ON \tilde{X}-FRAMES AND CONJUGATE SYSTEMS IN
BANACH SPACES

MIGDAD ISMAILOV1* AND AFET JABRAILOVA2

Abstract. The generalization of p-frame in Banach spaces is considered in this paper. The concepts of an \tilde{X}-frame and a system conjugate to \tilde{X}-frame were introduced. Analogues of the results on the existence of conjugate system were obtained. The stability of \tilde{X}-frame having a conjugate system is studied.

1. Introduction

The concept of frame in Hilbert spaces was introduced by R.J.Duffin and A.C.Schaeffer [1] when studying non-harmonic Fourier series. Let us recall that the system $\{f_i\}_{i \in \mathbb{N}}$ in separable Hilbert space H is called a frame if there are the constants $A > 0$ and $B > 0$ such that

$$A\|f\|^2 \leq \sum_{i=1}^{\infty} |\langle f, f_i \rangle|^2 \leq B\|f\|^2, \quad \forall f \in H.$$

The constants A and B are called the frame bounds. Refer to [2, 3] for the theory of frames. There are many other works dedicated to frames and their applications (see [4, 5], etc). Frames are widely used in signal processing, data compression, characterization of function spaces and other fields. Every vector in separable Hilbert space can be expanded in a frame. In other words, if $\{f_i\}_{i \in \mathbb{N}}$ forms a frame for H then there exists the system $\{\tilde{f}_i\}_{i \in \mathbb{N}} \subset H$ such that the recovery formula

$$f = \sum_{k=1}^{\infty} \langle f, \tilde{f}_k \rangle f_k$$
holds for every vector $f \in H$. Note that such a system may not be unique. The system $\{\tilde{f}_i\}_{i \in N}$ also forms a frame for H and is called a frame conjugate to $\{f_i\}_{i \in N}$. One of the most important fields in the theory of frames in Hilbert spaces is the stability of frame. More information about this matter can be found in [6, 7].

K. Gröchenig [8] extended the concept of frame to the case of Banach space. He introduced the concept of a separable Banach frame and the one of atomic decomposition in Banach spaces. Banach frames and atomic decomposition, as well as their stability in Banach spaces have been studied in [9-11]. There are other generalizations of frame, Banach frame and atomic decomposition. In [12], the concepts of p-frame and p-Riesz basis were introduced and their properties studied. Reference [13], dedicated to p-frames, also presented a recovery formula. In [14], the concept of g-frame was introduced and the analogues of corresponding frame results have been obtained. As generalizations of g-frame, the concepts of pg-frame and Banach g-frame were introduced in [15] and their stability studied. Frame properties of degenerate trigonometric systems in Lebesgue spaces have been studied in [16, 17] in case when the degeneration coefficient does not satisfy the well-known Muckenhoupt condition (with respect to the Muckenhoupt condition see e.g. [18]).

This work is dedicated to the generalization of frame in Banach spaces with respect to the Banach space of sequences. The concept of \tilde{X}-frame is introduced which is a generalization of p-frame. The equivalent conditions for the existence of a system conjugate to \tilde{X}-frame were studied, and we obtain the result for the stability of \tilde{X}-frame was obtained. A g-frame with respect to the Banach space of sequences is also considered.

2. \tilde{X}-frames in Banach spaces

Let X, Z be Banach spaces, \tilde{X} be a Banach space of sequences of vectors X with the coordinate-wise linear operations such that the operator

$$P_k : X \to \tilde{X}, \quad P_k(x) = \{\delta_{ik}x\}_{i \in N},$$

is bounded (BK-space for brevity). \tilde{X} will be called a BC-space if the equality

$$\lim_{n \to \infty} \left\| \{x_k\}_{k \in N} - \sum_{k=1}^{n} \{\delta_{ik}x_k\}_{i \in N} \right\|_{\tilde{X}} = 0$$

holds for every $\{x_k\}_{k \in N} \in \tilde{X}$.

It is not difficult to show that if \tilde{X} is a BC-space, then \tilde{X}^* is isometrically isomorphic to the Banach space
ON \tilde{X}-FRAMES AND CONJUGATE SYSTEMS IN BANACH SPACES

$\tilde{Y} = \left\{ \{t_k\}_{k \in \mathbb{N}} \subset X^* : t_k = iP_k, i \in \tilde{X}^* \right\}$
equipped with the norm $\|\{t_k\}_{k \in \mathbb{N}}\|_{\tilde{Y}} = \|i\|_{\tilde{X}^*}$. Every $\tilde{i} \in \tilde{X}^*$ is defined by the formula

$$\tilde{i}(\{x_k\}_{k \in \mathbb{N}}) = \sum_{k=1}^{\infty} t_k(x_k).$$

Therefore \tilde{X}^* is identified with \tilde{Y}.

By $L(Z, X)$ we denote the space of all bounded linear operators from Z to X.

Definition 2.1. System $\{g_k\}_{k \in \mathbb{N}} \subset L(Z, X)$ is called \tilde{X}-frame in Z if there are the constants $A > 0$ and $B > 0$ such that

$$A \|z\|_Z \leq \|\{g_k(z)\}_{k \in \mathbb{N}}\|_{\tilde{X}} \leq B \|z\|_Z, \quad \forall z \in Z.$$

Constants A and B are called \tilde{X}-frame bounds of $\{g_k\}_{k \in \mathbb{N}}$. In case when $\{g_k\}_{k \in \mathbb{N}}$ satisfies the right-hand side inequality, $\{g_k\}_{k \in \mathbb{N}}$ is called \tilde{X}-Bessel system in Z with a bound B.

Let $\{g_k\}_{k \in \mathbb{N}} \subset L(Z, X)$ be an \tilde{X}-frame in Z and $S \in L(\tilde{X}, Z)$. The pair $\{(g_k)_{k \in \mathbb{N}}, S\}$ is called a Banach g-frame in Z with respect to \tilde{X} (see [15]) if

$$S(\{g_n(z)\}_{n \in \mathbb{N}}) = z, \quad \forall z \in Z.$$

Let $\{g_k\}_{k \in \mathbb{N}} \subset L(Z, X)$ be an \tilde{X}-frame in Z. Denote by T the operator $T(z) = \{g_k(z)\}_{k \in \mathbb{N}}, z \in Z$. It is clear that T maps Z isomorphically onto $R(T)$.

Theorem 2.2. Let \tilde{X} be a BC-space, and the system $\{\Lambda_k\}_{k \in \mathbb{N}} \subset L(X, Z)$ be given. Then $\{\Lambda_k\}_{k \in \mathbb{N}}$ is \tilde{X}^*-Bessel system in Z^* with a bound B if and only if there exists

$$U \in L(\tilde{X}, Z) : \quad U(\tilde{x}) = \sum_{k=1}^{\infty} \Lambda_k(x_k), \quad \tilde{x} = \{x_n\}_{n \in \mathbb{N}}, \quad \|U\| \leq B.$$

Proof. Let’s prove the convergence of the series $\sum_{k=1}^{\infty} \Lambda_k(x_k)$ for any $\tilde{x} = \{x_n\}_{n \in \mathbb{N}}$. For $n > m$ we have
\[\left\| \sum_{k=m}^{n} \lambda_k(x_k) \right\|_{Z} = \sup_{\|f\|=1} \left\| \sum_{k=m}^{n} f(\lambda_k(x_k)) \right\| \]
\[= \sup_{\|f\|=1} \left\| \sum_{k=m}^{n} \lambda_k^* f(x_k) \right\| \]
\[\leq B \left\| \sum_{k=m}^{\infty} \{\delta_{ik} x_k\}_{i \in N} \right\|_{X}. \]

Consequently, the series \(\sum_{k=1}^{\infty} \lambda_k(x_k) \) is convergent. It follows that the operator
\[U(\tilde{x}) = \sum_{k=1}^{\infty} \lambda_k(x_k), \quad \tilde{x} = \{x_n\}_{n \in N} \]
well-defined, and it is clear that \(U \in L(\tilde{X}, Z) \). Conversely, let there exist
\[U \in L(\tilde{X}, Z), \quad U(\tilde{x}) = \sum_{k=1}^{\infty} \lambda_k(x_k), \quad \tilde{x} = \{x_n\}_{n \in N}. \]
Then
\[\left\| \{\lambda_k^* f\}_{k \in N} \right\|_{\tilde{X}^*} = \sup_{\|x_k\|=1} \left\| \sum_{k=1}^{\infty} \lambda_k^* f(x_k) \right\| \]
\[\leq \|U\| \|f\|. \]

Let us provide the analogue of the results on equivalence Banach \(p \)-frames from [13].

Theorem 2.3. Let \(\tilde{X} \) be a \(BK \)-space, \(\{g_k\}_{k \in N} \subset L(Z, X) \) be an \(\tilde{X} \)-frame in \(Z \). Then the following conditions are equivalent:

1) \(R(T) \) is complemented in \(\tilde{X} \);
2) the operator \(T^{-1} : R(T) \to Z \) can be extended to the bounded operator
\[W : \tilde{X} \to Z; \]
3) there exists the bounded operator \(S \in L(\tilde{X}, Z) \) such that \((\{g_k\}, S) \) forms a Banach \(g \)-frame for \(Z \) with respect to \(\tilde{X} \).

Proof. Let’s show the validity of 1) \(\iff \) 2). Let \(P \) be a projection from \(\tilde{X} \) to \(R(T) \). Consider the operator \(W = T^{-1} P \). Operator \(W \) will be the
desired operator. Now let 2) be true. Define the operator \(P = TW \). We have

\[
P^2 = TWTW \\
= TW \\
= P.
\]

For every \(z \in Z \) we obtain

\[
T(z) = TWT(z) \\
= P(T(z)).
\]

Consequently, \(R(P) = R(T) \), and therefore \(R(T) \) is complemented in \(\tilde{X} \).

Let’s show the validity of 1) \(\Leftrightarrow \) 3). As \(S \), the operator \(W \) was taken. It is clear that \((\{g_i\}, W) \) forms a Banach \(g \)-frame for \(Z \) with respect to \(\tilde{X} \). Conversely, let there exist the bounded operator \(S \in L(\tilde{X}, Z) \) such that \((\{g_i\}, S) \) forms a Banach \(g \)-frame for \(Z \) with respect to \(\tilde{X} \). Then the operator \(S \) is a bounded continuation of \(T^{-1} \).

\[\square \]

Theorem 2.4. Let \(\tilde{X} \) and \(\tilde{X}^* \) be BC-spaces, \(\{g_k\}_{k \in N} \subset L(Z, X) \) be an \(\tilde{X} \)-frame in \(Z \). Then the following conditions are equivalent:

1) \(R(T) \) is complemented in \(\tilde{X} \);
2) there exists an \(\tilde{X}^* \)-Bessel system in \(Z^* \) system

\[
\{\Lambda_k\}_{k \in N} \subset L(X, Z)
\]

such that

\[
z = \sum_{k=1}^{\infty} \Lambda_k g_k(z) \quad \text{for every} \quad z \in Z;
\]

3) there exists an \(\tilde{X}^* \)-Bessel system in \(Z^* \) system

\[
\{\Lambda_k\}_{k \in N} \subset L(X, Z)
\]

such that

\[
f = \sum_{k=1}^{\infty} f \Lambda_k g_k, \quad \forall f \in Z^*.
\]

Proof. Let’s show the validity of 1) \(\Leftrightarrow \) 2). Let \(R(T) \) be complemented in \(\tilde{X} \). Then, by Theorem 2.3, there exists a bounded continuation \(W \) of operator \(T^{-1} \) to the whole \(\tilde{X} \). Define \(\{\Lambda_k\} \) as follows: \(\Lambda_k = WP_k \). It is clear that

\[
\{\Lambda_k\}_{k \in N} \subset L(X, Z).
\]
For arbitrary \(f \in Z^* \), we obtain \(\Lambda^*_k f \in X^* \) and \(\{ \Lambda^*_k f \}_{k \in N} \in \tilde{X}^* \) because

\[
\sum_{k=1}^{\infty} \Lambda^*_k f(x_k) = fW(\tilde{x}) \text{ for every } \tilde{x} = \{x_n\}_{n \in N} \in \tilde{X}.
\]

We have

\[
\left\| \{ \Lambda^*_k(f) \}_{k \in N} \right\|_{\tilde{X}^*} = \sup_{\|x_n\| = 1} \left| \sum_{k=1}^{\infty} \Lambda^*_k f(x_k) \right| \leq \|W\| \|f\|,
\]

i.e. \(\{ \Lambda_k \} \) is an \(\tilde{X}^* \)-Bessel system in \(Z^* \). Conversely, let 2) be true.

Denote

\[
U(\tilde{x}) = \sum_{k=1}^{\infty} \Lambda_k(x_k), \quad \tilde{x} = \{x_n\}_{n \in N}.
\]

Operator \(U \) is a continuous continuation of \(T^{-1} \). In fact, \(\forall z \in Z \) we obtain

\[
UT(z) = U(\{g_n(z)\}_{n \in N}) = \sum_{k=1}^{\infty} \Lambda_k(g_k(z)) = z.
\]

The rest follows from Theorem 2.3.

Now let’s prove the validity of 2) \(\iff \) 3). Let 2) be true. Take arbitrary \(f \in Z^* \). We have

\[
\left\| f - \sum_{k=1}^{n} f \Lambda_k g_k \right\| = \sup_{\|z\| = 1} \left| f(z) - \sum_{k=1}^{n} \Lambda^*_k f(g_k(z)) \right| \leq B \left\| \sum_{k=n+1}^{\infty} \delta_{ik} \Lambda^*_k f \right\|_{\tilde{X}^*}.
\]
Hence, \(f = \sum_{k=1}^{\infty} f \Lambda_k g_k \). Conversely, suppose that 3) is true. For arbitrary \(z \in Z \) we have

\[
\left\| z - \sum_{k=1}^{n} \Lambda_k (g_k(z)) \right\| = \sup_{\|f\|=1} \left| \sum_{k=1}^{n} \frac{\Lambda_k}{\|f\|} (g_k(z)) \right|
\]

\[
= \sum_{k=n+1}^{\infty} \frac{\Lambda_k}{\|f\|} (g_k(z)) \leq B_1 \sum_{k=n+1}^{\infty} \| \delta_k g_k(z) \|_{X^*},
\]

where \(B_1 \) is a bound of \(\{\Lambda_k\}_{k \in \mathbb{N}} \). Therefore,

\[
z = \sum_{k=1}^{\infty} \Lambda_k g_k(z).
\]

Now we introduce the concept of a conjugate \(X^* \)-frame.

Definition 2.5. Let the system \(\{g_k\}_{k \in \mathbb{N}} \subset L(Z, X) \) be \(X \)-Bessel system in \(Z \). System \(\{\Lambda_k\}_{k \in \mathbb{N}} \subset L(X, Z) \), \(X^* \)-Bessel system in \(Z^* \), is called conjugate to \(\{g_k\}_{k \in \mathbb{N}} \) if the following condition is satisfied:

\[
z = \sum_{k=1}^{\infty} \Lambda_k g_k(z), \quad \forall z \in Z.
\]

Theorem 2.6. Let \(\tilde{X} \) be a \(BC \)-space, and the system \(\{g_k\}_{k \in \mathbb{N}} \subset L(Z, X) \) be an \(\tilde{X} \)-frame in \(Z \). Then \(\{g_k\}_{k \in \mathbb{N}} \) has a conjugate system if and only if there exists a bounded left inverse operator of \(T \).

Proof. Let \(\{\Lambda_k\}_{k \in \mathbb{N}} \) be a conjugate system for \(\{g_k\}_{k \in \mathbb{N}} \). Denote by \(U : \tilde{X} \to Z \) its synthesizing operator:

\[
U(\tilde{x}) = \sum_{k=1}^{\infty} \Lambda_k (x_k).
\]

As for every \(z \in Z \) we have

\[
\{g_k(z)\}_{k \in \mathbb{N}} = \sum_{k=1}^{\infty} \{\delta_k g_k(z)\}_{i \in \mathbb{N}},
\]
the relation \(U(\{\delta_{ik}g_k(z)\}_{k \in \mathbb{N}}) = \Lambda_i(g_i(z)) \) holds. Then we obtain
\[
z = \sum_{k=1}^{\infty} \Lambda_k g_k(z) \\
= \sum_{k=1}^{\infty} U(\{\delta_{ik}g_k(z)\}_{i \in \mathbb{N}}) \\
= U(\{g_k(z)\}_{k \in \mathbb{N}}) \\
= UT(z),
\]
i.e. \(T \) has a bounded left inverse \(U \). Conversely, let \(T \) have a bounded right inverse \(U \). Consider \(\{\Lambda_k\}_{k \in \mathbb{N}} \subset L(X, Z) \) such that \(\Lambda_k = UP_k \). It is clear that \(\{\Lambda_k\}_{k \in \mathbb{N}} \subset L(X, Z) \). Then for every \(\tilde{x} = \{x_k\}_{k \in \mathbb{N}} \in \tilde{X} \) we have
\[
\left\| \sum_{k=1}^{\infty} \Lambda_k(x_k) \right\| = \left\| \sum_{k=1}^{\infty} U(\{\delta_{ik}x_k\}_{i \in \mathbb{N}}) \right\| \\
= \left\| U(\sum_{k=1}^{\infty} \delta_{ik}x_k) \right\| \\
= \|U(\tilde{x})\| \\
\leq \|\| UT \| \| \tilde{x} \|.
\]

Therefore, \(\{\Lambda_k\}_{k \in \mathbb{N}} \) is \(\tilde{X}^* \)-Bessel system in \(Z^* \). Next, for every \(z \in Z \) we obtain
\[
z = UTz \\
= U(\{g_k(z)\}_{k \in \mathbb{N}}) \\
= \sum_{k=1}^{\infty} \Lambda_k g_k(z).
\]

\[\square\]

Theorem 2.7. Let \(\tilde{X} \) be a BC-space, the system \(\{g'_k\}_{k \in \mathbb{N}} \subset L(Z, X) \) be an \(\tilde{X} \)-frame in \(Z \) and have a conjugate system \(\{\Lambda_k\}_{k \in \mathbb{N}} \) with the synthesizing operator \(U_1 \), and the system \(\{g''_k\}_{k \in \mathbb{N}} \subset L(Z, X) \) be such that \(\{g''_k(z)\}_{k \in \mathbb{N}} \in \tilde{X}, \forall z \in Z \). Let the operators \(T_1 \) and \(T_2 \) be defined by the equalities \(T_1(z) = \{g'_k(z)\}_{k \in \mathbb{N}} \) and \(T_2(z) = \{g''_k(z)\}_{k \in \mathbb{N}}, z \in Z \), respectively. Assume that there exist the numbers \(\lambda, \mu \geq 0, \beta \in [0, 1) \) such that

1) \(\lambda \|T_1\| + \beta \|T_2\| + \mu < \|U_1\|^{-1}; \)
2) \[
\left\| \{g'_k(z)\}_{n \in \mathbb{N}} - \{g''_k(z)\}_{n \in \mathbb{N}} \right\|_{\tilde{X}} \\
\leq \lambda \left\| \{g'_k(z)\}_{n \in \mathbb{N}} \right\|_{\tilde{X}} + \beta \left\| \{g''_k(z)\}_{n \in \mathbb{N}} \right\|_{\tilde{X}} \\
+ \mu \|z\|_Z, \quad \forall z \in Z.
\]

Then \(\{g''_k\}_{k \in \mathbb{N}}\) forms an \(\tilde{X}\)-frame for \(Z\) and has a conjugate system \(\{\Gamma_k\}_{k \in \mathbb{N}}\) such that \(\{\Lambda_k - \Gamma_k\}_{k \in \mathbb{N}}\) is \(\tilde{X}^*\)-Bessel system in \(Z^*\).

Proof. For every \(z \in Z\) we have

\[
\|(I - U_1T_2)(z)\| = \|(U_1T_1 - U_1T_2)(z)\| \\
= \|U_1(T_1 - T_2)(z)\| \\
\leq \|U_1\| (\lambda \|T_1(z)\|_{\tilde{X}} + \beta \|T_2(z)\|_{\tilde{X}} + \mu \|z\|_Z) \\
\leq \|U_1\| (\lambda \|T_1\| + \beta \|T_2\| + \mu) \|z\|.
\]

By using Neumann Theorem we obtain that \(U_1T_2\) is bounded invertible operator. Let’s show that \(\{g''_k\}_{k \in \mathbb{N}}\) forms an \(\tilde{X}\)-frame for \(Z\). We have

\[
\|T_2(z)\|_{\tilde{X}} \leq \|(T_1 - T_2)(z)\|_{\tilde{X}} + \|T_1(z)\|_{\tilde{X}} \\
\leq (1 + \lambda) \|T_1(z)\|_{\tilde{X}} + \beta \|T_2(z)\| + \mu \|z\|_Z, \quad z \in Z.
\]

Consequently,

\[
\|T_2(z)\|_{\tilde{X}} \leq \frac{(1 + \lambda) \|T_1\| + \mu}{1 - \beta} \|z\|.
\]

We also have

\[
\|z\| = \|(U_1T_2)^{-1}U_1T_2(z)\| \\
\leq \left\| (U_1T_2)^{-1}U_1 \right\| \|T_2(z)\|_{\tilde{X}}.
\]

Let \(\Gamma_k = (U_1T_2)^{-1}\Lambda_k\). It is clear that \(\{\Gamma_k\}_{k \in \mathbb{N}} \subset L(X, Z)\), and \(\{\Gamma_k\}_{k \in \mathbb{N}}\) forms an \(\tilde{X}^*\)-Bessel system in \(Z^*\) because

\[
\sum_{k=1}^{\infty} \Gamma_k(x_k) = (U_1T_2)^{-1}U_1(\{x_k\}_{k \in \mathbb{N}}), \quad \{x_k\}_{k \in \mathbb{N}} \in \tilde{X}.
\]
For every $z \in Z$ we have
\[
z = (U_1 T_2)^{-1}(U_1 T_2)(z) = (U_1 T_2)^{-1} \sum_{k=1}^{\infty} \Lambda_k(g_k''(z)) = \sum_{k=1}^{\infty} \Gamma_k(g_k''(z)),
\]
i.e. $\{\Gamma_k\}_{k \in N}$ is a conjugate system for $\{g_k''\}_{k \in N}$. Finally, for every $\{x_n\}_{n \in N} \in \bar{X}$ we obtain
\[
\left\| \sum_{k=1}^{\infty} (\Lambda_k - \Gamma_k)(x_k) \right\| = \left\| (I - (U_1 T_2)^{-1}) \sum_{k=1}^{\infty} \Lambda_k(x_k) \right\| \\
\leq \left\| (I - (U_1 T_2)^{-1}) \right\| \sum_{k=1}^{\infty} \Lambda_k(x_k) \\
\leq \left\| (I - (U_1 T_2)^{-1}) \right\| \|U_1\| \left\| \{x_k\}_{k \in N} \right\|.
\]

References

1 Department of Non-harmonic analysis, Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan.

E-mail address: miqdadismailov1@rambler.ru

2 Department of Functional analysis, Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan.

E-mail address: afet.cebrayilova@mail.ru