, 1969.
14
[15] K.B. Laursen, Tensor products of Banach algebras with involution, Trans. Amer. Math. Soc. 136 (1969) 467-487.
15
[16] D. Maslen and D. Rockmore, Generalized FFTs - a survey of some recent results, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Groups and Computation, II, L. Finkelstein and W. Kantor (eds.), (1996) 183-23. CMP 97:11
16
[17] H. Reiter and J.D. Stegeman, Classical Harmonic Analysis and Locally Compact Groups, London Math. Soc. Monographs 22, Oxford Univ. Press, 2000.
17
[18] D. Rockmore, Applications of generalized FFTs, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., Groups and Computation, II, L. Finkelstein and W. Kantor (eds.), (1996). CMP 97:11
18
19. V. Runde, Lectures on Amenability, Springer, Berlin, 2002.
19
ORIGINAL_ARTICLE
Chaotic dynamics and synchronization of fractional order PMSM system
In this paper, we investigate the chaotic behaviors of the fractional-order permanent magnet synchronous motor (PMSM) system. The necessary condition for the existence of chaos in the fractional-order PMSM system is deduced and an active controller is developed based on the stability theory for fractional systems. The presented control scheme is simple and flexible, and it is suitable both for design and for implementation in practice. Simulation is carried out to verify that the obtained scheme is efficient and robust for controlling the fractional-order PMSM system.
http://scma.maragheh.ac.ir/article_15532_f36e3faccdb5621905f7cd26b0727998.pdf
2015-12-01T11:23:20
2019-07-20T11:23:20
83
90
Permanent Magnet Synchronous Motor
Fractional-order systems
Chaotic synchronization
Vajiheh
Vafaei
v_vafaei@tabrizu.ac.ir
true
1
Faculty of Mathematical sciences, University of Tabriz, tabriz, Iran.
Faculty of Mathematical sciences, University of Tabriz, tabriz, Iran.
Faculty of Mathematical sciences, University of Tabriz, tabriz, Iran.
LEAD_AUTHOR
Hossein
Kheiri
h-kheiri@tabrizu.ac.ir
true
2
Faculty of Mathematical sciences, University of Tabriz, tabriz, Iran.
Faculty of Mathematical sciences, University of Tabriz, tabriz, Iran.
Faculty of Mathematical sciences, University of Tabriz, tabriz, Iran.
AUTHOR
Mohammad
Javidi
mo-javidi@yahoo.com
true
3
Faculty of Mathematical sciences, University of Tabriz, tabriz, Iran.
Faculty of Mathematical sciences, University of Tabriz, tabriz, Iran.
Faculty of Mathematical sciences, University of Tabriz, tabriz, Iran.
AUTHOR
[1] K. Diethelm, The Analysis of Fractional Dierential Equations, Springer-Verlag, Berlin, 2010.
1
[2] K. Kemih, Control of nuclear spin generator system based on passive control, Chaos Solitons Fract., 41 (2009) 1897-1901.
2
[3] N. Laskin, Fractional market dynamics, Physica A, 287 (2000) 482-492. doi:10.1016/S0378-4371(00)00387-3.
3
[4] J.G. Lu, Chaotic dynamics and synchronization of fractional-order Arneodo's systems, Chaos, Solitons and Fractals, 26 (2005) 1125-1133.
4
[5] L.M. Pecora and T.L. Carroll, Synchronization of chaotic systems, Phys. Rev. Lett., 64 (1990) 821-824.
5
[6] H. Salarieh and A. Alasty, Chaos synchronization of nonlinear gyros in presence of stochastic excitation via sliding mode control, J. Sound Vib., 313 (2008) 760-771.
6
[7] M.S. Tavazoei and M. Haeri, Chaotic attractors in incommensurate fractional order systems, Physica D, 237 (2008) 2628-2637.
7
[8] Z. Xing-hua and D. Shou-gang, Adaptive chaotic synchronization of permanent magnet synchronous motors with nonsmooth air-gap, Control Theory and Applications, 26 (6) (2009) 661-664.
8