PARABOLIC STARLIKE Mappings of the Unit Ball B^n

SAMIRA RAHROVI

Abstract. Let f be a locally univalent function on the unit disk U. We consider the normalized extensions of f to the Euclidean unit ball $B^n \subset \mathbb{C}^n$ given by

$$
\Phi_{n,\gamma}(f)(z) = \left(f(z_1), \left(f'(z_1) \right)^\gamma \hat{z} \right),
$$

where $\gamma \in [0, 1/2]$, $z = (z_1, \hat{z}) \in B^n$ and

$$
\Psi_{n,\beta}(f)(z) = \left(f(z_1), \left(\frac{f(z_1)}{z_1} \right)^\beta \hat{z} \right),
$$

in which $\beta \in [0, 1]$, $f(z_1) \neq 0$ and $z = (z_1, \hat{z}) \in B^n$. In the case $\gamma = 1/2$, the function $\Phi_{n,\gamma}(f)$ reduces to the well known Roper-Suffridge extension operator. By using different methods, we prove that if f is parabolic starlike mapping on U then $\Phi_{n,\gamma}(f)$ and $\Psi_{n,\beta}(f)$ are parabolic starlike mappings on B^n.

1. Introduction

Let \mathbb{C}^n be the vector space of n-complex variables $z = (z_1, \ldots, z_n)$ with the Euclidean inner product $\langle z, w \rangle = \sum_{k=1}^{n} z_k \bar{w}_k$ and Euclidean norm $\|z\| = \langle z, z \rangle^{1/2}$. The open ball $\{z \in \mathbb{C}^n : \|z\| < r\}$ is denoted by B^n_r and the unit ball B^n_1 by B^n. In the case of one complex variable, B^1 is denoted by U. It is convenient, if $n \geq 2$ to write a vector $z \in \mathbb{C}^n$ as $z = (z_1, \hat{z})$, where $z_1 \in \mathbb{C}$ and $\hat{z} = (z_2, \ldots, z_n) \in \mathbb{C}^{n-1}$.

Let $H(B^n, \mathbb{C}^n)$ denotes the topological vector space of all holomorphic mappings $F : B^n \rightarrow \mathbb{C}^n$. Let $F \in H(B^n)$, we say that F is normalized if $F(0) = 0$ and $DF(0) = I$, where DF is the Fréchet differential of F and I is the identity operator on \mathbb{C}^n. Let $S(B^n)$ be the set of normalized holomorphic functions.

2010 Mathematics Subject Classification. 30C45.

Key words and phrases. Roper-Suffridge extension operator, Biholomorphic mapping, Parabolic starlike function.

Received: 13 May 2015, Accepted: 4 August 2015.
biholomorphic mappings on B^n, and $S_1 = S$ is the classical family of univalent mappings of U.

A map $f \in S(B^n)$ is said to be a convex if its image is convex domain in \mathbb{C}^n, and starlike if its image is a starlike domain with respect to 0. We denote the classes of normalized convex and starlike mappings on B^n respectively by $K(B^n)$ and $S^*(B^n)$.

In 1995, Roper and Suffridge [8] introduced an extension operator which gives a way of extending a (locally) univalent function on the unit disk U to a (locally) univalent mapping of B^n into \mathbb{C}^n. This operator is defined for a normalized locally biholomorphic function f in the unit disk U in \mathbb{C} by (see [3] and [8])

$$[\Phi_n(f)](z) = \left(f(z_1), \sqrt{f'(z_1)} \hat{z} \right),$$

where $z = (z_1, \hat{z}) \in B^n$ and we choose the branch of the square root such that $\sqrt{f'(z_1)}|_{z_1=0} = 1$.

The following results illustrate the importance and usefulness of the Roper-Suffridge extension operator

$$\Phi_n(K) \subseteq K(B^n), \quad \Phi_n(S^*) \subseteq S^*(B^n).$$

The first was proved by Roper and Suffridge when they introduced their operator [8], while the second result was given by Graham and Kohr [11]. Till now, it has been difficult to make constant the concrete convex mappings and starlike mappings on B^n. By making use of the Roper-Suffridge extension operator, we may easily give many concrete examples about these mappings. This is one important reason why people are interested in this extension operator. A good treatment of further applications of the Roper-Suffridge extension operator can be found in the recent book by Graham and Kohr [3].

The authors [3] considered the following operator

$$\Phi_{n,\gamma}(f)(z) = (f(z_1), (f'(z_1))^\gamma \hat{z}), \quad z = (z_1, \hat{z}) \in B^n,$$

where $\gamma \in [0, 1/2]$ and f is a locally univalent function in U, normalized by $f(0) = f'(0) - 1 = 0$. We choose the branch of the power function such that $(f'(z_1))^\gamma|_{z_1=0} = 1$. Of course when $\gamma = 1/2$, we obtain the Roper-Suffridge extension operator. In [11], a number of extension results were obtained related to the operator $\Phi_{n,\gamma}$, $\gamma \in [0, 1/2]$; if $f \in S$, then $\Phi_{n,\gamma}(f)$ can be embedded in a Loewner chain and moreover $\Phi_{n,\gamma}(f) \in S^0(B^n)$. In particular, if $f \in S^*$, then $\Phi_{n,\gamma}(f) \in S^*(B^n)$. It was also proved that convexity is preserved only if $\gamma = 1/2$.
In [2], Graham and Kohr introduced another extension operator for the locally biholomorphic function f on U by

$$
\Psi_{n,\beta}(f)(z) = \left(f(z_1), \left(\frac{f(z_1)}{z_1} \right)^\beta \hat{z} \right), \quad z = (z_1, \hat{z}) \in B^n,
$$

where $\beta \in [0,1]$ and $f(z_1) \neq 0$, when $z_1 \in U \setminus \{0\}$, and we choose the branch of the power function such that $\left(\frac{f(z_1)}{z_1} \right)^\beta |_{z_1=0} = 1$. They proved that the operator $\Psi_{n,\beta}(f)$ maps the normalized starlike function on U to a normalized starlike mapping on B^n. When $\beta = 1$, it was proved and discussed by Pfaltzgraff and Suffridge [7].

Remark 1.1. Let $g : U \to \mathbb{C}$ be a holomorphic univalent function such that $g(0) = 1$, $g(\bar{\eta}) = \overline{g(\eta)}$ for $\eta \in U$ (so, g has real coefficients in its power series expansion), $\text{Reg}(\eta) > 0$ on U and assume g satisfies the following

$$
\begin{aligned}
\min_{|\eta|=r} \text{Reg}(\eta) &= \min \{g(r), g(-r)\}, \\
\max_{|\eta|=r} \text{Reg}(\eta) &= \max \{g(r), g(-r)\},
\end{aligned}
$$

for $r \in (0,1)$.

For example, the condition (1.1) is satisfied by all functions which are convex in the direction of the imaginary axis and symmetric about the real axis (see [3]).

Let

$$
\mathcal{M}_g = \left\{ h \in H(B^n) : h(0) = 0, \quad Dh(0) = I_n, \quad \left(h(z), \frac{z}{\|z\|^2} \right) \in g(U), \quad z \in B^n \setminus \{0\} \right\}.
$$

For $g(\xi) = \frac{1+i\xi}{1+i\bar{\xi}}$, $\xi \in U$, we obtain the well known set $\mathcal{M}_g = \mathcal{M}$ of mapping with a positive real part on B^n, i.e.

$$
\mathcal{M}_g = \left\{ h \in H(B^n) : h(0) = 0, \quad Dh(0) = I_n, \quad \text{Re} \left(h(z), \frac{z}{\|z\|^2} \right) > 0, \quad z \in B^n \setminus \{0\} \right\}.
$$

Now, we give the definition of parabolic starlike mappings on B^n (see [3]). Let

$$
q(\eta) = 1 + \frac{4}{\pi^2} \left(\log \frac{1 + \sqrt{\eta}}{1 - \sqrt{\eta}} \right)^2.
$$
Then q is a biholomorphic mapping from U onto domain Ω, where

$$\Omega = \{ w = u + iv : v^2 < 4u \}$$

$$= \{ w : |w - 1| < 1 + \Re w \}.$$

We note that Ω is a parabolic region in the right half-plane.

Definition 1.2. Let f be a normalized locally biholomorphic mapping on B^n, we say that f is a parabolic starlike mapping if

$$\left\langle \left[Df(z) \right]^{-1} f(z), \frac{z}{\|z\|^2} \right\rangle \in g(U), \quad z \in B^n \setminus \{0\},$$

where $g = \frac{1}{q}$.

Let f be a parabolic starlike mapping on B^n. Since

$$\Re \left\langle \left[Df(z) \right]^{-1} f(z), z \right\rangle > 0,$$

parabolic starlike mappings are starlike mappings by Suffridge [9].

In order to prove the main results, we need the following lemma:

Lemma 1.3. [5]. Let $g = \frac{1}{q}$. Then, $g(U)$ is starlike with respect to 1.

2. Main Results

Theorem 2.1. Let $f : U \to C$ be a normalized locally univalent function, which satisfies the condition

$$|z_1 f'(z_1) - 1| < 1, \quad z_1 \in U.$$

(2.1)

Also, let $F = \Phi_{n, \gamma}(f)$, then

$$\left| \frac{\|z\|^2}{\langle DF^{-1}(z) F(z), z \rangle} - 1 \right| < 1, \quad z \in B^n \setminus \{0\},$$

and hence F is a parabolic starlike mapping on B^n.

Proof. Without loss of generality, we may assume that f is holomorphic on the closed unit disk \overline{U}, since otherwise we use the function $f_r(z_1) = f(r z_1)/r$ for $r \in (0, 1)$, which is holomorphic on \overline{U}. Taking into account the minimum principle for harmonic functions, we have to prove that

$$\left| \frac{1}{\langle DF^{-1}(z) F(z), z \rangle} - 1 \right| < 1, \quad z = (z_1, \hat{z}) \in B^n, \quad \|z\| = 1,$$

i.e.

$$\Re \langle DF^{-1}(z) F(z), z \rangle > \frac{1}{2}, \quad z \in \partial B^n.$$

We know that the inequality (2.1) is equivalent to

$$\Re \left\{ \frac{f(z_1)}{z_1 f'(z_1)} \right\} > \frac{1}{2}, \quad z_1 \in U.$$
Since \(f \) is parabolic starlike, \(F = \Phi_{n,\gamma}(f) \) is starlike on \(B^n \), and hence biholomorphic. A short computation yields that
\[
DF(z) = \begin{bmatrix}
 f'(z_1) & 0 \\
 \gamma (f'(z_1))^{-1} f''(z_1)\hat{z} & (f'(z_1))^\gamma
\end{bmatrix},
\]
therefore,
\[
DF^{-1}(z)F(z) = \begin{bmatrix}
 f(z_1) & \gamma (f'(z_1))^{-1} f''(z_1)\hat{z} \\
 -(f'(z_1))^\gamma \hat{z} + \hat{z}
\end{bmatrix}.
\]
Then we have
\[
\langle DF(z)^{-1}F(z), \hat{z} \rangle = \frac{f(z_1)}{f'(z_1)} \hat{z}_1 + \|\hat{z}\|^2 \left(1 - \gamma \frac{f(z_1)f''(z_1)}{(f'(z_1))^2} \right) = |z_1|^2 \frac{f(z_1)}{z_1 f'(z_1)} + \|\hat{z}\|^2 - \|\hat{z}\|^2 \gamma \frac{f(z_1)f''(z_1)}{(f'(z_1))^2},
\]
for \(z = (z_1, \hat{z}) \in B^n \). We must show that
\[
(2.2) \quad \text{Re} \langle DF(z)^{-1}F(z), \hat{z} \rangle > \frac{1}{2}, \quad z \in \partial B^n.
\]
Therefore, by making use of the equality \(|z_1|^2 + \sum_{j=2}^n |z_j|^2 = 1 \), we must show that
\[
|z_1|^2 \text{Re} \left\{ \frac{f(z_1)}{z_1 f'(z_1)} \right\} + (1 - |z_1|^2) - \gamma (1 - |z_1|^2) \text{Re} \left\{ \frac{f(z_1)f''(z_1)}{(f'(z_1))^2} \right\} > \frac{1}{2}.
\]
If \(z = (z_1, 0) \in B^n \), then
\[
\text{Re} \langle DF(z)^{-1}F(z), \hat{z} \rangle > |z_1|^2 \text{Re} \left\{ \frac{f(z_1)}{z_1 f'(z_1)} \right\} > \frac{\|\hat{z}\|^2}{2},
\]
and hence we may assume \(\hat{z} \neq 0 \). Then \(F \) is holomorphic in a neighborhood of each \(z \in B^n \) for each \(\hat{z} \neq 0 \). In view of the minimum principle for harmonic functions, it suffices to prove that
\[
\text{Re} \langle DF(z)^{-1}F(z), \hat{z} \rangle \geq \frac{1}{2}, \quad \|\hat{z}\| = 1.
\]
Let \(p(z_1) = \frac{f(z_1)}{z_1 f'(z_1)} \) for \(|z_1| < 1 \). Since \(f \) is parabolic starlike on \(U \), we obtain that \(\text{Re} p(z_1) > \frac{1}{2} \). Also let \(q(z_1) = 2p(z_1) - 1 \). Then \(\text{Re} q(z_1) > 0 \) for \(|z_1| < 1 \), and thus (see e.g. [x], Theorem 2.1.3)
\[
\text{Re} \left\{ z_1 q'(z_1) \right\} \geq \frac{-2|z_1|}{1 - |z_1|^2} \text{Re} q(z_1), \quad |z_1| < 1.
\]
Therefore, we deduce that

\[(2.3) \quad \Re\left\{z_1f'(z_1)\right\} \geq \frac{-2|z_1|}{1 - |z_1|^2}\Re(z_1) + \frac{|z_1|}{1 - |z_1|^2}.\]

On the other hand, since

\[
\frac{f''(z_1)zf(z_1)}{(f'(z_1))^2} = 1 - z_1f'(z_1) - p(z_1),
\]

we deduce from (2.3) that

\[
|z_1|^2\Re\left\{\frac{f(z_1)}{z_1f'(z_1)}\right\} + (1 - |z_1|^2) - \gamma (1 - |z_1|^2) \Re\left\{\frac{f(z_1)f''(z_1)}{(f'(z_1))^2}\right\}
= |z_1|^2\Re(z_1) + (1 - |z_1|^2) - \gamma (1 - |z_1|^2) \Re\left\{1 - z_1f'(z_1) - p(z_1)\right\}
= (|z_1|^2 + \gamma (1 - |z_1|^2)) \Re(z_1) + (1 - |z_1|^2) (1 - \gamma)
+ \gamma (1 - |z_1|^2) \left(\frac{-2|z_1|}{1 - |z_1|^2}\Re(z_1) + \frac{|z_1|}{1 - |z_1|^2}\right)
= (|z_1|^2 + \gamma (1 - |z_1|^2)) \Re(z_1) - 2\gamma |z_1|\Re(z_1) + \gamma |z_1|
+ (1 - |z_1|^2) (1 - \gamma)
\geq \frac{1}{2} (\gamma + (1 - \gamma)|z_1|^2) + (1 - |z_1|^2) (1 - \gamma)
= \frac{1}{2} \gamma + \frac{1 - \gamma}{2}|z_1|^2 + (1 - |z_1|^2) (1 - \gamma)
= \frac{1}{2} \gamma + (1 - \gamma) \left(1 - \frac{1}{2}|z_1|^2\right)
\geq \frac{1}{2} \gamma + \frac{1 - \gamma}{2} = \frac{1}{2}.
\]

Hence the relation (2.2) holds, as desired. This completes the proof. \(\square\)

In view of Theorem 2.1, we obtain the following particular cases. This result, was obtained in [1], in the case \(\gamma = \frac{1}{2}\).

Corollary 2.2. Let \(f : U \to C\) be a normalized locally univalent function, which satisfies the condition

\[
\left|\frac{z_1f'(z_1)}{f(z_1)} - 1\right| < 1, \quad z_1 \in U.
\]

Also, let \(F = \Phi_n(f)\) where

\[
\Phi_n(f)(z) = (f(z_1), \sqrt{f''(z_1)}\hat{z}), \quad z = (z_1, \hat{z}) \in B^n.
\]
then
\[\left| \frac{\|z\|^2}{\langle DF^{-1}(z)F(z), z \rangle} - 1 \right| < 1, \quad z \in B^n \setminus \{0\}, \]
and hence \(F \) is a parabolic starlike mapping on \(B^n \).

In the next Theorem, through a different method, we show that \(\Psi_{n,\beta}(f) \) is also a parabolic starlike mapping on \(B^n \).

Theorem 2.3. Assume that \(f \) be a parabolic starlike function on \(U \). For any \(\beta \in [0, 1] \), let \(F = \Psi_{n,\beta}(f) \). Then \(\Psi_{n,\beta}(f) \) is a parabolic starlike mapping on \(B^n \).

Proof. Let \(f \in S \) be a parabolic starlike mapping on \(U \), since parabolic starlike mappings are starlike mappings with respect to 1 (Lemma 1.3) then we must show that
\[
F(z) = \Phi_{n,\beta}(f)(z) = \left[\begin{array}{c} f(z_1) \\ (f(z_1)/z_1)^\beta \hat{z} \end{array} \right],
\]
is a parabolic starlike map with respect to 1 on \(B^n \). For this purpose, through simple calculations we have
\[
DF(z) = \left[\begin{array}{cc} \beta \left(f(z_1)/z_1 \right)^{\beta-1} \left(f'(z_1) - f(z_1)/z_1^2 \right) \hat{z} & 0 \\ \hat{z} & \hat{z} \end{array} \right],
\]
and
\[
DF^{-1}(z)F(z) = \left[\begin{array}{c} \left(f(z_1)/z_1 f'(z_1) \right) \hat{z} + \hat{z} \end{array} \right],
\]
therefore
\[
\langle DF(z)^{-1}F(z), z \rangle = \frac{f(z_1)}{f'(z_1)} \hat{z}_1 + \beta \|\hat{z}\|^2 \left(\frac{f(z_1)}{z_1 f'(z_1)} - 1 \right) + \|\hat{z}\|^2.
\]
Now we will show that
\[
\left| \frac{1}{\|z\|^2} \langle DF(z)^{-1}F(z), z \rangle - 1 \right| < 1.
\]
For this purpose we have
\[
\left| \frac{1}{\|z\|^2} \left\{ \frac{|z_1|^2 f(z_1)}{z_1 f'(z_1)} + \beta \|\hat{z}\|^2 \left(\frac{f(z_1)}{z_1 f'(z_1)} - 1 \right) + \|\hat{z}\|^2 \right\} - 1 \right|.
\]
where $0 \leq \beta \leq 1$. This completes the proof. \hfill \Box

Acknowledgment. The authors are thankful to the referees and the editors for their valuable comments and suggestions that improved the presentation of this paper.

References

\footnote{DEPARTMENT OF MATHEMATICS, FACULTY OF BASIC SCIENCE, UNIVERSITY OF BONAB, P.O. Box 5551-761167, BONAB, IRAN.
E-mail address: sarahrovi@gmail.com}