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EXISTENCE/UNIQUENESS OF SOLUTIONS TO HEAT

EQUATION IN EXTENDED COLOMBEAU ALGEBRA

MOHSEN ALIMOHAMMADY1 AND FARIBA FATTAHI2∗

Abstract. This work concerns the study of existence and unique-
ness to heat equation with fractional Laplacian differentiation in
extended Colombeau algebra.

1. Introduction

The fractional Laplacian and the fractional derivative are two dif-
ferent mathematical concepts (Samko et al, 1987). Both are defined
through a singular convolution integral, but the former is guaranteed to
be the positive definition via the Riesz potential as the standard Laplace
operator, while the latter via the Riemann-Liouville integral is not. It
is noted that the fractional Laplacian can not be interpreted by the
fractional derivative in the sense of either Riemann-Liouville or Caputo.
Both the fractional Laplacian and the fractional derivative have found
applications in many complicated engineering problems. In particular,
the fractional Laplacian attracts new attentions in recent years owing to
its unique capability describing anomalous diffusion problems (Hanyga,
2001). Recently the fractional Laplacians attract much interest in non-
linear analysis. Caffarelli and Silvestre have given a new formulation of
the fractional Laplacians through Dirichlet-Neumann maps. The reason
for introducing fractional derivatives into algebra of generalized func-
tions was the possibility of solving nonlinear problems with singularities
and derivatives of arbitrary real order in it ([6]). We use an algebra of
generalized functions which will be an extension of the Colombeau alge-
bra in a sense of extension of fractional derivatives. Fractional calculus
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is a generalization of ordinary differentiation and integration to arbi-
trary non-integer order. Moreover fractional processes have witnessed
an increasing development in the last decade. For instance, they are
suitable for describing the long memory properties of many time series.
Colombeau algebras (usually denoted by the letter G) are differential
(quotient) algebras with unit, and were introduced by J. F. Colombeau
(cf.[1],[2],[3]) as a nonlinear extension of distribution theory to deal with
nonlinearities and singularities in PDE theory. These algebras contain
the space of distributions D′ as a subspace with an embedding realized
through convolution with a suitable mollifier. Elements of these algebras
are classes of nets of smooth functions.
The fractional calculus by application of distributed order PDEs in
Colombeau algebra was started by [6].
Fractional derivatives were considered in [4] where the use of Caputo
and Riemann-Liouville derivatives of a Colombeau generalized process
is proved. The paper is organized as follows. After the introduction
some basic preliminaries such as notation and definitions of the used
objects are given. Also the spaces of Colombeau generalized functions
are introduced. In addition, imbedding the Laplacian fractional deriva-
tive into extended Colombeau algebra of generalized functions is shown.
Finally, the existence-uniqueness result for a nonlinear heat equation is
proven. Furthermore an equation driven by the fractional derivative of
delta distribution is certified. This means the equation illustrates the
application of the theory in a framework of the extended algebra of gen-
eralized functions. Besides moderateness and the negligibility for entire
and fractional derivatives are clarified.

2. Colombeau algebra

First the definitions of some generalized function algebras of Colombeau
type are mentioned which are as follows.
The elements of Colombeau algebras G are equivalent classes of reg-
ularizations, i.e., sequences of smooth functions satisfying asymptotic
conditions in the regularization parameter ε.
Therefore, for any set X, the family of sequences (uε)ε ∈ (0, 1] of ele-

ments of a set X will be denoted by X(0,1]; such sequences will also be
called nets and simply written as uε.
The algebra of generalized functions on equals G(Ω), where Ω is an open
set, is defined G(Ω) = EM (Ω)/N (Ω) where

EM (Ω) =

{
(uε)ε ∈ (C∞(Ω))(0,1]

∣∣∣∣ ∀K ⊂⊂ Ω, ∀α ∈ Nn0 ∃N ∈ N, s.t.
supx∈K |∂αuε(x)| = O(ε−N ), ε→ 0

}
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and

N(Ω) =

{
(uε)ε ∈ (C∞(Ω))(0,1]

∣∣∣∣ ∀K ⊂⊂ Ω,∀α ∈ Nn0 ∀s ∈ N, s.t.
supx∈K |∂αuε(x)| = O(εs), ε→ 0

}
.

Element of EM (Ω) and N (Ω) are called moderate, negligible functions,
respectively. Families (rε)ε of complex numbers such as |rε| = O(ε−p)
as ε → 0 for some p ≥ 0 are called moderate, in which |rε| = O(εq) for

every q ≥ 0 are termed negligible. The ring R̃ of Colombeau generalized
numbers is obtained by factoring moderate families of complex numbers
with respect to negligible families.
The definition of extended Colombeau algebras of generalized functions
on open subset of Ω is in a sense of extension of the entire derivatives
to the fractional ones. Let Ee(Ω) be an algebra of all sequences (uε)ε>0

of real valued smooth functions uε ∈ C∞(Ω). Suppose that

EeM (Ω) =

{
(uε)ε ∈ Ee(Ω)

∣∣∣∣ ∀K ⊂⊂ Ω, ∀α ∈ R+ ∪ {0}, ∃N ≥ 0, s.t.
supx∈K |Dαuε(x)| = O(ε−N ) ε→ 0

}
,

and

N e(Ω) =

{
(uε)ε ∈ Ee(Ω)

∣∣∣∣ ∀K ⊂⊂ Ω,∀α ∈ R+ ∪ {0},∀s ≥ 0, s.t.
supx∈K |Dαuε(x)| = O(εs) ε→ 0

}
.

WhereDαuε(x) is the Caputo fractional derivative. The extended Colombeau
algebra of generalized functions is the set Ge(Ω) = EeM (Ω)/N e(Ω).

The new definition of extended Colombeau algebra is based on the
ratio of spatial variable x. Moreover for a fractional derivative in the
Laplacian sense is used. An interval Ω = (−∞,∞), and for PDEs the
derivative (w.r.) to spatial variable x in the domain Ω = ((0, T ] × R)
is considered. The Colombeau algebra generalized functions is the set
GeL∞(Ω) = EeM,L∞(Ω)/N e

L∞(Ω) where

EeM,L∞(Ω) =

{
(uε)ε ∈ Ee(Ω)

∣∣∣∣ ∀γ ∈ (0, 2),∃N ≥ 0, s.t.

‖(−∆)
γ
2 uε(x)‖L∞(Ω) = O(ε−N ) as ε→ 0

}
,

and

N e
L∞(Ω) =

{
(uε)ε ∈ Ee(Ω)

∣∣∣∣ ∀γ ∈ (0, 2), ∀s ≥ 0, s.t.

‖(−∆)
γ
2 uε(x)‖L∞(Ω) = O(εs) as ε→ 0

}
.

Imbedding the fractional derivatives (w.r.) to the spatial variable is
given by the convolution of the fractional Laplacian is shown with the
map:

ifrac : w → [(̃−∆)
γ
2
(wε)ε>0] = [(−∆)

γ
2 (wε ∗ ϕε(x))ε>0], where wε is a

representative for the entire derivative,
where ϕ(x) ∈ C∞0 (R), ϕ(x) ≥ 0,

∫
ϕ(x)dx = 1,

∫
xαϕ(x) = 0,∀α ∈
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N, |α| > 0.

3. Imbedding of The fractional Laplacian into extended
Colombeau algebra of generalized functions

The fractional Laplacian (−∆)
γ
2 commutes with the primary coordi-

nation transformations in the Euclidean space Rd, and has tight link to
splines, fractals and stable Levy processes.
The Riesz derivative is a complementary operator to the well known
Riesz derivative given explicitly by Samko [5], in the d-dimensional case,
as follows:

(−∆)
γ
2
d f(x) =

−Γ[(d− 2 + γ)/2)]

π(2−γ)/222−γΓ[(2− γ)/2]

∫
∆f(ξ)dξ

|x− ξ|d−2+γ
,

where 0 < γ < 2.
Consider fractional Laplacian , defined for the Colombeau representa-
tive fε(x). Fractional Laplacian of order 0 < γ < 2,

(−∆)
γ
2
d f(x) =

−Γ[(d− 2 + γ)/2)]

π(2−γ)/222−γΓ[(2− γ)/2]

∫
∆f(ξ)dξ

|x− ξ|d−2+γ
.

Use the following regularization for 0 < γ < 2,

(̃−∆)
γ
2

d fε(x) =
−Γ[(d− 2 + γ)/2)]

π(2−γ)/222−γΓ[(2− γ)/2]

∫
∆fε(ξ)

|x− ξ|d−2+γ
ϕε(x−ξ−t)dξdt.

Where fε(x) is a representative for f(x) in extended Colombeau algebra
Ge([0, T ]× R). The convolution form is given by

(̃−∆)
γ
2

d fε(x) =
−Γ[(d− 2 + γ)/2)]

π(2−γ)/222−γΓ[(2− γ)/2]
(∆fε(x) ∗ (|x|−d+2−γ ∗ ϕε(x))).

We indicate |(̃−∆)
γ
2

d fε(x)− (−∆)
γ
2
d fε(x)| ≈ 0.

sup
x∈R
|(̃−∆)

γ
2

d fε(x)− (−∆)
γ
2
d fε(x)|

−Γ[(d− 2 + γ)/2)]

π(2−γ)/222−γΓ[(2− γ)/2]
sup
x∈R
|(̃−∆)

γ
2

d fε(x)− (−∆)
γ
2
d fε(x)|

=
−Γ[(d− 2 + γ)/2)]

π(2−γ)/222−γΓ[(2− γ)/2]
sup
x∈R

∫ ∞
−∞

∆fε(x)t2−γ−d|ϕε(t)− δ(t)| −→ 0,

as ε −→ 0. Since limε−→0 |ϕε(t) − δ(t)| −→ 0, Then (̃−∆)
γ
2

d fε(x) ≈
(−∆)

γ
2
d fε(x).
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Using the fact that ϕε(t) has the compact support on [−x, x] , so by
Holder inequalities, have the following calculations:

sup
x∈R
|(̃−∆)

γ
2

d fε(x)| ≤ −Γ[(d− 2 + γ)/2]

π(2−γ)/222−γΓ[(2− γ)/2]

∫ ∞
−∞

∆fε(t)(|t|2−γ−d∗ϕε(t))dt

= Cγ,d

∫ ∞
−∞

∆fε(t)

∫ ∞
−∞
|t− h|2−γ−dϕε(h)dhdt

= Cγ,d

∫ ∞
−∞

∆fε(t)

∫ ∞
−∞
|t− εp|2−γ−dφ(p)dpdt

≤ Cγ,d
∫ ∞
−∞

∆fε(t) sup
p∈[−x,x]

φ(p)

∫ x

−x
|t− εp|2−γ−ddpdt

≤ Cγ,d
∫ ∞
−∞

∆fε(t) sup
p∈[−x,x]

φ(p)
1

ε

∫ t+εx

t−εx
|k|2−γ−ddkdt

≤ Cγ,d sup
t∈R

∆fε(t) sup
p∈[−x,x]

φ(p)

∫ x

−x

1

ε

∫ t+εx

t−εx
|k|2−γ−ddkdt

≤ Cγ,d sup
t∈R

∆fε(t) sup
p∈[−x,x]

φ(p)

∫ x

−x

1

ε

1

3− γ − d (|t+ εx|3−γ−d − |t− εx|3−γ−d)dt

≤ Cγ,d sup
t∈R

∆fε(t) sup
p∈[−x,x]

φ(p)
1

ε2
1

(4− γ − d)(3− γ − d)

×(|t+ εx|3−γ−d − |t− εx|3−γ−d)
∣∣x
−x

≤ Cγ,d sup
t∈R

∆fε(t) sup
p∈[−x,x]

φ(p)
1

ε2
1

(4− γ − d)(3− γ − d)
C′γ,dε

4−γ−dX4−γ−d

≤ Cγ,d,φ
1

(4− γ − d)(3− γ − d)
sup
t∈R

∆fε(t)ε
−NX4−γ−d

≤ Cγ,d,φε−NX4−γ−d, 0 < γ < 2.

Since x < X, X > 0 and ∆fε(x) is of the moderate class.

sup
x∈R
|(̃−∆)

γ
2

d fε(x)| ≤ Cγ,d,φε−NX4−γ−d, 0 < γ < 2.

3.1.Imbedding of the heat equation into extended Colombeau
algebra of generalized functions

We consider the existence and uniqueness result for a nonlinear par-
abolic heat equation driven by the fractional derivative of the delta dis-
tribution in the extended algebra of generalized functions:

∂tu(t, x) = ∆u(t, x) + g(u(t, x)), u(0, x) = u0(x) = V (x) = δ(x),

where g(u) ∈ L∞loc([0, T ),Rn) and the following regularization for delta
distribution will be used:

u0ε(x) = | ln ε|anφ(x.| ln ε|), ‖∇gε(uε)‖L∞ ≤ (| ln ε|)b, 0 < a, b < 1,
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where φ(x) ∈ C∞0 (Rn), φ(x) ≥ 0,
∫
φ(x)dx = 1.

Theorem 3.1. Regularized equation to heat equation

∂tuε(t, x) = ∆uε(t, x) + gε(uε(t, x)), u0ε = δε(x),(3.1)

has a unique solution in the space GeL∞([0, T )× Rn).

Proof. The integral form of the equation (3.1)

uε(t, x) = Enε(t, x) ∗ u0ε(x)

+

∫ t

0

∫
Rn
Enε(t− τ, x− y)gε(uε(τ, x))dydτ, t ∈ [0, T ], x ∈ Rn,

where En is the heat kernel. By the Holder’s inequality,

‖uε(t, ·)‖L∞ ≤ ‖Enε(t, x− ·)‖L1‖u0ε‖L∞

+

∫ t

0
‖Enε(t− τ, x− ·)‖L1‖∇gε(θuε)‖L∞‖uε(τ, ·)‖L∞dτ.

‖uε(t, ·)‖L∞ ≤ C| ln ε|an +

∫ t

0
C(| ln ε|)b‖uε(τ, ·)‖L∞dτ.

By Gronwall inequality

‖uε(t, ·)‖L∞ ≤ C| ln ε|an exp(CT (| ln ε|)b)
≤ Cε−N , ∃N > 0, x ∈ Rn, t ∈ [0, T ], ε ∈ (0, 1].

For the first derivative we have

∂xuε(t, x) =

∫
Enε(t, x− y)∂xu0ε(y)dy

+

∫ t

0

∫
∂xEnε(t− τ, x− y)∇gε(θuε)uε(τ, y)dydτ.

So,

‖∂xuε(t.·)‖L∞ ≤ C| ln ε|an−1 + C

∫ t

0
(| ln ε|)b‖uε(τ, ·)‖L∞dτ.

Using the moderateness of uε(t, x),

‖∂xuε(t.·)‖L∞ ≤ C| ln ε|an−1(CT (| ln ε|)b)
≤ Cε−N , ∃N > 0, x ∈ Rn, t ∈ [0, T ], ε ∈ (0, 1].
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Take the fractional Laplacian for 0 < γ < 2

|(̃−∆)
γ
2

d uε(x, t))| =
∫
Enε(t, x− y)(̃−∆)

γ
2

d u0ε(y)dy

+

∫ ∫ t

0
Enε(t− τ, x− y)∇gε(θuε)(̃−∆)

γ
2

d uε(τ, y)dydτ

Using the moderateness of uε(t, x),

‖(̃−∆)
γ
2

d uε(t, ·))‖L∞ ≤ ‖Enε(t, x−y)‖L1‖(̃−∆)
γ
2

d u0ε(y)‖L∞

+

∫ t

0
‖Enε(t− τ, x− ·)‖L1‖∇gε(θuε)‖L∞‖(̃−∆)

γ
2

d uε(τ, ·)‖L∞dτ.

‖(̃−∆)
γ
2

d uε(x, t))‖L∞ ≤ CX
4−γ−dε−N+CTX4−γ−d(| ln ε|)bε−N .

‖(̃−∆)
γ
2

d uε(x, t))‖L∞ ≤ ε
−N , ∃N > 0, x ∈ Rn, t ∈ [0, T ], ε ∈ (0, 1].

It follows moderateness for the fractional Laplacian in the space GeL∞([0, T )×
Rn).
For uniqueness suppose that Lε(x, t) = u1ε(x, t) − u2ε(x, t) be two dif-
ferent solutions whose difference for equation

∂tLε(t, x) = ∆Lε(t, x) + kε(t, x)Lε(t, x) +Nε(t, x),

(Lε(x, 0))ε = (N0ε(x)) ∈ (NL∞(Rn)),

where

Nε(x, t) ∈ NL∞(Rn × [0, T )), ‖kε(τ, x)‖L∞ ≤ C(| ln ε|)b, 0 < b < 1.

‖(̃−∆)
γ
2

d Lε(t, ·))‖L∞ ≤ ‖Enε(t, x−·)‖L1‖(̃−∆)
γ
2

d N0ε(·)‖L∞

+

∫ t

0
‖Enε(t− τ, x− ·)‖L1‖kε(τ, ·)‖L∞‖(̃−∆)

γ
2

d Lε(τ, ·)‖L∞dτ

+

∫ t

0
‖Enε(t−τ, x−·)‖L1‖(̃−∆)

γ
2

d Nε(τ, ·)‖L∞dτ.

‖(̃−∆)
γ
2

d Lε(t, ·)‖L∞ ≤ Cε
r+CT (| ln ε|)bε−N+εr ≤ Cεr.

Then ‖(̃−∆)
γ
2

d Lε(t, ·)‖L∞ ≤ Cεr, ∃N > 0, x ∈ Rn, t ∈ [0, T ], ε ∈
(0, 1]. �
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