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Compare and contrast between duals of fusion and discrete
frames

Elnaz Osgooei' and Ali Akbar Arefijamaal®*

ABSTRACT. Fusion frames are valuable generalizations of discrete
frames. Most concepts of fusion frames are shared by discrete
frames. However, the dual setting is so complicated. In particu-
lar, unlike discrete frames, two fusion frames are not dual of each
other in general. In this paper, we investigate the structure of the
duals of fusion frames and discuss the relation between the duals of
fusion frames with their associated discrete frames.

1. INTRODUCTION AND PRELIMINARIES

Fusion frames, as a generalization of frames, are valuable tools to
subdividing a frame system into smaller subsystems and combine lo-
cally data vectors. The theory of fusion frames was systematically in-
troduced in [, B]. Since then, many useful results about the theory and
application of fusion frames have been obtained rapidly [8, G, [4, 0I6].

In the context of signal transmission, fusion frames and their alterna-
tive duals have important roles in reconstructing signals in terms of the
frame elements. The duals of fusion frames for experimental data trans-
mission are investigated in [I5]. But the problem that occur, is that the
duality properties of fusion frames are not like discrete frames, such as,
the duality property of fusion frames is not alternative and fusion Riesz
bases have more than one dual. This paper deals with investigating such
problems, which help us to obtain alternative dual fusion frames.
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Let H be a separable Hilbert space. A frame for H is a sequence
{fi}32, € H such that there are constants 0 < A < B < oo satisfying

(1.1) AlFIP <Y KA P < BIFI?, fe.
i=1

The constants A and B are called frame bounds. If A = B, we call
{fi}2, a tight frame. If the right-hand side of (IT) holds, we say that
{fi}:2, is a Bessel sequence. Given a frame {f;}5°,, the frame operator

is defined by
SF=> AL, f) fi
i=1

A direct calculation yields

(SF )= Il
i€l
Hence, the series defining Sf converges unconditionally for all f € H
and S is a bounded, invertible, and self-adjoint operator. Hence, we
obtain

[e.e]
(1.2) f=81SF=> (.S )i fEMN.

i=1
The possibility of representing every f € H in this way is the main
feature of a frame. A sequence {f;}3°; is a Bessel sequence if and only if
the operator T : €2 — H; {c;} — Y2, ¢ifi, which is called the synthesis
operator, is well-defined and bounded. When {f;}5°; is a frame, the
synthesis operator T is well-defined, bounded and onto. A sequence
{9i}32, € H is called a dual for Bessel sequence { f;}7°; if

oo
(1.3) f=>Y (fg)fi feH.
i=1
Every frame at least has a dual. In fact, if {f;}3; is a frame, then ()
implies that {S~!f; o° 1, which is a frame with bounds B~ land A7, is
a dual for {f;}3,; it is called the canonical dual. To see a general text
in frame theory see [d].
Let {fi}32, and {g;}2; be Bessel sequences with synthesis operators
T and U, respectively. Then, from (I=3) follows immediately that {f;}7°,
and {g;}5°, are dual of each other if and only if UT* = I5; in particular,
they are frames. For more studies on frames and the duality properties
of frames we refer to [2-4, G012, IR, IY].
The following proposition describes a characterization of alternate
dual frames.
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Proposition 1.1 ([4, 9]). (i) The dual frames of {fi}32, are pre-
cisely as {®6;}22,, where ® : 2 — H is a bounded left inverse
of T* and {8;}32, is the canonical orthonormal basis of (2.

(ii) There is a one to one correspondence between dual frames of
{fi}22, and operators V € B(H,(?) such that TV = 0.

We now review preliminary results about fusion frames. Throughout
this paper, I denotes a countable index set and my is the orthogonal
projection onto a closed subspace V' of H.

Definition 1.2. Let {W;};c; be a family of closed subspaces of H and
{wi}icr be a family of weights, i.e. w; >0, i € I. Then {(W;,w;)};c; is
a fusion frame for H if there exist constants 0 < A < B < oo such that

(1.4) AlIFIP <Y wflmw. fIP < BIFIP, f € H
il

The constants A and B are called the fusion frame bounds. If we
only have the upper bound in (I4) we call {(W;,w;)};.; a Bessel fusion
sequence. A fusion frame is called tight, if A and B can be chosen
to be equal, and Parseval if A = B = 1. If w; = w for all ¢ € I, the
collection {(W;,w;) }ier is called w-uniform. A fusion frame {(W}, W%)}ie I
is said to be an orthonormal fusion basis if H = @,.; W;, and it is a
Riesz decomposition of H if for every f € H there is a unique choice of

fi € Wisothat f=3%".; fi.
Recall that for each sequence {W;};cs of closed subspaces in H, the
space

<Z @Wz) = {{fi}iel LfEe WL AP < OO} ;
62

iel iel
with the inner product
{fivier {gitier) = _{fir 90),
i€l
is a Hilbert space.

For a Bessel fusion sequence {(W;,w;)};c; for H, the synthesis oper-
ator Ty : (3,; G‘BVV)K2 — H is defined by

{fz}zel szfz, {fz} S <Z @Wi> .
82

el el
Its adjoint operator Ty, : H — (Zz‘el EBI/Vi)e2 which is called the analysis

operator, is given by

Ty (f) = {wimw,(f)}, feH.
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Recall that {(W;,w;)};c; is a fusion frame if and only if the bounded
operator Ty is onto [[] and its adjoint operator 17, is (possibly into)
isomorphism. If {(W;,w;)},c; is a fusion frame, the fusion frame opera-
tor Sy : H — H defined by

Swf=TwTyf=> wimw,f,
el
is a bounded, invertible and positive operator and we have the following
reconstruction formula [{]

=Y wiSytaw, f, feM

el
The family {(SV_V1 Wi,wi)}i 7> Which is also a fusion frame, is called the

canonical dual of {(W;,w;)},c; and satisfies the following reconstruction
formula [T2]

_ 2 ~1
f= Zwi WS‘;)W'LSW ™w,f, feH.
i€l
Definition 1.3. Let {(W;,w;)};c; be a fusion frame by the frame op-
erator Sy. A Bessel fusion sequence {(V;,v;)};c; is called a dual of

{(Wi,wi) }iep if

(1.5) f= Zwil/ﬂwsﬁ/lﬂwifa JeH.

el
Definition 1.4. Let {W;};c; be a family of closed subspaces of H
and {w;}icr be a family of weights, i.e. w; > 0, i € I. We say that
{(Wi,wi)}ep is a fusion Riesz basis for H if 5pan,c {W;} = H and there
exist constants 0 < C' < D < oo such that for each finite subset J C [

C(SIE) < [Sws| <0 (S1ak) . few,

Some characterizations of fusion Riesz bases are given in the following
theorem.

Theorem 1.5 ([, [7]). Let {(W;,1)},c; be a fusion frame for H and
{€ij}jc be a basis for Wy for each i € I. Then the following conditions
are equivalent:

(1) {(Wi,1)},c; is a Riesz decomposition of H.

(2) The synthesis operator Ty is one-to-one.

(3) The analysis operator Ty, is onto.

(4) {(Wi,1)},c1 is a fusion Riesz basis for H.

(5) {ei;}icr jes, is a Riesz basis for H.
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Lemma 1.6 ([I2]). Let T € B(H) and V. C H be a closed subspace .
Then we have
T = my T Ty

This paper is organized as follows: In Section B, we compare the dual-
ity properties of discrete and fusion frames and by presenting examples
of fusion frames we show that some well-known results on discrete frames
are not valid on fusion frames. Also, we investigate the cases that these
properties can satisfy on fusion frames. In Section B, we investigate the
relation between the duals of fusion frames, local frames and the as-
sociated discrete frames and we try to characterize the duals of fusion
frames.

2. CONTRASTING OF DUALS OF FUSION FRAMES

For a fusion frame {(W;, w;) };c; and a Bessel fusion sequence {(V;, ;) }
we define
¢ (Z @Wi> - (Z @%) ,
il 02 i€l 02
by

(2.1) ¢ ({fitier) = {mviSu fibicr

It is easy to see that ¢ is a linear operator and ||¢| < ||Sy;" |, its adjoint
can be given by

el

i€l

¢* ({gi}ier) = {mw: Sy gi},c;, forall {gilier € (Z EBVi) :
02

Now, the identity (IT3) can be written in an operator form as follows.

Lemma 2.1. Let {(W;,w;)}ier be a fusion frame. A Bessel fusion frame
{(Vi,vi)}ier is a dual of {(Wi,wi)}ier if and only if

(2.2) Ty éTyy = I,

where Ty and Ty are the synthesis operators of {W;}icr and {V;}ier,
respectively.

By Lemma P, we deduce that, unlike discrete frames, two fusion
frames are not dual of each other in general. Here we present an example
which confirms this statement.

Example 2.2. Let [ ={1,2,...,6}. Consider

W1 = span{(1,0,0)}, Wy = span{(0,1,0)}, W3 = span{(0,0,1)},
Wy = span{(0,1,0)}, W5 = span{(1,0,0)}, We = span{(0,0,1)}

9
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and w; = 1, for ¢ € I. Also take
Vi =span{(1,0,0)}, Vo = span{(0,1,0)}, V3 = span{(0,0,1)},
V4 = span{(0,0,1)}, Vs = span{(0,1,0)}, Ve = span{(1,0,0)},
and v; = 2, for i € I. Then {(W;,w;)}ier and {(V;, ;) }ier are fusion
frames for R? with frame operators Sy = 2Igs and Sy = 8Igs, respec-

tively. The following calculation shows that {(V;,2)}icr is an alternative
dual of {(Wl, 1)}1’613

1 1 1
Z viwimy, Syt mw; (a, b, ¢) = 2 [Q(a, 0,0) + 5(0, b,0) + 5(0, 0, c)}
el

= (a,b,c), forall (a,b,c)e R
But {(W;,1)}ier is not an alternative dual of {(V;,2)}ier. In fact

1 1 1
Z Viwiﬂ'Wisy;lﬂ'Vi (a, b, C) =2 [8(a, 0, 0) + é(O, b, 0) + é(O, O, C):|
el
% (a‘7 b7 C)

Now, it is natural to ask when two Bessel fusion frames are dual of
each other. To answer this question assume that {(W;,w;)}ier is also a
dual fusion frame for {(V;,v;)}icr or equivalently (by Lemma PZT)

(2.3) TwyTy = Iy,

where

(R (Z @W) — (Z @Wi> ) Y ({gi}ier) = {TrWiS\;lgi}ieI'
el 02 el 02

Proposition 2.3. Let {W;}icr be a fusion frame with a dual {V;}ier.
Then the fusion frame {W;};cr is also a dual of {V;}ier if

(2.4) b =,

Moreover the converse is hold if {W;}ier and {V;}icr are fusion Riesz
bases.

Proof. Let {V;}ier be a dual of {W;};cr, then by using (222) and (24)
we obtain

<ZWWZ.S;1W f, f> = (Two* T f, f)

i€l
= ([ TvoTyw f) = (f,f), forall feH,

i.e. fusion frame {W;};cr is also a dual for {V;};c;. For the proof of
moreover part, since {W;};,cr and {V;}ier are fusion Riesz bases, by
Theorem I3, Ty and 17 are invertible. So we deduce the proof by
(22) and (223). O
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Corollary 2.4. Let {f;}ic1 € H and W; = span;c{fi} for each i € I.
Suppose that {(W;, 1) }ier is a tight fusion frame for H. Then {(W;, 1) }icr
1s also a dual fusion frame of{(Sljvll/I/i, 1) bier-

One of the important results in the duality of discrete frames is that
every Riesz basis has just a unique dual (canonical dual) and that dual is
Riesz basis as well. But the following example shows that this property
is not confirmed in fusion Riesz bases.

Example 2.5. Consider
Wi = span{(1,0,0)},
Wy = span{(1,1,0)},
W3 = span{(0,0,1)}.

Then {(W;,1)}3_, is a fusion frame for R® with bounds 1 — @ and 2,
and the frame operator

)
)

3/2 1/2 0
Sw=[1/2 1/2 0
0 0 1

It is not difficult to see that {(W;,1)}3_, is a fusion Riesz basis and its
canonical dual can be given with

SI;}Wl = span{(1,—1,0)},
SV_V1W2 = span{(0,1,0)},
Syt W3 = span{(0,0,1)}.

To construct an alternate dual consider
Vi=R2x {0}, Vo=Sy'Wa,  Va=S,'Ws.
Then {(V;,1)}3_, is a fusion frame for R3. Moreover, if f = (a,b,c) then

3
Z 7TViSV_V17TW¢f =T (a’v —-a, 0) + v, (07 a+b, 0) + Ty (07 0, C)
i=1

. = (a,b,c) = f.

Hence, the fusion Riesz basis {(W;,1)}3_; has more than one dual and
the second dual is not a fusion Riesz basis.

3. MORE RESULTS ON DUAL CONSTRUCTION

Let {(W;,w;)}icr be a fusion frame for H. By considering a frame for
each subspace W;, we can construct a discrete frame for H. We begin
with the following key theorem.
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Theorem 3.1. [i] For each i € I let w; > 0 and let {f;;}jcs be a
frame sequence in H with the frame bounds A; and B;. Define W; =
span e j,{fij} for alli € I and assume that
0<A=infA; < B =supB; < .
’ie[ iEI
Then {w; fijtierjes, is a frame for H if and only if {(W;,w;)}icr s a
fusion frame for H.

In this paper, we call F; = {f; j}jcs, @ € I, local frames of W; and
{wifijtier jes,, the associated discrete frames of #, which satisfy in
above theorem.

Our aim in this section is to study the relation between the duals of
fusion frames, local frames and the associated discrete frames of . In
particular, in the following theorem we investigate the relation between
the duals of local frames of W; with the associated discrete frames of H.

Theorem 3.2. Let {(W;,w;)}icr be a fusion frame for H with local
frames {fi j}jcs, foreachi € I. If{g; }jey, is a dual frame of { fi j}jcu;,
then {w; fi j }icr je, is a frame for H with dual frame {wZ-S;[/l (9i5) Yier jeJ;-

Proof. Since {g;;}jecs; is the dual frame of {f;;};cs, for W; for each
1 € I, we obtain

mw, (f) = Y (mowi(f): fii) 9.5

Jje€J;

=S U fi)gig, forall feMicl.
JE€J;
Therefore,
Z Z<f7 wi fi.3) St (wigi ) = Sy Zwi?ﬂwif
i€l jeJ; el
=Sy Swf=F
O

Suppose that {(W;,w;) }ier is a fusion frame for H and S, is the frame
operator of local frames F; for each ¢ € I. Now the question is whether
the canonical dual of each frame F; is also a frame for the canonical dual
of {(Wi,w;)}ier- The following example shows that the answer is not
true in general.

Example 3.3. Let I = {1,2,3,4}. Consider

Wy =span{(1,0,0)}, Wy =span{(1,1,0)
1

}7
W3 = span{(0,1,0)}, Wy = span{(0,0,1)}

i
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and w; = wy = wy = l,wy = /2. Then by Example 3.1 in (],
{(Wi,wi) }ier is a fusion frame for R®. Let f11 = (1,0,0), f21 = (1,1,0),
f31=1(0,1,0) and fs1 = (0,0, 1). It is clear that {f; 1} is a frame for W;
for each i € I. Suppose that Sy is the frame operator of {(W;,w;)}ier
and Sp, is the frame operator of { f; 1} for each i € I. A straightforward
calculation shows that

Sw =

O = N
SN =
= o O

and the subspaces
SpWi =span{(2. 500}, St = span {(3.1.0)}
S;VIWg = span { (%1, %, 0)} , SI;}W4 = span{(0,0,1)},

with the weights {w;}ier is the canonical dual of {(W;, w;)}ier. More-
over, if we take

gi1 = (17070)7 921 = (%a %70) )
g31=1(0,1,0),  g41=(0,0,1),

then {g; 1} is the canonical dual of {f; 1} for each i € I. However, {g; 1}

is not a frame for S‘;,IWZ- for each i € I.

The following example shows that there is no significant relation be-
tween the duals of fusion frames and their associated discrete frames,
i.e. if {(Vi,vi)}ier is a dual of {(W;,w;) }ier, then it is not necessary that
their associated discrete frames be dual of each other.

Example 3.4. Let

Wy =span{(1,0,0)}, Wy =span{(0,1,0)}, W3 =span{(0,0,1)},
Wy =span{(0,1,0)}, W5 =span{(1,0,0)}, Ws = span{(0,0,1)},

and

Vi =span{(1,0,0)}, Vi =span{(0,1,0)}, V3 =span{(0,0,1)},
Vi = span{(0,0,1)}, Vs = span{(0,1,0)}, Vs =span{(1,0,0)}.

Then {(W;,1)})_, is a fusion frame for R? with an alternate dual
{(V;,2)}9_,. Consider

fl,l = f5,1 = (]—a())o)a f2,1 = f4,1 = (07 170)> f3,1 = f6,1 = (O>O7 1)5
and
911 =961 =(2,0,0), g21=951=1(0,2,0), g31=941=(0,0,2).

Then {f;1}%_; and {g;1}%_; are frames for R?, but they are not dual of
each other.
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In the following proposition we give a necessary condition to elucidate

duals of fusion frames.

Proposition 3.5. Let {(W;,1)},.; be a fusion frame for H and {(V;,1)},;
be a Parseval fusion frame for H. Suppose that Wy L SI,},lVi for each
i # k. Then {(Vi,1)},c; is an alternative dual of {(W;, 1) }ier.

Proof. Since {(V;,1)},c; is a Parseval fusion frame, we have

B1) f=5vf

= m (St Sw i)
el

= ZWWS;VIZWka
iel kel

=Y miSyimwif + Y Syt Y T ), feH.
i€l i€l kel ki

By Lemma 8, we have
52 Y T it = Y mSitrgnmd =0
i€l kel ki i€l kel k#i

So we get the proof by (Bl) and (B2). O

Proposition 3.6. Let {(W;,w;)}ier and {(Vi,v;) }ier be fusion frames
for H. Suppose that W; L V; for each i € I. Then {(SwVi,v;)}ier can

not be an alternative dual of {(W;,w;)}ier-

Proof. By Proposition 1.1 in [, {(Sw Vi, vi) }ier is a fusion frame for H.
By Lemma I8, we have

—~1 —1
Zwi’/ﬂsw%sw w,f = wamswvisw my,mw, f =0, féeH.
il icl
O

In the rest of the paper we try to characterize the duals of fusion
frames. We first discuss the Riesz case. Let {(W;,w;)}icr be a Riesz
decomposition of H and {(Vi,v;)}ier be its dual. Associated to the
canonical dual {(SI},1 Wi, w;)}ier, we can consider the operator

¢1 (Z@Wl)p (Z@S 1W> ,

i€l el
given by

o1({fi}ier) = {stfvlwisv_vlfi}.

zEI‘
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Applying (22) and Theorem [H, we conclude that Ty ¢ = TS;V1W¢1,

where T Selw is the synthesis operator of {(Sy' Wi, w;)}ier. It follows
easily that

TrV»LS{}/le:S{;/lfl) /Le-[aflevl/’u
or equivalently
Sy Wi CVi, i€l

The following example shows that unfortunately, we can not characterize
the duals of fusion frames by the duals of their associated discrete frames
and the first part of Proposition L.

Example 3.7. Consider the fusion frame {(W;,w;)}’_; introduced in
Example B33. By Theorem Bl the sequence

{wifi,l}?:l = {(17 07 0)7 \6(1, 1, 0)7 (07 17 O>7 (07 07 1)} )

is a frame for R3 with the frame operator

320
SpP=12 3 0
0 01

Denote its canonical dual by {g;1}+ ;. Then

1 V2 1
{gin}i, = {5(3, —2,0), ?(1, 1,0), g(—2,3,0), (0,0, 1)} .

Consider
_270)}7 Vo :Span{(17170)}7
-2,3,0)},  Vi=span{(0,0,1)},

and v = v3 = %, vy = %=, g =1, then {(Vi,l/i)}le is a fusion frame
for R3. But {(V;, ;) },, is not an alternative dual of {(W;,w;)}’_; and
vise-versa.

We give an explicit construction of a dual fusion frame in the following
theorem.

Theorem 3.8. Let {(W;,1)}ier be a fusion frame for H and {h;}icr be
a Bessel sequence of normalized vectors such that h; € (S;VIWi)L. Take

Vi= Sy Wi+ Zi, i€l

where Z; is the 1-dimensional subspace generated by h;. Then {(V;, 1) }ier
is a dual for {(W;, 1) }ier.
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Proof. First, it is not difficult to see that
7rZz‘f:<f7h7§>h7§7 ZEI;fGH
Now by using 8.12 of [I3] and Corollary 2.5 of [12], we conclude that

lmvifI? =D Img-rp, f + 7z f1°
w 1

i€l el
< S lmgriw FI2+ S HF )2
el i€l
1 1
2 2
+2<ZH7TSW1WJH2> <Z|<f,hi>\2)
el el

< (BIISwIPIS5H2 + D+ 2VBDIISw IS ) 1717,

where B and D are the frame bounds of {(W;,1)}icr and {h;}icr, re-
spectively. Hence, {(V;,1)}ier is a Bessel fusion frame. Moreover, by
Lemma I8 we have

Z ﬂ'ViS[/_Vlﬂ'Wif = Z FS‘;}WiSV_VIWWif + Z Tl'ZiSI/_Vlﬂwif
el i€l el
=f feH.
O

Remark 3.9. The above theorem gives us a very simple method to
construct duals of finite fusion frames. More precisely, let {(W;, 1) }ier
be a finite fusion frame for H. Take

v { setw for (S5;' W)™ = 0;
' SyWi®Z;  for (SV_VIT/VZ-)L # 0,

where Z; is a 1-dimensional subspace of (S;VIWi)J—. To illustrate this
algorithm, let us consider the fusion frame {W;};c; in Example 2.
Clearly

1

(S;'W1)™ = span{(1,1,0), (0,0, 1)},
(85" W) " = span{(1,0,0), (0,0, 1)},
(S57'Ws) ™" = span{(1,0,0), (0,1,0)}.

Therefore, we can introduce some duals:

(7’) Vl = Span{(L _170)7 (0707 1)}7 Vé = R2 X {0}? VE& = {0} X R2-

(“) Vl = 3pan{<17_170)7(07071)}
() Vi =span{(1,-1,0),(1,1,0)}, Vo=R2x{0}, V3={0} xR
(v) Vi =span{(1,-1,0),(1,1,0)}

P

. Va={0}xR?,  V3={0} x R2,

. Va={0}xR2,  V5={0} xR
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