^{}Department of Mathematics, Faculty of Science, University of Maragheh,, P.O.Box 55181-83111 Maragheh, Iran.

Abstract

Alternative Legendre polynomials (ALPs) are used to approximate the solution of a class of nonlinear Volterra-Hammerstein integral equations. For this purpose, the operational matrices of integration and the product for ALPs are derived. Then, using the collocation method, the considered problem is reduced into a set of nonlinear algebraic equations. The error analysis of the method is given and the efficiency and accuracy are illustrated by applying the method to some examples.

[1] I. Aziz and Siraj-ul-Islam, New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math. 239 (2013) 333-345.

[2] H. O. Bakodah and M. A. Darwish, On discrete Adomian decomposition method with Chebyshev abscissa for nonlinear integral equations of Hammerstein type, Adv. Pure Math. 2 (2012) 310-313.

[3] S. Bazm, Bernoulli polynomials for the numerical solution of some classes of linear and nonlinear integral equations, J. Comput. Appl. Math. 275 (2015) 44-60.

[4] H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm integral equation by collocation methods, SIAM J. Numer. Anal. 27 (1990) 987-1000.

[5] H. Brunner and N. Yan, On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations, J. Comput. Appl. Math. 67(1) (1996) 185-189.

[6] V. S. Chelyshkov, Alternative Orthogonal Polynomials and Quadratures, Electron. Trans. Numer. Anal. 25(7) (2006) 17-26.

[7] V. S. Chelyshkov, Alternative Jacobi polynomials and orthogonal exponentials, arXiv:1105.1838.

[8] M. A. Darwish, Fredholm-Volterra integral equation with singular kernel, Korean J. Comput. Appl. Math. 6 (1999) 163-174.

[9] M. A. Darwish, Note on stability theorems for nonlinear mixed integral equations, J. Appl. Math. Comput. 6 (1999) 633-637.

[10] F. Deutsch, Best approximation in inner product spaces, Springer-Verlag, New York, 2001.

[11] M. Gasca and T. Sauer, On the history of multivariate polynomial interpolation, J. Comput. Appl. Math. 122 (2000) 23-35.

[12] A. Gil, J. Segura and N. M. Temme, Numerical methods for special functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.

[13] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley & Sons, 1989.

[14] K. Maleknejad, H. Almasieh, and M. Roodaki, Triangular functions (TF) method for the solution of nonlinear Volterra-Fredholm integral equations, Commun. Nonlinear Sci. Numer. Simul. 15(11) (2010) 3293-3298.

[15] K. Maleknejad, E. Hashemizadeh, and B. Basirat, Computational method based on Bernstein operational matrices for nonlinear Volterra-Fredholm-Hammerstein integral equations, Commun. Nonlinear Sci. Numer. Simul. 17(1) (2012) 52-61.

[16] S. Nemati, P.M. Lima, and Y. Ordokhani, Numerical solution of a class of two-dimensional nonlinear Volterra integral equations using Legendre polynomials, J. Comput. Appl. Math. 242 (2013) 53-69.

[17] H. Li and H. Zou, A random integral quadrature method for numerical analysis of the second kind of Volterra integral equations, J. Comput. Appl. Math. 237(1) (2013) 35-42.

[18] B. G. Pachpatte, On a nonlinear Volterra-Fredholm integral equation, Sarajevo J. Math. 16 (2008) 61-71.

[19] I. Singh and S. Kumar, Haar wavelet method for some nonlinear Volterra integral equations of the first kind, J. Comput. Appl. Math. 292 (2016) 541-552.

[20] G. Szego, Orthogonal Polynomials, AMS, Providence, 1975.

[21] A. M. Wazwaz, A reliable treatment for mixed Volterra-Fredholm integral equations, Appl. Math. Comput. 127 (2002) 405-414.

[22] C. Yang, Chebyshev polynomial solution of nonlinear integral equations, Journal of the Franklin Institute, 349 (2012) 947-956.