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ON ISOMORPHISM OF TWO BASES IN

MORREY-LEBESGUE TYPE SPACES

FATIMA A. GULIYEVA1∗ AND RUBABA H. ABDULLAYEVA2

Abstract. Double system of exponents with complex-valued co-
efficients is considered. Under some conditions on the coefficients,
we prove that if this system forms a basis for the Morrey-Lebesgue
type space on [−π, π], then it is isomorphic to the classical system
of exponents in this space.

1. Introduction

Consider the double system of exponents

(1.1)
{
A (t) eint; B (t) e−ikt

}
n∈Z+, k∈N

,

with complex-valued coefficientsA (t) = |A (t)| eiα(t), B (t) = |B (t)| eiβ(t)
on the interval [−π, π], where N is the set of natural numbers and
Z+ = {0}

∪
N . The system (1.1) is a generalization of the following

double sine and cosine system

(1.2) 1
∪

{cos (nt+ γ (t)) ; sin (nt+ γ (t))}n∈Z+
,

where γ : [−π, π] → C is a complex-valued function in general. The
study of basis properties (such as completeness, minimality, basicity) of
the systems of type (1.1) and (1.2) in the space Lp (−π, π), 1 ≤ p < +∞
(L∞ (−π, π) ≡ C [−π, π]), dates back to the classical works by Paley-
Wiener [31] and N. Levinson [22] who considered the perturbed systems
of exponents. A lot of works have appeared in this field since then. A
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well known “Kadets-1/4” theorem [19] also refers to this range of issues.
Criterion for the basicity of a system of exponents

(1.3)
{
ei(n+αsignn)t

}
n∈Z

,

for Lp (−π, π) 1 < p < +∞, where Z is the set of all integers, was
first found by A.M. Sedletsky [38]. Similar result was obtained by E.I.
Moiseyev [24] who used the method of boundary value problems.

Note that the single versions of these systems are the cosine system
of

(1.4) 1
∪

{cos (n+ α) t}n∈N ,

and the sine system of

(1.5) { sin (n+ α) t}n∈N ,

that arise when solving equations of mixed type by the Fourier method
(see, e.g., [25–27, 33, 34]). The basis properties of the systems (1.4)
and (1.5) in Lp (0, π) were fully studied by E.I. Moiseyev [24,28] in case
where a ∈ R is a real parameter. G.G. Devdariani [14,15] extended these
results to the case of complex parameter. Riesz basicity in L2 (−π, π)
for the system (1.2), when γ : [−π, π] → C is a Hölder function, was
studied by A.N. Barmenkov [1]. One of the most effective methods
for treating basis properties of systems like (1.1)-(1.5) is the method of
boundary value problems of the theory of analytic functions which dates
back to A.V. Bitsadze [11]. This method was successfully used by many
authors [1–4, 11, 14, 15, 24–28, 33, 34]. B.T. Bilalov [2–5] considered the
most general case, namely, the systems of the form (1.1), and using the
results concerning basis properties of (1.1), found a basicity criterion for
the completeness and minimality of the sine system of the form

(1.6) {sin (nt+ γ (t))}n∈N ,

in Lp (0, π), 1 < p < +∞, where γ : [0, π] → C is a piecewise continuous
function. Similar results for the system (1.6) were obtained earlier in
[13].

The study of basis properties of systems (1.1)-(1.6) in different spaces
of functions is still ongoing. The weighted case of the Lp space was con-
sidered in [6,29,35], while [30,36,39] treated the case of Sobolev spaces.
In [8, 9], the basicity of the system (1.3) was studied for generalized
Lebesgue spaces.
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It should be noted that in recent years interest in the study of var-
ious problems of analysis in Morrey-type spaces increased to a great
extent. There is obviously a need to study the approximation proper-
ties of systems like (1.1)-(1.6) in Morrey-type spaces. Some questions of
the approximation theory were studied in [17,18,21]. In [10], the basic-
ity of classical exponential systems in Morrey-Lebesgue type spaces was
treated.

In this paper, we consider a system of exponents (1.1) and prove that
if it forms a basis for Morrey-Lebesgue type space Mp, α = Mp, α (−π, π),
then it is isomorphic to the classical system of exponents in this space.
To do so, we use the method of boundary value problems. A similar
result was obtained earlier in [7].

2. Necessary Information

We will need some facts about the theory of Morrey-type spaces.
Let Γ be a rectifiable Jordan curve in the complex plane C. By |M |Γ
we denote the linear Lebesgue measure of the set M ⊂ Γ. All the
constants throughout this paper (can be different in different places)
will be denoted by c.

The expression f (x) ∼ g (x), x ∈ M , means

∃δ > 0 : δ ≤
∣∣∣∣f (x)

g (x)

∣∣∣∣ ≤ δ−1, ∀x ∈ M.

Similar meaning is intended by the expression f (x) ∼ g (x), x → a.
By Morrey-Lebesgue space Lp, α (Γ), 0 ≤ α ≤ 1, p ≥ 1, we mean the

normed space of all measurable functions f (·) on Γ with the finite norm
∥·∥Lp, α(Γ):

∥f∥Lp, α(Γ) = sup
B

(∣∣∣B∩Γ
∣∣∣α−1

Γ

∫
B

∩
Γ
|f (ξ)|p |dξ|

)1/p
< +∞.

Lp, α (Γ) is a Banach space with Lp, 1 (Γ) = Lp (Γ), L
p, 0 (Γ) = L∞ (Γ).

The inclusion Lp, α1 (Γ) ⊂ Lp, α2 (Γ) is valid for 0 ≤ α1 ≤ α2 ≤ 1. Thus,
Lp, α (Γ) ⊂ L1 (Γ), ∀α ∈ [0, 1], ∀p ≥ 1. For Γ = [−π, π] we will use the
notation Lp, α (−π, π) = Lp, α.

More details on Morrey-type spaces can be found in [12,20,23,32,37,
40].

Let ω = {z ∈ C : |z| <} be the unit circle on C and ∂ω = γ be its
circumference.

Define the Morrey-Hardy space Hp, α
+ of analytic functions f (z) inside

ω equipped with the following norm
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∥f∥Hp, α
+

= sup
0<r<1

∥f (ren)∥Lp, α .

In [10], the following theorem was proved.

Theorem 2.1. The function f (·) belongs to Hp, α
+ only when the non-

tangential boundary values f+ belong to Lp, α, 1 < p < +∞, 0 < α ≤ 1,
and the Cauchy formula

f (z) =
1

2πi

∫
γ

f+ (τ) dτ

τ − z
,

holds.

Denote by L̃p, α the linear subspace of Lp, α functions, whose shifts are
continuous in Lp, α, i.e. ∥f (·+ δ)− f (·)∥Lp, α → 0 as δ → 0. Consider

the closure of L̃p, α in Lp, α and denote it byMp, α. The following theorem
was also proved in [10].

Theorem 2.2. Functions infinitely differentiable on [0, 2π] are dense
in the space Mp, α, 1 ≤ p < +∞, 0 < α ≤ 1.

In the sequel, we will extensively use the following lemma.

Lemma 2.3. If f ∈ L∞, g ∈ Mp,α, 1 < p < +∞, 0 < α ≤ 1, then
fg ∈ Mp,α.

Consider the following singular operator

(Sf) (τ) =
1

2πi

∫
γ

f (ξ) dξ

ξ − τ
, τ ∈ γ.

Using the results of [18, 20,37], it is easy to prove the following.

Theorem 2.4. Singular operator S acts boundedly in Mp, α (γ), 1 <
p < +∞, 0 < α ≤ 1.

Consider the space Hp, α
+ . Denote by Lp, α

+ the subspace of Lp, α, gen-
erated by the restrictions of the functions from Hp, α

+ to γ. From the
results mentioned above it immediately follows that the spaces Hp, α

+

and Lp, α
+ are isomorphic and f+ (·) = (Jf) (·), where f ∈ Hp, α

+ , f+

are nontangential boundary values of f on γ, and J performs the cor-
responding isomorphism. Let Mp, α

+ = Mp, α
∩

Lp, α
+ . It is clear that

Mp, α
+ is a subspace of Mp, α with respect to the norm ∥·∥Lp, α . Let

MHp, α
+ = J−1

(
Mpα

+

)
. The latter is a subspace of Hp, α

+ . Let f ∈ Hp, α
+

and f+ be its boundary values. It is absolutely clear that the norm in
∥f∥Hp, α

+
can be defined also as ∥f∥Hp, α

+
= ∥f+∥Lp, α .

Similar to the classical case, we define the Morrey-Hardy class outside
ω. Let D− = C\ω̄ (ω̄ = ω

∪
γ). We say the analytic function f in D−
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has finite order k at infinity, if its Laurent series in the neighborhood of
the point at infinity has the following form

(2.1) f (z) =

k∑
n=−∞

anz
n, k < +∞, ak ̸= 0.

Thus, for k > 0 the function f (z) has a pole of order k; for k = 0
it is bounded; and in case of k < 0 it has a zero of order (−k). Let
f (z) = f0 (z) + f1 (z), where f0 (z) is the principal, and f1 (z) is the
regular part of decomposition (2.1) of the function f (z). Consequently,
if k ≤ 0, then f0 (z) = 0. If k > 0, then f0 (z) is a polynomial of degree
k. We say that the function f (z) belongs to the class mHp, α

− , if it has

the order at infinity less or equal to m, i.e. k ≤ m and f1
(
1
z

)
∈ Hp, α

+ .
The class mMHp, α

− is defined in a very similar manner to the case of
MHp, α

+ . In other words, mMHp, α
− is the subspace of mHp, α

− -functions
whose shifts are continuous on the unit circle’s circumference with re-
spect to the norm ∥·∥Lp, α(γ).

We will also use the following result of [10].

Theorem 2.5 ( [10]). The system of exponents
{
eint
}
n∈Z forms a basis

for Mp, α, 1 < p < +∞, 0 < α ≤ 1.

We will need the Sokhotski-Plemelj formula for the boundary values
of a Cauchy type integral

(2.2) Φ (z) =
1

2πi

∫
γ

f (τ) dτ

τ − z
,

where f
(
eit
)
∈ L1 (−π, π). Then the boundary values Φ± (τ), τ ∈ γ,

satisfy the following Sokhotski-Plemelj expression

(2.3) Φ± (τ) = ±1

2
f (τ) + (Sf) (τ) , a.e.. τ ∈ γ,

where S (·) is a singular integral

(Sf) (τ) =
1

2πi

∫
γ

f (ξ) dξ

ξ − τ
, τ ∈ γ.

Let’s show the validity of the following direct decomposition

(2.4) Lp, α = Hp, α
+

·
+
−1

Hp, α
− ,

with 1 < p < +∞, 0 < α < 1.
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In fact, let f ∈ Lp, α. Then it is clear that f ∈ Lp. Consider the
Cauchy type integral (2.2). Then, by Theorem 2.1, we have Φ (z) ∈ Hp, α

+

for |z| < 1, and Φ (z) ∈−1 H
p, α
− for |z| > 1. From the Sokhotski-Plemelj

formulas (2.3) it follows that

(2.5) f (τ) = Φ+ (τ)− Φ− (τ) , a.e. τ ∈ γ.

Denote by −1L
p, α
− the subspace of Lp, α, generated by the restric-

tions of the functions from −1H
p, α
− to γ. It is not difficult to see that

Lp, α
+

∩
−1 L

p, α
− = {0}. Then from (2.4) we immediately derive the direct

decomposition

(2.6) Lp, α = Lp, α
+

·
+
−1

Lp, α
− .

Identifying Hp, α
+ ↔ Lp, α

+ and −1L
p, α
− ↔−1 Hp, α

− , we obtain the decom-
position (2.4).

Applying Theorem 2.4 to the expression (2.5), we obtain in a similar

way that the direct decompositionMp, α = MHp, α
+

·
+
−1

MHp, α
− also holds.

Let P± be projectors

P+ : Mp, α → Mp, α
+ , P− : Mp, α →−1 M

p , α
− ,

generated by the decomposition (2.4) (or (2.6). Denote by T± : Mp, α →
Mp, α the multiplication operators defined as follows

T+f = Af, T−f = Bf, ∀f ∈ Lp, α.

Let A±1; B±1 ∈ L∞ (−π, π). Suppose that the system (1.1) forms a
basis for Mp, α. Take ∀g ∈ Mp, α and expand it in terms of this basis

g (t) = A (t)

∞∑
n=0

gne
int +B (t)

∞∑
n=1

g−ne
−int.

As A± ∈ L∞, B± ∈ L∞, it follows from Lemma 2.3 that the series

f+ (t) =

∞∑
n=0

gne
int,

and

f− (t) =
∞∑
n=0

g−ne
−int,

represent some functions from Mp, α. Suppose
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f (t) =

+∞∑
n=−∞

gne
int, t ∈ [−π, π] .

It’s clear that f ∈ Mp, α. Let us show that the inclusions

f+ ∈ Mp, α
+ , f− ∈−1 M

p, α
− ,

hold. In fact, we have∫
γ
f+ (arg ξ) ξndξ = i

∫ π

−π
f+ (t) ei(n+1)tdt

= i

∞∑
n=0

gk

∫ π

−π
ei(k+n+1)tdt

= 0, ∀n ∈ Z+.

Then from the theorem of Privalov [16] it follows that f+ (t) are the
boundary values of the function F+ ∈ H+

1 with

(2.7) F+ (z) =
1

2πi

∫
γ

f (arg ξ)

ξ − z
dξ, |z| < 1.

We have

F+ (z) =
1

2πi

∫
γ

∞∑
n=0

gn
eint

eit − z
deit

=
1

2πi

∞∑
n=0

gn

∫
γ

ξndξ

ξ − z

=

∞∑
n=0

gnz
n, |z| < 1.

As f ∈ Mp, α, it follows from (2.7) that F+ ∈ MHp, α
+ .

In a similar way we can prove that F− ∈−1 MHp, α
− , where

F− (z) =

∞∑
n=1

g−nz
−n, |z| > 1.

Consider the operator T = T+P+ + T−P−. We have

Tf = T+P+f + T−P−f

= T+f+ + T−f−

= A (·) f+ +B (·) f−

= g.
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Then, the equation

(2.8) Tf = g, g ∈ Mp, α,

has a solution in Mp, α for all g ∈ Mp, α, i.e. RT = Mp, α, where RT

is the range of the operator T . Let f ∈ KerT . Expand f in the basis{
eint
}
n∈Z :

f (t) =
+∞∑

n=−∞
fne

int.

We have

0 = Tf = A (t)

∞∑
n=0

fne
int +B (t)

∞∑
n=1

f−ne
−int.

As the system (1.1) forms a basis for Mp, α, this gives us fn = 0, ∀n ∈ Z,
i.e. KerT = {0}. By Banach theorem, from T ∈ L (Mp, α) it follows
that T−1 ∈ L (Mp, α), and this in turn implies the correct solvability of
the equation (2.8).

Now, on the contrary, let the equation (2.8) be correctly solvable in
Mp, α. Take an arbitrary g ∈ Mp, α and let f = T−1g. Expand f in the
basis

{
eint
}
n∈Z in Mp, α:

f (t) =
+∞∑

n=−∞
fne

int, t ∈ [−π, π] .

We have

P+f =

∞∑
n=0

fne
int; P−f =

∞∑
n=1

f−ne
−int,

and therefore

Tf = A (t)
∞∑
n=0

fne
int +B (t)

∞∑
n=1

f−ne
−int = g (t) ,

i.e. every element of Mp, α can be expanded with respect to the system
(1.1) in Mp, α. Let’s show that this expansion is unique. Let

A (t)

∞∑
n=0

fne
int +B (t)

∞∑
n=1

f−ne
−int = 0.

Suppose
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f (t) =

+∞∑
n=−∞

fne
int.

It’s clear that f ∈ Mp, α. We have

Tf = A (t)
∞∑
n=0

fne
int +B (t)

∞∑
n=0

f−ne
−int = 0

⇒ f = T−10 = 0

⇒ fn = 0, ∀n ∈ Z.

Thus, we have proved the following theorem.

Theorem 2.6. Let A±1, B±1 ∈ L∞ (−π, π). The system (1.1) forms
a basis for Mp, α only when the equation (2.8) is correctly solvable in
Mp, α, 1 < p < +∞, 0 < α ≤ 1.

Now let’s prove the following main theorem.

Theorem 2.7. Let A±1, B±1 ∈ L∞ (−π, π). If the system (1.1) forms
a basis for Mp, α, 1 < p < +∞, 0 < α ≤ 1, then it is isomorphic to the
classical system of exponents

{
eint
}
n∈Z in Mp, α, with the isomorphism

given by means of the operator T0:

(2.9) (T0f) (t) = A (t)
∞∑
n=0

(
f ; einx

)
eint +B (t)

∞∑
n=1

(
f ; e−inx

)
e−int,

where

(f ; g) =
1

2π

∫ π

−π
f (t) g (t)dt.

Proof. Let the system (1.1) forms a basis for Mp, α. Take an arbitrary
f ∈ Mp, α. As the system

{
eint
}
n∈Z forms a basis for Mp, α, it is clear

that the series

f+ (t) =

∞∑
n=0

(
f ; einx

)
eint,

and

f− (t) =

∞∑
n=1

(
f ; e−inx

)
e−int,

converge in Mp, α. Moreover, the following inequality holds∥∥f±∥∥
p, α

≤ c ∥f∥p, α .
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Then from (2.9) it directly follows that T0 ∈ L (Mp, α). Let’s show that
KerT0 = {0}. Let f ∈ KerT0, i.e.

T0f = A (t)
∞∑
n=0

(
f ; einx

)
eint +B (t)

∞∑
n=1

(
f ; e−inx

)
e−int = 0.

From the basicity of the system (1.1) for Mp, α it follows that
(
f ; einx

)
=

0, ∀n ∈ Z ⇒ f = 0, because the system
{
einx

}
n∈Z forms a basis for

Mp, α. Consequently, KerT0 = {0}. Now let’s show that RT0 = Mp, α.
Let g ∈ Mp, α be an arbitrary element. By Theorem 2.1, ∃f ∈ Mp, α:
Tf = g. On the other hand, it is not difficult to see that T0 = T , and as a
result, RT = Mp, α. Then it follows from the Banach theorem that T0 is
an automorphism in Mp, α. It’s clear that T0

[
einx

]
= A (t) eint, ∀n ∈ Z+

and T0

[
e−inx

]
= B (t) e−int, ∀n ∈ N . The theorem is proved. □

This theorem has the following immediate corollary.

Corollary 2.8. If the perturbed system of exponents{
ei(n+αsignn)t

}
n∈Z

,

forms a basis for the space Mp, α, 1 < p < +∞, 0 < α ≤ 1, then it is
isomorphic to the classical system of exponents

{
eint
}
n∈Z in this space.
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