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COMPARISON OF THE ACCELERATION

TECHNIQUES ON ANALYTICAL METHODS FOR

SOLVING DIFFERENTIAL EQUATIONS OF INTEGER

AND FRACTIONAL ORDER

HAMIDREZA MARASI1∗ AND MOJTABA DANESHBASTAM1

Abstract. The work addressed in this paper is a comparative
study between convergence of the acceleration techniques, diagonal
padé approximants and shanks transforms, on Homotopy analysis
method and Adomian decomposition method for solving differential
equations of integer and fractional orders.

1. Introduction

It is obvious that mathematical modeling of many physical systems
leads to nonlinear differential equations. Also in recent years, it has been
turned out that fractional differential equations can be used successfully
to model many phenomena in various sciences. Therefore, there is an
increasing interest to study of the fractional differential equations be-
cause of their various applications such as in viscoelasticity, anomalous
diffusion, fluid mechanics, biology, chemistry, acoustics, control theory,
etc. The exact solutions of the nonlinear differential equations can help
us to know the described process. So, in the past decades, mathemati-
cians have made many efforts in the study of exact solutions of nonlinear
differential equations. But, for most differential equations, no exact so-
lution is known and, in some cases, it is not even clear whether a unique
solution exists. So, approximation methods, such as numerical and ana-
lytical methods, have been developed. Numerical methods give approx-
imate solutions only at discrete points and they may also give rise to
numerical instabilities such as oscillations, false equilibrium states, etc.
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In analytical methods [6] we obtain a continues solution for a differen-
tial equation. Adomian decomposition method [1, 4, 5] efficiently works
with different types of linear and nonlinear equations and gives an an-
alytic solution for all these types of equations without linearization or
discretization. As an analytic tool, to solve nonlinear differential equa-
tions, homotopy analysis method(HAM) [2, 3, 8] provides a convenient
way to guarantee the convergence of solution series. There also exist
some techniques to accelerate the convergence of a series solution, such
as padé and Shanks transform techniques[7]. In this paper comparisons
are made between Adomian decomposition method, homotopy analysis
method and accelerated solutions by padé technique and Shanks trans-
formation.
In the remainder of this section we present some definitions.

Definition 1.1. We say that f(t) is a function of class ζ, if f(t) is
piecewise continuous on (0,+∞) and integrable on any finite subinterval
of (0,+∞).

Definition 1.2. Let f(t) be a function of class ζ, then the Riemann-
Liouville fractional integral of f(t) of order β is defined as

Jβ
t f(t) =

∫ t

0

(t− τ)β−1

Γ(β)
f(τ)dτ, β > 0,(1.1)

where Γ(.) is Euler’s gamma function.

The fractional integral satisfies the following equality

(1.2) Jν
t t

µ =
Γ(µ+ 1)

Γ(µ+ ν + 1)
tµ+ν , ν ≥ 0, µ > −1.

Definition 1.3. Let f(t) be a function of class ζ and α be a positive
real number satisfying

m− 1 < α ≤ m, m ∈ N+,

then the Rimann-Liouville fractional derivative of f(t) of order α, when
it exists, is defined as

(1.3) Dα
t f(t) =

dm

dtm
(Jm−α

t f(t)), t > 0.

Definition 1.4. Let α be a positive real number, such that m − 1 <
α ≤ m, m ∈ N+, and f (m)(t) exists and be a function of class ζ, then
the Caputo fractional derivative of f(t) of order α is defind as

(1.4) Dα
t f(t) = Jm−α

t f (m)(t), t > 0.
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2. Analytical Methods

2.1. The Adomian decomposition method. Let us consider the
nonlinear differential equation

(2.1) L(u) +R(u) +N(u)− g(x, t) = 0,

where L is the highest order derivative which assumed to be invertible,
R is a linear differentiable operator of order less than L and N is a
nonlinear operator. Define the solution u(x, t) by the series

(2.2) u(x, t) =
∞∑
k=0

uk(x, t),

and the nonlinear terms can be decomposed into the infinite series of
polynomials given by

(2.3) N(u) =
∞∑
k=0

Ak,

where Ak are so called the Adomains polynomials which given by

(2.4) Ak =
1

k!

[
dk

dλk

[
N

( ∞∑
k=0

λiui(x, t)

)]]
λ=0

.

So, the components uk(x, t) are determind by the following recursive
relationship

(2.5) u0(x, t) = g(x, t), uk+1(x, t) = −L−1[R(uk)+Ak], k ≥ 0.

2.2. Homotopy analysis method. We consider the following differ-
ential equation

(2.6) N [u(x, t)] = 0,

where N represents a general nonlinear operator involving both linear
and nonlinear terms, u(x, t) is an unknown function and x and t denote
spatial and temporal independent variables, respectively. By means of
generalizing the traditional homotopy method, Liao [3] constructed the
following zero-order deformation equation

(2.7) (1− p)L[ϕ(x, t; p)− u0(x, t)] = pℏN [ϕ(x, t; p)].

Obviously, when p = 0 and p = 1, it holds

(2.8) ϕ(x, t; 0) = u0(x, t), ϕ(x, t; 1) = u(x, t),

respetively. Thus, as p increases from 0 to 1, the solution ϕ(x, t; p) varies
from the initial guess u0(x, t) to the solution u(x, t). Expending ϕ(x, t; p)
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in Taylor series with respect to p, one has

(2.9) ϕ(x, t; p) = u0(x, t) +

+∞∑
m=1

um(x, t)pm,

where

(2.10) um(x, t) =
1

m!

∂mϕ(x, t; p)

∂pm

∣∣∣∣
p=0

.

Differentiating Eq.(2.7) m times with respect to the embedding param-
eter p and then setting p = 0 and finally dividing them by m!, we have
the so-called mth-order deformation equation

(2.11) L[um(x, t)− χmum−1(x, t)] = ℏℜm[u→m−1(x, t)],

where

(2.12) ℜm(u→m−1) =
1

(m− 1)!

∂m−1N [ϕ(x, t; p)]

∂pm−1

∣∣∣∣
p

= 0,

and

(2.13) χm =

{
0, m ≤ 1,

1, m ≥ 2.

In this way, it is easily to obtain um(x, t) for m ≥ 1, at Mth order, we
have

u(x, t) =

M∑
k=0

uk(x, t).

When M → ∞, we get an accurate approximation of the original equa-
tion (2.6).

2.3. Convergence accelearation techniques. Convergence acceler-
ation techniques are used to accelerate convergence rate of a sequence
or series and also for extending the region of convergence. In Shanks
transformation starting from S0

n = ϕn(t), then we continue by the fol-
lowing

(2.14) Sk
n =

S
(k−1)
n S

(k−1)
n+2 − (S

(k−1)
n+1 )2

S
(k−1)
n + S

(k−1)
n+2 − 2S

(k−1)
n+1

, k ≥ 1.

So, it yields one expression if m = 3, 5, 7, . . . , while two expressions if
m = 4, 6, 8, . . .. Also, a Padé approximant is the ratio of two polynomials
constructed from the coefficients of the Taylor series expansion of a
function u(x). The [ LM ] Padé approximant for a function u(x) is given
by

(2.15)

[
L

M

]
=

PL(x)

QM (x)
,
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where PL(x) is polynomial of degree at most L and QM (x) is a polyno-
mial of degree at most M . Using the formal power series

u(x) =

∞∑
i=1

aix
i,

u(x)− PL(x)

QM (x)
= O(xL+M+1),

one can determine the coefficients of PL(x) and QM (x) by comparing
the coefficient of like powers.

3. Applications

Example 3.1. We first consider the following KdV equation

(3.1) ut − 6uux + uxxx = 0, xϵR,

with initial condition

(3.2) u(x, 0) =
−k2

2
sech2

[
k

2
x

]
,

where k is a parameter. The exact solution is given by

(3.3) u(x, t) =
−k2

2
sec2

[
k

2
(x− k2t)

]
.

Following the Adomian decomposition method we consider the equation
as an operator equation

Lu+Ru+ 6N(u) = 0, xϵR,

u(x, 0) =
−k2

2
sech2

[
k

2
x

]
,

where

Lu =
∂u

∂t
, Ru =

∂3u

∂x3
, N(u) = u

∂u

∂x
.

Considering the given initial condition, it is straightforward to choose

u(x, 0) =
−k2

2
sech2

[
k

2
x

]
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as an initial approximation. Now, using the recursive relation (2.5), we
obtain the following relations

u0(x, t) =
−k2

2
sech2

[
k

2
x

]
,

u1(x, t) = −1

4
k5t(1 + cosh[kx])sech

[
kx

2

]4
tanh

[
kx

2

]
,

u2(x, t) = −1

8
k8t2(−2 + cosh[kx])sech

[
kx

2

]4
,

u3(x, t) = − 1

24
k11t3(−5 + cosh[kx])sech

[
kx

2

]4
tanh

[
kx

2

]
,

u4(x, t) =
1

384
k14t4(−33 + 26 cosh[kx]− cosh[2kx])sech

[
kx

2

]6
,

u5(x, t) =
k17t5sech

[
kx
2

]6 (
57sech

[
kx
2

]
sinh

[
3kx
2

])
3840

,

+
−sech

[
kx
2

]
sinh

[
5kx
2

]
− 302 tanh

[
kx
2

])
3840

...

Next we apply two common convergence acceleration techniques on
these results. In table 1, we make a comparison between the exact
solution with the results of ADM, accelerated ADM solutions by iterated
Shanks transforms and diagonal padé approximant respectively.

Table 1. Numerical comparison of methods for Exam-
ple 3.1.

t |uADM − uexact| |uADM−SHANKS − uexact| |uADM−PADE − uexact|
−4 16.9028 1.53533 0.00161449
−3 1.34279 0.715353 0.000359940
−2 0.0328700 0.00209987 0.0000234224
−1 0.00004250260 0..0182239× 10−4 6.43979× 10−8

0 0 0 0

Example 3.2. We consider the quadratic Riccati differential equation

(3.4) Dµy = 2y(t)− y2(t) + 1, 0 < µ ≤ 1, t > 0,

subject to initial condition y(0) = 0. Exact solution when µ = 1 is

(3.5) y(t) = 1 +
√
2 tanh(

√
2t) +

1

2
ln

(√
2− 1√
2 + 1

)
.
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Following the HAM, the solution of the mth-order deformation equation
for m ≥ 1 becomes

(3.6) ym(t) = χmym−1(t) + ℏJµ
t [ℜm(y→m−1)], m ≥ 1,

where

ℜm(y→m−1) =
1

(m− 1)!

∂m−1N [ϕ(t; q)]

∂qm−1

∣∣∣∣
q=0

= Dµym−1(t)− (1− χm)

− 2ym−1(t) + Σm−1
k=0 yk(t)ym−1−k(t).

Starting with

(3.7) y0(t) =
tµ

Γ(µ+ 1)
,

we obtain

y1(t) =
−2ℏt2µ

Γ(1 + 2µ)
+

4µℏt3µΓ
(
1

2
+ µ

)
√
πµΓ(µ)Γ(1 + 3µ)

,

y2(t) = − 2ℏt2µ

Γ(1 + 2µ)
− 2ℏ2t2µ

Γ(1 + 2µ)
+

4ℏ2t3µ

Γ(1 + 3µ)
+

22µℏt3µΓ
(
1

2
+ µ

)
√
πµΓ(µ)Γ(1 + 3µ)

+

22µℏ2t3µΓ
(
1

2
+ µ

)
√
πµΓ(µ)Γ(1 + 3µ)

−
21+2µℏ2t4µΓ

(
1

2
+ µ

)
√
πµΓ(µ)Γ(1 + 4µ)

− 12ℏ2t4µΓ(3µ)
Γ(µ)Γ(1 + 2µ)Γ(1 + 4µ)

+

23+2µℏ2t5µΓ(4µ)Γ
(
1

2
+ µ

)
√
πΓ(µ)Γ(1 + µ)Γ(1 + 3µ)Γ(1 + 5µ)

...
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Table 2. Numerical comparison of methods for Exam-
ple 3.2. when µ = 1.

t yADMoryHAM (ℏ = −1) yShanks yHP [5, 5] yExact

0.5 0.756067 0.756056 0.756014 0.756014

0.6 0.953933 0.953488 0.953466 0.953466

0.7 1.1548 1.15198 1.15295 1.15295

0.8 1.35368 1.3432 1.34636 1.34636

0.9 1.55065 1.52407 1.52691 1.52691

1.0 1.75534 1.67655 1.6895 1.6895

Also by the Adomian decomposition method, we obtain the following
components

y0(t) =
tµ

Γ(µ+ 1)
,

y1(t) = −
21−2µt2µ cos(πµ)Γ

(
1

2
− µ

)
√
πµΓ(µ)

− t3µΓ(1 + 2µ)

Γ(1 + µ)2Γ(1 + 3µ)
,

y2(t) =

23−2µt3µ cos(πµ)Γ

(
1

2
− µ

)
Γ(2µ)

√
πΓ(µ)Γ(1 + 3µ)

− 2t4µΓ(1 + 2µ)

Γ(1 + µ)2Γ(1 + 4µ)

+
2t5µΓ(1 + 2µ)Γ(1 + 4µ)

Γ(1 + µ)3Γ(1 + 3µ)Γ(1 + 5µ)
+

12t4µΓ(−2µ)Γ(3µ) sin(2πµ)

πΓ(µ)Γ(1 + 4µ)
,

...

Next we apply two common convergence acceleration techniques on
these results. In table 2 we compare the results of exact solution, acceler-
ated solutions of homomtopy analysis method, Adomian decomposition
method by pad’e technique and shanks transform at some points.

4. Conclusion

In this work, we made a comparative study between the results given
by standard ADM, HAM and accelerated solutions by diagonal padé
approximants and shanks transforms. It was shown that convergence
region can be enlarged by making use of both Shanks transforms and
Padé approximant. Also the rate of convergence increased by means of
acceleration techniques.



COMPARISON OF THE ACCELERATION TECHNIQUES 17

References

1. G.C. Wu, Y.G. Shi and K.T. Wu, Adomian decomposition method and non-
analytical solutions of fractional differential equations, Romanian J. Phys., 56
(2011) 873-880.

2. M. Ganjiani, Solution of nonlinear fractional differential equations using homo-
topy analysis method, Appl. Math. Model., 34(2010)1634-1641.

3. S.J. Liao, The proposed homotipy analysis method technique for the solution of
non-linear problems, PhD dissertation, Shanghai Jiao Tong University(1992).

4. G. Adomian, A review of the decomposition method in applied mathematics, J.
Math. Anal. Appl., 135(1988) 501-544.

5. H.R. Marasi and M. Nikbakht, Adomian decompositiom method for boundary
value problems, Aus. J. Basic. Appl. Sci., 5(2011) 2106–2111.

6. H.R. Marasi and S. Karimi, Convergence of variational iteration method for
solving fractional Klein-Gordon equation, J. Math. Comp. Sci., 4(2014) 257–
266.

7. J. Duan, T. Chaolu, R. Rach and L. Lu, The Adomian decomposition method
with convergence acceleration techniques for nonlinear fractional differential
equations, Comput. Math. Appl., 66(2013) 728–736

8. F. Abidi and K. Omrani, The homotopy analysis method for solving the Fornberg-
Whitham equation and comparison with Adomians decomposition method, Com-
put. Math. Appl., 59 (2010) 2743–2750.

1 Department of Mathematics, University of Bonab, P.O.Box 5551761167,
Bonab, Iran.

E-mail address: marasi@bonabu.ac.ir


	1. Introduction
	2. Analytical Methods
	2.1. The Adomian decomposition method
	2.2. Homotopy analysis method
	2.3. Convergence accelearation techniques

	3. Applications
	4. Conclusion
	References

