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A FAMILY OF POSITIVE NONSTANDARD

NUMERICAL METHODS WITH APPLICATION TO

BLACK-SCHOLES EQUATION

MOHAMMAD MEHDIZADEH KHALSARAEI1∗ AND NASHMIL OSMANI2

Abstract. Nonstandard finite difference schemes for the Black-
Scholes partial differential equation preserving the positivity prop-
erty are proposed. Computationally simple schemes are derived by
using a nonlocal approximation in the reaction term of the Black-
Scholes equation. Unlike the standard methods, the solutions of
new proposed schemes are positive and free of the spurious oscilla-
tions.

1. Introduction

Recently, option valuation has been one of the most important prob-
lem in the market of financial derivatives [11, 12, 13, 17, 21]. European
call (put) option and American call (put) option are two types of known
options. American option can be exercised at any time before expiry
and European only at expiry. A partial differential equation that mod-
els the option pricing is the well-known Black-Scholes equation from
mathematical finance [1, 2]. This model relies on stochastic differen-
tial equation which has received major attention by specialities in the
financial mathematics and numerical analysis methods. Black-Scholes
equation can be approximated and integrated numerically by various
methods [3, 10, 11, 12, 13, 14, 18, 19, 20]. The basic idea for solving the
Black-Scholes equation is using of the finite difference approximations
which represent an important class of numerical procedures employed in
finance. Traditionally, important requirements in this context are the
investigation of the consistency of the discrete scheme with the original
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differential equation and linear stability analysis with smooth solutions.
These requirements are important, because they guarantee convergence
of the discrete solution to the exact one, but the essential qualitative
properties of the solution are not transferred to the numerical solution.
Thus, the stated disadvantage might be catastrophic. One approach to
avoid this qualitatively instability is to use the nonstandard discretiza-
tion technique [6, 11, 12, 13, 17]. Here, we are interested in constructing
a family of nonstandard finite difference schemes which preserve the pos-
itivity as well as stability and consistency [4, 5, 7, 8, 9].
The rest of the paper is organized as follows: In Section 2, we review
the numerical results of the classical standard methods in the presence
of discontinuities in the initial conditions of the Black-Scholes equation.
In Section 3, we propose our new family of methods and investigate
the positivity and stability requirements and we present the numerical
results. Finally, we end the paper with some conclusions in Section 4.

2. Classical methods for the Black-Scholes equation

In this paper, we are interested in the following modified version of
the Black-Scholes equation for the European option pricing with initial
and boundary conditions as:

(2.1) − ∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV = 0,

V (S, 0) = max(S −K, 0)1[L,U ](S),

V (S, t) → 0 as S → 0 or S → ∞.

We need to update the initial condition at the monitoring dates 0 =
t0 < t1 < · · · < tF = T :

(2.2) V (S, ti) = V (S, t−i )1[L,U ](S),

where 1[L,U ](S) is the indicator function:

1[L,U ] =

{
1 if L ≤ S ≤ U
0 if S /∈ [L,U ].

To obtain the finite difference approximation for equation (2.1), let the
computational domain Ω = [0, Smax]× [0, T ] is discretized by a uniform
mesh with steps ∆S, ∆t in order to obtain grid points (j∆S, n∆t), j =
0, 1, . . . , and n = 0, 1, . . . , X so that Smax = M∆S and T = X∆t. Let
V n
j denotes the approximation of V (Sj , tn). Replacing the derivatives
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with respect to S by

∂V

∂S
≈

V n+1
j+1 − V n+1

j−1

2∆S
,

∂2V

∂S2
≈ (1− θ)

V n
j−1 − 2V n

j + V n
j+1

∆S2
+ θ

V n+1
j−1 − 2V n+1

j + V n+1
j+1

∆S2
,

and the derivative with respect to t by

∂V

∂t
≈

V n+1
j − V n

j

∆t
,

lead to a family of the classical finite difference methods which builds
a system AV n+1 = BV n, where A and B are the following tridiagonal
matrices:

A =

{
rSj

2∆S
−

σ2S2
j θ

2∆S2
;

1

∆t
+

σ2S2
j θ

∆S2
+ r; − rSj

2∆S
−

σ2S2
j θ

2∆S2

}
,

B =

{
σ2S2

j (1− θ)

2∆S2
;

1

∆t
−

σ2S2
j (1− θ)

∆S2
;

σ2S2
j (1− θ)

2∆S2

}
.

For the appropriately chosen values of the implicitness parameter θ ∈
(0 ; 1], we obtain different schemes, for example, for θ = 1, we obtain
the fully implicit scheme, that in the presence of discontinuous payoff
and low volatility arises spurious oscillations. In this scheme, if the

Figure 1. Numerical solutions for the fully implicit scheme with
∆S = 0.02,∆t = 10−6. Parameters: L = 90,K = 100, U = 110, r =

0.05, σ = 0.001, T = 0.01, Smax = 120.

condition σ2 > r is violated, spurious oscillations and negative values of
V can occur, (as it is illustrated in Figure 1, also in the right figure the
numerical and analytical solutions are compared), (see [14]).
Also the classical methods provide spurious oscillations and negative
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values for different values of θ, see Figure 2.

Figure 2. Numerical oscillations and negative values in the solu-
tion of the classical methods for different values of θ. Parameters:
r = 0.01, σ = 0.001, T = 1, U = 70,K = 50, L = 30, Smax = 140,∆S =
0.05,∆t = 10−3.

3. Construction of the new scheme

3.1. The new scheme. To overcome the drawbacks mentioned above,
we develop the classical methods within the strategy suggested by Milev-
Tagliani [10 – 14]. We replace the reaction term in equation (2.1) by

(3.1) V (S, t+∆t) = (aV n+1
j+1 + V n+1

j + bV n+1
j−1 )− (a+ b)V n

j ,

the corresponding finite difference approximation provides the difference
equation

(3.2) PV n+1 = NV n,

where P and N are the following tridiagonal matrices:

P =

{
rb+

rSj

2∆S
−

σ2S2
j θ

2∆S2
;

1

∆t
+

σ2S2
j θ

∆S2
+ r; ra− rSj

2∆S
−

σ2S2
j θ

2∆S2

}
,

(3.3)

N =

{
σ2S2

j (1− θ)

2∆S2
;

1

∆t
−

σ2S2
j (1− θ)

∆S2
+ ra+ rb;

σ2S2
j (1− θ)

2∆S2

}
.

(3.4)

Here a and b are arbitrary parameters to be determined below.
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3.2. Positivity. The parameters a and b are chosen according to the
following theorem:

Theorem 3.1. Sufficient conditions for scheme (3.2) to be positivity-
preserving are
(3.5)

b ≤ − r

8σ2θ
, a ≤ − r

8σ2θ
, ∆t <

1

(1− θ)(σM)2 − r(a+ b)
,

Proof. From (3.2) it is enough to show that P−1 > 0 and N ≥ 0.

• Following [22], the condition P−1 > 0 holds if P is an M-matrix.
Being P an M-matrix then

rb+
rSj

2∆S
−

σ2S2
j θ

2∆S2
≤ 0,(3.6)

ra− rSj

2∆S
−

σ2S2
j θ

2∆S2
≤ 0.(3.7)

From (3.6) we can write

rb ≤ θ

2

(
σSj

∆S

)2

− r

2

Sj

∆S
,(3.8)

⇔ rb ≤ σ2θ

2

[(
Sj

∆S

)2

− r

σ2θ

Sj

∆S

]
,

⇔ rb ≤ σ2θ

2

[(
Sj

∆S

)2

− r

σ2θ

Sj

∆S
+

r2

4σ4θ2
− r2

4σ4θ2

]
,

⇔ rb ≤ σ2θ

2

[(
Sj

∆S
− r

2σ2θ

)2

− r2

4σ4θ2

]
,

⇔ rb ≤ σ2θ

2

(
Sj

∆S
− r

2σ2θ

)2

− r2

8σ2θ
,

now, the last inequality in (3.8) shows sufficiency of b ≤ − r
8σ2θ

for (3.6). Similarly, from (3.7) we conclude that a ≤ − r
8σ2θ

.

• The condition N ≥ 0 is satisfied, provided that

1

∆t
−

σ2S2
j (1− θ)

∆S2
+ ra+ rb > 0,

⇔ ∆t <
1

(1− θ)(σj)2 − r(a+ b)
,
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a way to ensure this is to demand

∆t <
1

(1− θ)(σM)2 − r(a+ b)
,

and this completes the proof. □

3.3. Stability.

Theorem 3.2. The new method is conditionally stable and convergent
with local truncation error O(∆t,∆S2).

Proof. Under conditions (3.5), P = [Pij ] is similar to a symmetric tridi-
agonal matrix, so that the eigenvalues of P , λi(P ), i = 1, . . . , N are real
[15, 16, 22]. Also P is row diagonally dominant with

δi = |Pii| −
∑
j ̸=i

|Pij | =
1

∆t
+ r + r(a+ b),

which yields ∥P−1∥∞ ≤ max 1
δi
. So, following [22]

∥P−1∥∞ ≤ 1
1
∆t + r + r(a+ b)

,

and by combining with ∥N∥∞ = 1
∆t + r(a+ b), we have

ρ(P−1N) ≤ ∥(P−1N)∥∞
= ∥P−1∥∞∥N∥∞

≤
1
∆t + r(a+ b)

1
∆t + r + r(a+ b)

< 1.

where ρ(P−1N) is the spectral radius of the matrix P−1N . Therefore
the scheme is stable and then via the Lax-theorem convergent with local
truncation error

Tj,n = −
V n+1
j − V n

j

∆t
+ rSj

V n+1
j+1 − V n+1

j−1

2∆S

+
1

2
σ2S2

j (1− θ)
V n
j−1 − 2V n

j + V n
j+1

∆S2

+
1

2
σ2S2

j θ
V n+1
j−1 − 2V n+1

j + V n+1
j+1

∆S2

− r
((

aV n+1
j+1 + V n+1

j + bV n+1
j−1

)
− (a+ b)V n

j

)
,
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by Taylor’s expansion

V n+1
j = V n

j +∆t
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substitution into the expression for Tj,n then gives

Tj,n =

(
−∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV

)n

j

− r(1 + 2a)∆t

(
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+ · · · .

But V is the solution of the differential equation, so,(
−∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV

)n

j

= 0.

Therefore the principle part of the local truncation error is

−r(1 + 2a)∆t

(
∂V

∂t

)n

j

− ra∆S2

(
∂2V

∂S2

)n

j

.

Hence Tj,n = O(∆t) +O(∆S2). These conclude the theorem. □

The proposed scheme for different values of θ specially θ = 1 guaran-
tees a solution being positivity preserving and free of spurious oscilla-
tions (see Figures 3-4).
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Figure 3. Positivity preserving of the solution of the nonstandard
fully implicit scheme. Parameters: r = 0.05, σ = 0.001, T = 0.01, U =
110,K = 100, L = 90, Smax = 120,∆S = 0.02,∆t = 10−6.

Figure 4. Truncated call option value for nonstandard proposed
schems with different values of θ. Parameters: r = 0.01, σ = 0.001, T =
1, U = 70,K = 50, L = 30, Smax = 140,∆S = 0.05,∆t = 10−3.

4. Conclusions

Schemes preserving the positivity property of approximated solution
are of great importance in solving the famous Black-Scholes equation.
Such schemes are free of spurious oscillations in the presence of dis-
continuous payoff and low volatility. In this paper, we have discussed
nonstandard finite difference schemes which have this qualitative sta-
bility property. We used the nonstandard discretization of the reaction
term in a nonlocal way. The obtained schemes are computationally sim-
ple. Furthermore, they are positivity-preserving and oscillations free.
Future works will include extending the methods to multi-asset options.
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