Document Type: Research Paper

Authors

1 Department of Mathematics, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran.

2 Faculty of Mathematical Sciences, University of Tabriz, Tabriz 51664, Iran.

Abstract

This paper deals with the boundary value problem involving the differential equation \begin{equation*}     \ell y:=-y''+qy=\lambda y,  \end{equation*}  subject to the standard boundary conditions along with the following discontinuity  conditions at a point $a\in (0,\pi)$  \begin{equation*}     y(a+0)=a_1 y(a-0),\quad y'(a+0)=a_1^{-1}y'(a-0)+a_2 y(a-0), \end{equation*} where $q(x),  \ a_1 ,\ a_2$ are  real, $q\in L^{2}(0,\pi)$ and $\lambda$ is a parameter independent of $x$. We develop the Hochestadt's result based on the transformation operator for inverse Sturm-Liouville problem when there are discontinuous conditions.  Furthermore, we establish a formula for $q(x) - \tilde{q}(x)$  in the finite interval where $q(x)$ and $\tilde{q}(x)$ are analogous functions.

Keywords

[1] R. J. Krueger, Inverse problems for nonabsorbing media with discontinuous material properties, J. Math. Phys. 23 (1982) 396-404.

[2] R. S. Anderssen, The e ect of discontinuities in density and shear velocity on the asymptotic overtone structure of tortional eigenfrequencies of the earth, Geophys. J. R. Astron. Soc. 50 (1997) 303-309.

[3] O. H. Hald, Discontinuous Inverse Eigenvalue Problem, Commun. Pure. Appl. Math. 37 (1984), 539-577.

[4] V. A. Ambartsumyan,  Uber eine frage der eigenwerttheorie, Z. Phys. 53 (1929), 690-695.

[5] G. Borg, Eine umkehrung der Sturm-Liouvilleschen eigenwertaufgabe, Acta Math. 78 (1945), 1-96.

[6] J. R. McLaughlin, Analytical methods for recovering coecients in di erential equations from spectral data, SIAM Rev. 28 (1986), 53-72.

[7] B. M. Levitan, Inverse Sturm-Liouville Problems, VNU Science Press, 1987.

[8] N. Levinson, The inverse Sturm-Liouville problem, Mat. Tiddskr. 3 (1949), 25-30.

[9] I. M. Gelfand and B. M. Levitan, On the determination of of a di erential equation from its spectral function, Amer. Math. Soc. Transl. Ser. 21 (1955), 253-304.

[10] V. A. Yurko, Inverse problem for Sturm-Liouville operators on hedgehog-type graphs, Math. Notes, vol 89 no 3-4 (2011), 438-449.

[11] M. Shahriari, A. J. Akbarfam, G. Teschl, Uniqueness for Inverse Sturm-Liouville Problems with a Finite Number of Transmission Conditions, J. Math. Anal. Appl., 395 (2012) 19-29.

[12] H. Hochstadt, On inverse problems associated with Sturm-Liouville operators, J. Di erential Equations, 17 (1975), 220-235.

[13] H. Hochstadt, The inverse Sturm-Liouville problem, Comm.pure.Math. 26 (1973), 715-729.

[14] P. A. Binding, P. J. Browne and B. A. Watson, Inverse spectral problems for leftde nite Sturm-Liouville equations with inde nite weight, J. Math. Anal. Appl. 271 (2002), 383-408.

[15] R. Kh. Amirov, On Sturm-Liouville operators with discontinuity conditions inside an interval, J. Math. Anal. Appl. 317 (2006), 163-176.

[16] H. Koyunbakan and E. S. Panakhov, Inverse problem for a singular di erential operator, Mathematical and Computer Modelling, 47 (2008), 178-185.

[17] Hikmet Koyunbakan, Inverse problem for a quadratic pencil of Sturm-Liouville operator, J. Math. Anal. Appl. 378 (2011) 549-554.

[18] V. Yurko, Integral transforms connected with discontinuous boundary value problems, Int. Trans. Spec. Functions, 10 (2000), 141-164.

[19] J. Poschel and E. Trowbowitz, Inverse Spectral Theory, Academic Press, 1987.

[20] A. Friendman, Foundations of modern analysis, Dover Publications, Inc. New Yurk, 1982.

[21] G. Freiling and V. A. Yurko, Inverse Sturm-Liouville Problems and Their Applications, NOVA Science Publishers, New Yurk, 2001.

[22] B. Ya. Levin, Lectures on Entire Functions, Transl. Math. Monographs 150, Amer. Math. Soc., Providence, RI, 1996.