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THE ANALYSIS OF A DISEASE-FREE EQUILIBRIUM

OF HEPATITIS B MODEL

REZA AKBARI1∗, ALI VAHIDIAN KAMYAD2, ALI AKBAR HEYDARI3,
AND AGHILEH HEYDARI4

Abstract. In this paper we study the dynamics of Hepatitis B
virus (HBV) infection under administration of a vaccine and treat-
ment, where the disease is transmitted directly from the parents to
the offspring and also through contact with infective individuals.
Stability of the disease-free steady state is investigated. The basic
reproductive rate, R0, is derived. The results show that the dynam-
ics of the model is completely determined by the basic reproductive
number R0. If R0 < 1, the disease-free equilibrium is globally sta-
ble and the disease always dies out and if R0 > 1, the disease-free
equilibrium is unstable and the disease is uniformly persistent.

1. Introduction

Hepatitis B is an enormous challenge to global public health and it is
caused by the hepatitis B virus (HBV). HBV can be transmitted by sex-
ual contact, through the skin, by inoculation with contaminated blood or
blood products, by transplantation of organs from infected donors, and
perinatally from infected mothers. Chronic HBV infections is remained
as a major public health problem worldwide. According to World Health
Organization, an estimation of 2 billion people worldwide have been in-
fected with the virus and about 350 million are carrying HBV, with HBV
being responsible for approximately 600,000 deaths each year. Because
of the high risk for HBV infection and large number of deaths associated
with it, it is imperative to increase our understanding of HBV disease
dynamics.
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One of the primary reasons for studying hepatitis B virus (HBV)
infection is to improve control and finally to put down the infection from
the population. Mathematical models can help us to gain insights into
the disease transmission, assess the effectiveness of various preventive
strategies, and then control of it eventually.

Anderson and May [1] used a simple mathematical model to illustrate
the effects of carriers on the transmission of HBV. A hepatitis B math-
ematical model [13] was used to develop a strategy for eliminating HBV
in New Zealand [12, 19]. Zou et al [24] also proposed a mathematical
model to understand the transmission dynamics and prevalence of HBV
in mainland of China. Pang et al [16] developed a model to explore the
impact of vaccination and other controlling measures of HBV infection.

In this paper, we study the dynamics of hepatitis B virus (HBV) in-
fection under administration of vaccination and treatment, where HBV
infection is transmitted in two ways through vertical transmission and
horizontal transmission. While the horizontal transmission is reduced
through the administration of vaccination to those susceptible, the ver-
tical transmission is reduced through the administration of treatment to
infected individuals; therefore, the vaccine and the treatment play differ-
ent roles in controlling the HBV [2]. In this study, we present a complete
mathematical analysis for the global stability problem at the disease-free
equilibrium of a mathematical model for hepatitis B virus infection with
two controls: vaccination and treatment, and we assume that the control
parameters u1(t) and u2(t) are constant functions. In order to study the
global stability of the disease-free equilibrium, we apply the approach in
Kamgang and Sallet [7, 16]. We obtain simple sufficient conditions that
the disease free equilibrium is globally asymptotically stable.

The rest of the paper is organized as follows: In Section 2, we proposed
an HBV infection model with vaccination and treatment. In Section 3,
the basic reproductive rate, R0, is derived. In Section 4, we analyze
the local stability and global stability of the disease-free equilibrium.
Finally, the conclusions are summarized in Section 5.

2. Description of the model

In this section, we present the mathematical formulation of the com-
partmental model of hepatitis B, which consists of a system of differential
equations [8]. The model is based on the characteristics of HBV trans-
mission. We divide the total population into five compartments, that
are the susceptible individuals S(t); infected but not yet infectious in-
dividuals (exposed) E(t); acute infection individuals I(t); chronic HBV
carriers C(t); and recovered R(t) for Hepatitis B virus (HBV) infection



THE ANALYSIS OF A DISEASE-FREE EQUILIBRIUM OF HEPATITIS ... 3

that propagates through contact between the infected and the suscepti-
ble individuals and also through of infected parents. The flow diagram
(Figure1) and the system are given in the following [8]:

Ṡ(t) = ν − νp1C − νp2R− ρ(I + θC)S − νS − u1S + λ4R,

Ė(t) = ρ(I + θC)S − (ν + λ1)E,

İ(t) = λ1E − (ν + λ2)I,(2.1)

Ċ(t) = νp1C + p3λ2I − (ν + λ3)C − u2C,

Ṙ(t) = νp2R+ (1− p3)λ2I + λ3C − νR− λ4R+ u1S + u2C.
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Figure 1. Diagram for the HBV dynamics with two controls

In these equations, all the parameters are nonnegative. The main
parameters are listed in Table 1.

Table 1. Definition of parameters used in system (2.1)

Parameter Description
ν Birth (and death) rate
ρ Transmission rate
θ Infectiousness of carriers relative to acute infections
λ1 Rate moving from exposed to acute
λ2 Rate at which individuals leave the acute infection class
λ3 Rate moving from carrier to recovery
λ4 Loss of recovery rate
p1 Probability of infected newborns
p2 Probability of immune newborns
p3 Proportion of acute infection individuals become carriers
u1 Proportion of the susceptible that is vaccinated per unit time
u2 Proportion of the chronic HBV carriers that is treated per unit time

For simplicity, we normalize the population size to 1; i.e. now S, E, I,
C and R are, respectively, the fraction of the susceptible, the exposed,
the acute infective, the carriers and the recovered individuals in the
population and S + E + I + C + R = 1 holds [8, 16]. Hence, the fifth
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equation may be omitted, and the Eq. (2.1) becomes:

Ṡ(t) = ν − νp1C − ρ(I + θC)S − νS − u1S,

+ (λ4 − νp2)(1− S − E − I − C),

Ė(t) = ρ(I + θC)S − (ν + λ1)E,(2.2)

İ(t) = λ1E − (ν + λ2)I,

Ċ(t) = νp1C + p3λ2I − (ν + λ3)C − u2C.

Let

X(t) = S(t) + C(t) + I(t) + C(t),

then,

S + E + I + C ≤ ν + λ4

ν + λ4 − νp2
,

and

S ≤ ν + λ4

ν + λ4 + u1 − νp2
,

So,

Π =

{
(S,E, I, C) ∈ R4

+ | S ≤ ν + λ4

ν + u1 + λ4 − νp2
, S + E + I + C ≤ ν + λ4

ν + λ4 − νp2

}
,

is positively invariant [8]. Hence, the system is mathematically well-
posed. There, for initial starting point x ∈ R4

+, the trajectory lies in Π.
Therefore, we shall focus our attention only in the region Π.

3. Disease-free equilibrium point and Basic reproduction
number

In this section, we assume that the control parameters u1(t) and
u2(t) are constant functions. Model given by system (2.2) has a unique
disease-free equilibrium, obtained by setting the right-hand sides of sys-
tem (2.2) to zero. Disease-free equilibrium point E0 = (S0, 0, 0, 0), where

S0 =
ν − νp2 + λ4

u1 + ν + λ4 − νp2
,

is always feasible. In the absence of vaccination, this is reduced to the
equilibrium (1, 0, 0, 0).

Definition 3.1 ([20]). The basic reproduction number, denoted R0,
is the expected number of secondary cases produced, in a completely
susceptible population, by a typical infective individual.
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Using the notation in Van den Driessche and Watmough [20], we have

F =

 0 ρS0 ρθS0

0 0 0
0 0 0

 ,

V =

 ν + λ1 0 0
−λ1 ν + λ2 0
0 −p3λ2 ν + λ3 + u2 − νp1

 .

The reproduction number is given by ρ(FV −1), and

R0 = ρ(FV −1)(3.1)

=
ρλ1(ν + λ3 + u2 − p1ν + θp3λ2)

(ν + λ1)(ν + λ2)(ν + λ3 + u2 − p1ν)
S0.(3.2)

Remark 3.2. We should note from (3.1) that the use of both vaccine
and treatment controls to reduce the value of R0, and at the same time
effects of both intervention strategies on R0 are not simply the addition
of two independent effects, rather they multiply together in order to
improve overall effects of population level independently.

4. Stability analysis

Firstly, we analyze the local stability of the disease-free equilibrium.

Theorem 4.1. If R0 < 1, then the disease-free equilibrium is locally
asymptotically stable.

Proof. The Jacobian matrix of system (2.2) at the disease-free equilib-
rium is

J0 =

 −(ν + λ4 − νp2 + u1) −(λ4 − νp2) −(ρS0 + λ4 − νp2) −(νp1 + λ4 − νp2 + θρS0)
0 −(ν + λ1) ρS0 θρS0

0 λ1 −(ν + λ2) 0
0 0 p3λ2 νp1 − ν − λ3 − u2

 .

The characteristic polynomial of J0 given by

P (λ) = [λ+ l0][λ
3 + l1λ

2 + l2λ+ l3].

where

l0 =ν + u1 + λ4 − νp2,

l1 =3ν + λ1 + λ2 + λ3 + u2 − νp1,

l2 =(ν + λ2)(ν + λ3 + u2 − νp1) + (ν + λ1)(2ν + λ2 + λ3 + u2 − νp1)− λ1ρS0,

l3 =(ν + λ1)(ν + λ2)(ν + λ3 + u2 − νp1)− λ1ρS0(ν + λ3 + u2 + θp3λ2 − νp1).

We need to verify the following two conditions:

a. l0, l1, l2, l3 > 0,
b. l1l2 − l3 > 0.
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It is easy to see that l0, l1 > 0 and l2, l3, l1l2−l3 > 0 if R0 < 1. It follows
from the Routh-Hurwitz criterion that the eigenvalues have negative real
parts if R0 < 1. Hence, the disease-free equilibrium of model (2.2) is
local asymptotically stable if R0 < 1 and unstable if R0 > 1.

□
Now, we study the global properties of the disease-free equilibrium.

The following theorem provides the global property of the disease-free
equilibrium. In order to study the global stability of the disease-free
equilibrium, we apply the novel approach in Kamgang and Sallet [7, 16].

Definition 4.2 ([7]). We call any real square matrix with nonnegative
off-diagonal entries a Metzler matrix.

Lemma 4.3. Let M be a Metzler matrix, which is block decomposed:

M =

[
A B
C D

]
,

where A and D are square matrices. Then, M is Metzler stable if and
only if A and D − CA−1B are Metzler stable.

Proof. see [7] p 3. □
Definition 4.4 (Regular splitting [7]). For a real Metzler matrix M ,
M = K + N is a regular splitting if K is a Metzler stable matrix and
N ≥ 0 is a nonnegative matrix.

Lemma 4.5 ([7]). Let M = K+N be a regular splitting of a real Metzler
matrix M , then, M is Metzler stable if and only if ρ(−NA−1) < 1.

Proof. see [7] p 4. □
Lemma 4.6. If the following hypotheses (i−v) are satisfied, the disease-
free equilibrium (DFE) is globally asymptotically stable for system

(4.1)

{
Ẋ1 = A1(X)(X1 −X∗

1 ) +A12(X)X2,

Ẋ2 = A2(X)X2,

on the positively invariant set Ω ∈ Rn1+n2
+ where X1 ∈ Rn1

+ , X2 ∈ Rn2
+ ,

X = (X1, X2), and X∗ = (X∗
1 , 0) denotes a disease-free equilibrium

(DFE) of the system (4.1). The variable X1 denotes the numbers (or
densities) in the different compartments of susceptibles, immunes, re-
covered individuals etc., in other words all the individuals who are not
infected and who are not transmitting the disease (e.g., quarantined).
The variable X2 denotes the numbers (or densities) of infected individ-
uals; i.e., latent, infectious, carrying individuals and so on.

i. The system is defined on a positively invariant set Ω of the
nonnegative orthant. The system is dissipative on Ω.
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ii. The sub-system:

Ẋ1 = A1(X1, 0)(X1 −X∗
1 ),

is globally asymptotically stable at the equilibrium X∗
1 on the

canonical projection of Ω on Rn1
+ .

iii. The matrix A2(X) is Metzler and irreducible for any given X ∈
Ω.

iv. There exists an upper-bound matrix A2 for

Λ = {A2(X) : X ∈ Ω},

with the property that either A2 /∈ Λ or if A2 ∈ Λ (i.e., A2 =
maxΩ Λ) then for any X ∈ Ω, such that A2 = A2(X), X ∈
Rn1

+ × {0} (i.e. the points where the maximum is realized are
contained in the disease-free sub-manifold).

v. α(A2) ≤ 0, where α(A2) is spectral bound of A2.

Proof. see [7] p 5. □

Now, we have the following theorem for the global stability of the
disease-free equilibrium of system (2.2).

Theorem 4.7. For the model (2.2), the disease-free equilibrium is glob-
ally asymptotically stable if R0 ≤ 1.

Proof. In order to prove the theorem and get the global asymptotic
stability when R0 ≤ 1, we apply the lemma (4.6) and we have:

i. We put X1 = S, X2 = (E, I, C) and X = (S,E, I, C) =
(X1, X2) according to [8]. The invariant domain Π is obviously
a positively compact set.

ii. We put P0 = X∗ = (X∗
1 , 0), then

A1(X) = −(ν + u1 + λ4 − νp2),

A12(X) =
[
−λ4 + νp2, −ρS − λ4 + νp2, −ρθS − λ4 − νp1 + νp2

]
,

then,

Ṡ(t) = A1(X)

(
S − ν + λ4 − νp2

ν + u1 + λ4 − νp2

)
,

hence

Ẋ1 = A1(X)(X1 −X∗
1 ).

This is a linear system which is globally asymptotically stable
at

X∗
1 =

ν + λ4 − νp2
ν + u1 + λ4 − νp2
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iii. The matrix A2(X) is given by

A2(X) =

 −(ν + λ1) ρS ρθS
λ1 −(ν + λ2) 0
0 p3λ2 −(ν + λ3 − u2 − νp1)

 ,

for any X ∈ Π, the matrix A2(X) is Metzler and irreducible.
iv. The maximum A2(X) is given by

A2(X) =

 −(ν + λ1) ρ ν+λ4−νp2
ν+u1+λ4−νp2

ρθ ν+λ4−νp2
ν+u1+λ4−νp2

λ1 −(ν + λ2) 0
0 p3λ2 −(ν + λ3 − u2 − νp1)

 .

v. The hypothesis (v) requires that α(A2) ≤ 0. Writing A2 as a
block matrix

A2 =

[
A B
C D

]
,

where

A = −(ν + λ1),

B =
[
ρ ν+λ4−νp2
ν+u1+λ4−νp2

ρθ ν+λ4−νp2
ν+u1+λ4−νp2

]
,

C =

[
λ1

0

]
,

D =

[
−(ν + λ2) 0

p3λ2 −(ν + λ3 − u2 − νp1)

]
.

According to Lemmas (4.3) and (4.5)

A2 = D − CA−1B

=

[
−(ν + λ2) +

ρλ1S0

ν+λ1

ρθλ1S0

ν+λ1

p3λ2 −(ν + λ3 − u2 − νp1)

]
.

The characteristic equation of A2 is given by

det(λI − (D − CA−1B))

=

∣∣∣∣ λ+ (ν + λ2 − ρλ1S0
ν+λ1

) −ρθλ1S0
ν+λ1

−p3λ2 λ+ (ν + λ3 − u2 − νp1)

∣∣∣∣
= λ2 +

(
ν + λ2 + ν + λ3 + u2 − νp1 −

ρλ1S0

ν + λ1

)
λ

+
(
(ν + λ2 −

ρλ1S0

ν + λ1
)(ν + λ3 + u2 − νp1)

− p3λ1θρλ2S0

ν + λ1

)
= 0.

It follows from the Routh Hurwitz criterion that the two eigen-
values have negative real parts if and only if R0 < 1. When
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R0 = 1, one eigenvalues is zero and another is negative real
root. Hence, A2 is a stable Metzler matrix if and only if R0 ≤ 1,
that is α(A2) ≤ 0 if and only if R0 ≤ 1.

Then, hypotheses (i− v) of lemma (4.6) are satisfied. Then, by Lemma
(4.6), we have shown that the disease-free equilibrium is globally asymp-
totically stable if R0 ≤ 1. □

5. Conclusion

In the present paper, we examine the dynamic behavior of a S-E-I-C-
R-S model of hepatitis B virus infection. To reduce the hazardous effect
of the infection, we introduce two control variables u1(t) and u2(t) i.e.
vaccination and treatment using optimal control strategy. We studied
the existence and stability of the disease-free equilibria. It is rigorously
established in Theorem (4.7) that the basic reproduction number R0

is a sharp threshold parameter and completely determines the global
dynamics of (2.2) in the feasible region Π. If R0 < 1, the disease-free
equilibrium is globally asymptotically stable in Π, and the disease always
dies out. If R0 < 1, the disease-free equilibrium is globally asymptoti-
cally stable by using the approach that given by Kamgang and Sallet.
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