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Compare and contrast between duals of fusion and discrete

frames

Elnaz Osgooei1 and Ali Akbar Arefijamaal2∗

Abstract. Fusion frames are valuable generalizations of discrete
frames. Most concepts of fusion frames are shared by discrete
frames. However, the dual setting is so complicated. In particu-
lar, unlike discrete frames, two fusion frames are not dual of each
other in general. In this paper, we investigate the structure of the
duals of fusion frames and discuss the relation between the duals of
fusion frames with their associated discrete frames.

1. Introduction and preliminaries

Fusion frames, as a generalization of frames, are valuable tools to
subdividing a frame system into smaller subsystems and combine lo-
cally data vectors. The theory of fusion frames was systematically in-
troduced in [7, 8]. Since then, many useful results about the theory and
application of fusion frames have been obtained rapidly [5, 6, 14, 16].

In the context of signal transmission, fusion frames and their alterna-
tive duals have important roles in reconstructing signals in terms of the
frame elements. The duals of fusion frames for experimental data trans-
mission are investigated in [15]. But the problem that occur, is that the
duality properties of fusion frames are not like discrete frames, such as,
the duality property of fusion frames is not alternative and fusion Riesz
bases have more than one dual. This paper deals with investigating such
problems, which help us to obtain alternative dual fusion frames.
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Let H be a separable Hilbert space. A frame for H is a sequence
{fi}∞i=1 ⊆ H such that there are constants 0 < A ≤ B <∞ satisfying

A∥f∥2 ≤
∞∑
i=1

|⟨f, fi⟩|2 ≤ B∥f∥2, f ∈ H.(1.1)

The constants A and B are called frame bounds. If A = B, we call
{fi}∞i=1 a tight frame. If the right-hand side of (1.1) holds, we say that
{fi}∞i=1 is a Bessel sequence. Given a frame {fi}∞i=1, the frame operator
is defined by

Sf =
∞∑
i=1

⟨f, fi⟩fi.

A direct calculation yields

⟨Sf, f⟩ =
∑
i∈I

|⟨f, fi⟩|2.

Hence, the series defining Sf converges unconditionally for all f ∈ H
and S is a bounded, invertible, and self-adjoint operator. Hence, we
obtain

f = S−1Sf =

∞∑
i=1

⟨f, S−1fi⟩fi, f ∈ H.(1.2)

The possibility of representing every f ∈ H in this way is the main
feature of a frame. A sequence {fi}∞i=1 is a Bessel sequence if and only if
the operator T : ℓ2 → H; {ci} 7→

∑∞
i=1 cifi, which is called the synthesis

operator, is well-defined and bounded. When {fi}∞i=1 is a frame, the
synthesis operator T is well-defined, bounded and onto. A sequence
{gi}∞i=1 ⊆ H is called a dual for Bessel sequence {fi}∞i=1 if

f =
∞∑
i=1

⟨f, gi⟩fi, f ∈ H.(1.3)

Every frame at least has a dual. In fact, if {fi}∞i=1 is a frame, then (1.2)
implies that {S−1fi}∞i=1, which is a frame with bounds B−1 and A−1, is
a dual for {fi}∞i=1; it is called the canonical dual. To see a general text
in frame theory see [9].

Let {fi}∞i=1 and {gi}∞i=1 be Bessel sequences with synthesis operators
T and U , respectively. Then, from (1.3) follows immediately that {fi}∞i=1
and {gi}∞i=1 are dual of each other if and only if UT ∗ = IH; in particular,
they are frames. For more studies on frames and the duality properties
of frames we refer to [2–4, 9–12, 18, 19].

The following proposition describes a characterization of alternate
dual frames.



COMPARE AND CONTRAST BETWEEN DUALS 85

Proposition 1.1 ([4, 9]). (i) The dual frames of {fi}∞i=1 are pre-
cisely as {Φδi}∞i=1, where Φ : ℓ2 → H is a bounded left inverse
of T ∗ and {δi}∞i=1 is the canonical orthonormal basis of ℓ2.

(ii) There is a one to one correspondence between dual frames of
{fi}∞i=1 and operators Ψ ∈ B(H, ℓ2) such that TΨ = 0.

We now review preliminary results about fusion frames. Throughout
this paper, I denotes a countable index set and πV is the orthogonal
projection onto a closed subspace V of H.

Definition 1.2. Let {Wi}i∈I be a family of closed subspaces of H and
{ωi}i∈I be a family of weights, i.e. ωi > 0, i ∈ I. Then {(Wi, ωi)}i∈I is
a fusion frame for H if there exist constants 0 < A ≤ B <∞ such that

A∥f∥2 ≤
∑
i∈I

ω2
i ∥πWif∥2 ≤ B∥f∥2, f ∈ H.(1.4)

The constants A and B are called the fusion frame bounds. If we
only have the upper bound in (1.4) we call {(Wi, ωi)}i∈I a Bessel fusion
sequence. A fusion frame is called tight, if A and B can be chosen
to be equal, and Parseval if A = B = 1. If ωi = ω for all i ∈ I, the
collection {(Wi, ωi)}i∈I is called ω-uniform. A fusion frame {(Wi, ωi)}i∈I
is said to be an orthonormal fusion basis if H =

⊕
i∈I Wi, and it is a

Riesz decomposition of H if for every f ∈ H there is a unique choice of
fi ∈Wi so that f =

∑
i∈I fi.

Recall that for each sequence {Wi}i∈I of closed subspaces in H, the
space (∑

i∈I
⊕Wi

)
ℓ2

=

{
{fi}i∈I : fi ∈Wi,

∑
i∈I

∥fi∥2 <∞

}
,

with the inner product

⟨{fi}i∈I , {gi}i∈I⟩ =
∑
i∈I

⟨fi, gi⟩,

is a Hilbert space.
For a Bessel fusion sequence {(Wi, ωi)}i∈I for H, the synthesis oper-

ator TW :
(∑

i∈I ⊕Wi

)
ℓ2

→ H is defined by

TW ({fi}i∈I) =
∑
i∈I

ωifi, {fi} ∈

(∑
i∈I

⊕Wi

)
ℓ2

.

Its adjoint operator T ∗
W : H →

(∑
i∈I ⊕Wi

)
ℓ2
which is called the analysis

operator, is given by

T ∗
W (f) = {ωiπWi(f)}, f ∈ H.
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Recall that {(Wi, ωi)}i∈I is a fusion frame if and only if the bounded
operator TW is onto [7] and its adjoint operator T ∗

W is (possibly into)
isomorphism. If {(Wi, ωi)}i∈I is a fusion frame, the fusion frame opera-
tor SW : H → H defined by

SW f = TWT
∗
W f =

∑
i∈I

ω2
i πWif,

is a bounded, invertible and positive operator and we have the following
reconstruction formula [7]

f =
∑
i∈I

ω2
i S

−1
W πWif, f ∈ H.

The family
{
(S−1

W Wi, ωi)
}
i∈I , which is also a fusion frame, is called the

canonical dual of {(Wi, ωi)}i∈I and satisfies the following reconstruction
formula [12]

f =
∑
i∈I

ω2
i πS−1

W Wi
S−1
W πWif, f ∈ H.

Definition 1.3. Let {(Wi, ωi)}i∈I be a fusion frame by the frame op-
erator SW . A Bessel fusion sequence {(Vi, νi)}i∈I is called a dual of
{(Wi, ωi)}i∈I if

f =
∑
i∈I

ωiνiπViS
−1
W πWif, f ∈ H.(1.5)

Definition 1.4. Let {Wi}i∈I be a family of closed subspaces of H
and {ωi}i∈I be a family of weights, i.e. ωi > 0, i ∈ I. We say that
{(Wi, ωi)}i∈I is a fusion Riesz basis for H if spani∈I{Wi} = H and there
exist constants 0 < C ≤ D <∞ such that for each finite subset J ⊆ I

C
(∑

∥fj∥2
) 1

2 ≤
∥∥∥∑ωjfj

∥∥∥ ≤ D
(∑

∥fj∥2
) 1

2
, fj ∈Wj .

Some characterizations of fusion Riesz bases are given in the following
theorem.

Theorem 1.5 ([7, 17]). Let {(Wi, 1)}i∈I be a fusion frame for H and
{ei,j}j∈Ji be a basis for Wi for each i ∈ I. Then the following conditions
are equivalent:
(1) {(Wi, 1)}i∈I is a Riesz decomposition of H.
(2) The synthesis operator TW is one-to-one.
(3) The analysis operator T ∗

W is onto.
(4) {(Wi, 1)}i∈I is a fusion Riesz basis for H.
(5) {ei,j}i∈I,j∈Ji is a Riesz basis for H.
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Lemma 1.6 ([12]). Let T ∈ B(H) and V ⊆ H be a closed subspace .
Then we have

πV T
∗ = πV T

∗πTV .

This paper is organized as follows: In Section 2, we compare the dual-
ity properties of discrete and fusion frames and by presenting examples
of fusion frames we show that some well-known results on discrete frames
are not valid on fusion frames. Also, we investigate the cases that these
properties can satisfy on fusion frames. In Section 3, we investigate the
relation between the duals of fusion frames, local frames and the as-
sociated discrete frames and we try to characterize the duals of fusion
frames.

2. Contrasting of duals of fusion frames

For a fusion frame {(Wi, ωi)}i∈I and a Bessel fusion sequence {(Vi, νi)}i∈I ,
we define

ϕ :

(∑
i∈I

⊕Wi

)
ℓ2

→

(∑
i∈I

⊕Vi

)
ℓ2

,

by

ϕ ({fi}i∈I) =
{
πViS

−1
W fi

}
i∈I .(2.1)

It is easy to see that ϕ is a linear operator and ∥ϕ∥ ≤ ∥S−1
W ∥, its adjoint

can be given by

ϕ∗ ({gi}i∈I) =
{
πWiS

−1
W gi

}
i∈I , for all {gi}i∈I ∈

(∑
i∈I

⊕Vi

)
ℓ2

.

Now, the identity (1.5) can be written in an operator form as follows.

Lemma 2.1. Let {(Wi, ωi)}i∈I be a fusion frame. A Bessel fusion frame
{(Vi, νi)}i∈I is a dual of {(Wi, ωi)}i∈I if and only if

TV ϕT
∗
W = IH,(2.2)

where TW and TV are the synthesis operators of {Wi}i∈I and {Vi}i∈I ,
respectively.

By Lemma 2.1, we deduce that, unlike discrete frames, two fusion
frames are not dual of each other in general. Here we present an example
which confirms this statement.

Example 2.2. Let I = {1, 2, ..., 6}. Consider
W1 = span{(1, 0, 0)},
W4 = span{(0, 1, 0)},

W2 = span{(0, 1, 0)},
W5 = span{(1, 0, 0)},

W3 = span{(0, 0, 1)},
W6 = span{(0, 0, 1)},
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and ωi = 1, for i ∈ I. Also take

V1 = span{(1, 0, 0)},
V4 = span{(0, 0, 1)},

V2 = span{(0, 1, 0)},
V5 = span{(0, 1, 0)},

V3 = span{(0, 0, 1)},
V6 = span{(1, 0, 0)},

and νi = 2, for i ∈ I. Then {(Wi, ωi)}i∈I and {(Vi, νi)}i∈I are fusion
frames for R3 with frame operators SW = 2IR3 and SV = 8IR3 , respec-
tively. The following calculation shows that {(Vi, 2)}i∈I is an alternative
dual of {(Wi, 1)}i∈I :∑

i∈I
νiωiπViS

−1
W πWi(a, b, c) = 2

[
1

2
(a, 0, 0) +

1

2
(0, b, 0) +

1

2
(0, 0, c)

]
= (a, b, c), for all (a, b, c) ∈ R3.

But {(Wi, 1)}i∈I is not an alternative dual of {(Vi, 2)}i∈I . In fact∑
i∈I

νiωiπWiS
−1
V πVi(a, b, c) = 2

[
1

8
(a, 0, 0) +

1

8
(0, b, 0) +

1

8
(0, 0, c)

]
̸= (a, b, c).

Now, it is natural to ask when two Bessel fusion frames are dual of
each other. To answer this question assume that {(Wi, ωi)}i∈I is also a
dual fusion frame for {(Vi, νi)}i∈I or equivalently (by Lemma 2.1)

TWψT
∗
V = IH,(2.3)

where

ψ :

(∑
i∈I

⊕Vi

)
ℓ2

→

(∑
i∈I

⊕Wi

)
ℓ2

, ψ ({gi}i∈I) =
{
πWiS

−1
V gi

}
i∈I .

Proposition 2.3. Let {Wi}i∈I be a fusion frame with a dual {Vi}i∈I .
Then the fusion frame {Wi}i∈I is also a dual of {Vi}i∈I if

ϕ∗ = ψ.(2.4)

Moreover the converse is hold if {Wi}i∈I and {Vi}i∈I are fusion Riesz
bases.

Proof. Let {Vi}i∈I be a dual of {Wi}i∈I , then by using (2.2) and (2.4)
we obtain⟨∑

i∈I
πWiS

−1
V πVif, f

⟩
= ⟨TWϕ∗T ∗

V f, f⟩

= ⟨f, TV ϕT ∗
W f⟩ = ⟨f, f⟩, for all f ∈ H,

i.e. fusion frame {Wi}i∈I is also a dual for {Vi}i∈I . For the proof of
moreover part, since {Wi}i∈I and {Vi}i∈I are fusion Riesz bases, by
Theorem 1.5, TW and T ∗

V are invertible. So we deduce the proof by
(2.2) and (2.3). □
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Corollary 2.4. Let {fi}i∈I ⊆ H and Wi = spani∈I{fi} for each i ∈ I.
Suppose that {(Wi, 1)}i∈I is a tight fusion frame for H. Then {(Wi, 1)}i∈I
is also a dual fusion frame of {(S−1

W Wi, 1)}i∈I .

One of the important results in the duality of discrete frames is that
every Riesz basis has just a unique dual (canonical dual) and that dual is
Riesz basis as well. But the following example shows that this property
is not confirmed in fusion Riesz bases.

Example 2.5. Consider

W1 = span{(1, 0, 0)},
W2 = span{(1, 1, 0)},
W3 = span{(0, 0, 1)}.

Then {(Wi, 1)}3i=1 is a fusion frame for R3 with bounds 1 −
√
2
2 and 2,

and the frame operator

SW =

3/2 1/2 0
1/2 1/2 0
0 0 1

 .
It is not difficult to see that {(Wi, 1)}3i=1 is a fusion Riesz basis and its
canonical dual can be given with

S−1
W W1 = span{(1,−1, 0)},
S−1
W W2 = span{(0, 1, 0)},
S−1
W W3 = span{(0, 0, 1)}.

To construct an alternate dual consider

V1 = R2 × {0}, V2 = S−1
W W2, V3 = S−1

W W3.

Then {(Vi, 1)}3i=1 is a fusion frame for R3. Moreover, if f = (a, b, c) then

3∑
i=1

πViS
−1
W πWif = πV1(a,−a, 0) + πV2(0, a+ b, 0) + πV3(0, 0, c)

= (a, b, c) = f.

Hence, the fusion Riesz basis {(Wi, 1)}3i=1 has more than one dual and
the second dual is not a fusion Riesz basis.

3. More results on dual construction

Let {(Wi, ωi)}i∈I be a fusion frame for H. By considering a frame for
each subspace Wi, we can construct a discrete frame for H. We begin
with the following key theorem.
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Theorem 3.1. [7] For each i ∈ I let ωi > 0 and let {fi,j}j∈Ji be a
frame sequence in H with the frame bounds Ai and Bi. Define Wi =
spanj∈Ji{fi,j} for all i ∈ I and assume that

0 < A = inf
i∈I

Ai ≤ B = sup
i∈I

Bi <∞.

Then {ωifi,j}i∈I,j∈Ji is a frame for H if and only if {(Wi, ωi)}i∈I is a
fusion frame for H.

In this paper, we call Fi = {fi,j}j∈Ji , i ∈ I, local frames of Wi and
{ωifi,j}i∈I,j∈Ji , the associated discrete frames of H, which satisfy in
above theorem.

Our aim in this section is to study the relation between the duals of
fusion frames, local frames and the associated discrete frames of H. In
particular, in the following theorem we investigate the relation between
the duals of local frames of Wi with the associated discrete frames of H.

Theorem 3.2. Let {(Wi, ωi)}i∈I be a fusion frame for H with local
frames {fi,j}j∈Ji for each i ∈ I. If {gi,j}j∈Ji is a dual frame of {fi,j}j∈Ji,
then {wifi,j}i∈I,j∈Ji is a frame for H with dual frame {wiS

−1
W (gi,j)}i∈I,j∈Ji.

Proof. Since {gi,j}j∈Ji is the dual frame of {fi,j}j∈Ji for Wi for each
i ∈ I, we obtain

πWi(f) =
∑
j∈Ji

⟨πWi(f), fi,j⟩gi,j

=
∑
j∈Ji

⟨f, fi,j⟩gi,j , for all f ∈ H, i ∈ I.

Therefore, ∑
i∈I

∑
j∈Ji

⟨f, wifi,j⟩S−1
W (wigi,j) = S−1

W

∑
i∈I

w2
i πWif

= S−1
W SW f = f.

□

Suppose that {(Wi, ωi)}i∈I is a fusion frame forH and SFi is the frame
operator of local frames Fi for each i ∈ I. Now the question is whether
the canonical dual of each frame Fi is also a frame for the canonical dual
of {(Wi, ωi)}i∈I . The following example shows that the answer is not
true in general.

Example 3.3. Let I = {1, 2, 3, 4}. Consider

W1 = span{(1, 0, 0)},
W3 = span{(0, 1, 0)},

W2 = span{(1, 1, 0)},
W4 = span{(0, 0, 1)},
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and w1 = w3 = w4 = 1, w2 =
√
2. Then by Example 3.1 in [1],

{(Wi, ωi)}i∈I is a fusion frame for R3. Let f1,1 = (1, 0, 0), f2,1 = (1, 1, 0),
f3,1 = (0, 1, 0) and f4,1 = (0, 0, 1). It is clear that {fi,1} is a frame forWi

for each i ∈ I. Suppose that SW is the frame operator of {(Wi, ωi)}i∈I
and SFi is the frame operator of {fi,1} for each i ∈ I. A straightforward
calculation shows that

SW =

2 1 0
1 2 0
0 0 1

 ,
and the subspaces

S−1
W W1 = span

{(
2
3 ,

−1
3 , 0

)}
,

S−1
W W3 = span

{(−1
3 ,

2
3 , 0
)}
,

S−1
W W2 = span

{(
1
3 ,

1
3 , 0
)}
,

S−1
W W4 = span{(0, 0, 1)},

with the weights {ωi}i∈I is the canonical dual of {(Wi, wi)}i∈I . More-
over, if we take

g1,1 = (1, 0, 0),
g3,1 = (0, 1, 0),

g2,1 =
(
1
2 ,

1
2 , 0
)
,

g4,1 = (0, 0, 1),

then {gi,1} is the canonical dual of {fi,1} for each i ∈ I. However, {gi,1}
is not a frame for S−1

W Wi for each i ∈ I.

The following example shows that there is no significant relation be-
tween the duals of fusion frames and their associated discrete frames,
i.e. if {(Vi, νi)}i∈I is a dual of {(Wi, ωi)}i∈I , then it is not necessary that
their associated discrete frames be dual of each other.

Example 3.4. Let

W1 = span{(1, 0, 0)},
W4 = span{(0, 1, 0)},

W2 = span{(0, 1, 0)},
W5 = span{(1, 0, 0)},

W3 = span{(0, 0, 1)},
W6 = span{(0, 0, 1)},

and

V1 = span{(1, 0, 0)},
V4 = span{(0, 0, 1)},

V2 = span{(0, 1, 0)},
V5 = span{(0, 1, 0)},

V3 = span{(0, 0, 1)},
V6 = span{(1, 0, 0)}.

Then {(Wi, 1)}6i=1 is a fusion frame for R3 with an alternate dual

{(Vi, 2)}6i=1. Consider

f1,1 = f5,1 = (1, 0, 0), f2,1 = f4,1 = (0, 1, 0), f3,1 = f6,1 = (0, 0, 1),

and

g1,1 = g6,1 = (2, 0, 0), g2,1 = g5,1 = (0, 2, 0), g3,1 = g4,1 = (0, 0, 2).

Then {fi,1}6i=1 and {gi,1}6i=1 are frames for R3, but they are not dual of
each other.
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In the following proposition we give a necessary condition to elucidate
duals of fusion frames.

Proposition 3.5. Let {(Wi, 1)}i∈I be a fusion frame for H and {(Vi, 1)}i∈I
be a Parseval fusion frame for H. Suppose that Wk ⊥ S−1

W Vi for each
i ̸= k. Then {(Vi, 1)}i∈I is an alternative dual of {(Wi, 1)}i∈I .

Proof. Since {(Vi, 1)}i∈I is a Parseval fusion frame, we have

f = SV f(3.1)

=
∑
i∈I

πVi(S
−1
W SW f)

=
∑
i∈I

πViS
−1
W

∑
k∈I

πWk
f

=
∑
i∈I

πViS
−1
W πWif +

∑
i∈I

πViS
−1
W (

∑
k∈I,k ̸=i

πWk
f), f ∈ H.

By Lemma 1.6, we have

(3.2)
∑
i∈I

∑
k∈I,k ̸=i

πViS
−1
W πWk

f =
∑
i∈I

∑
k∈I,k ̸=i

πViS
−1
W πS−1

W Vi
πWk

f = 0.

So we get the proof by (3.1) and (3.2). □

Proposition 3.6. Let {(Wi, ωi)}i∈I and {(Vi, νi)}i∈I be fusion frames
for H. Suppose that Wi ⊥ Vi for each i ∈ I. Then {(SWVi, νi)}i∈I can
not be an alternative dual of {(Wi, ωi)}i∈I .

Proof. By Proposition 1.1 in [7], {(SWVi, νi)}i∈I is a fusion frame for H.
By Lemma 1.6, we have∑

i∈I
ωiνiπSWViS

−1
W πWif =

∑
i∈I

ωiνiπSWViS
−1
W πViπWif = 0, f ∈ H.

□

In the rest of the paper we try to characterize the duals of fusion
frames. We first discuss the Riesz case. Let {(Wi, ωi)}i∈I be a Riesz
decomposition of H and {(Vi, νi)}i∈I be its dual. Associated to the
canonical dual {(S−1

W Wi, ωi)}i∈I , we can consider the operator

ϕ1 :

(∑
i∈I

⊕Wi

)
ℓ2

→

(∑
i∈I

⊕S−1
W Wi

)
ℓ2

,

given by

ϕ1({fi}i∈I) =
{
πS−1

W Wi
S−1
W fi

}
i∈I

.
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Applying (2.2) and Theorem 1.5, we conclude that TV ϕ = TS−1
W Wϕ1,

where TS−1
W W is the synthesis operator of {(S−1

W Wi, ωi)}i∈I . It follows

easily that

πViS
−1
W fi = S−1

W fi, i ∈ I, fi ∈Wi,

or equivalently

S−1
W Wi ⊆ Vi, i ∈ I.

The following example shows that unfortunately, we can not characterize
the duals of fusion frames by the duals of their associated discrete frames
and the first part of Proposition 1.1.

Example 3.7. Consider the fusion frame {(Wi, ωi)}4i=1 introduced in
Example 3.3. By Theorem 3.1 the sequence

{ωifi,1}4i=1 =
{
(1, 0, 0),

√
2(1, 1, 0), (0, 1, 0), (0, 0, 1)

}
,

is a frame for R3 with the frame operator

SF =

3 2 0
2 3 0
0 0 1

 .
Denote its canonical dual by {gi,1}4i=1. Then

{gi,1}4i=1 =

{
1

5
(3,−2, 0),

√
2

5
(1, 1, 0),

1

5
(−2, 3, 0), (0, 0, 1)

}
.

Consider

V1 = span{(3,−2, 0)},
V3 = span{(−2, 3, 0)},

V2 = span{(1, 1, 0)},
V4 = span{(0, 0, 1)},

and ν1 = ν3 =
1
5 , ν2 =

√
2
5 , ν4 = 1, then {(Vi, νi)}4i=1 is a fusion frame

for R3. But {(Vi, νi)}4i=1 is not an alternative dual of {(Wi, ωi)}4i=1 and
vise-versa.

We give an explicit construction of a dual fusion frame in the following
theorem.

Theorem 3.8. Let {(Wi, 1)}i∈I be a fusion frame for H and {hi}i∈I be
a Bessel sequence of normalized vectors such that hi ∈ (S−1

W Wi)
⊥. Take

Vi = S−1
W Wi + Zi, i ∈ I,

where Zi is the 1-dimensional subspace generated by hi. Then {(Vi, 1)}i∈I
is a dual for {(Wi, 1)}i∈I .



94 E. OSGOOEI AND A. AREFIJAMAAL

Proof. First, it is not difficult to see that

πZif = ⟨f, hi⟩hi, i ∈ I, f ∈ H.
Now by using 8.12 of [13] and Corollary 2.5 of [12], we conclude that∑

i∈I
∥πVif∥2 =

∑
i∈I

∥πS−1
W Wi

f + πZif∥2

≤
∑
i∈I

∥πS−1
W Wi

f∥2 +
∑
i∈I

|⟨f, hi⟩|2

+ 2

(∑
i∈I

∥πS−1
W Wi

f∥2
) 1

2
(∑

i∈I
|⟨f, hi⟩|2

) 1
2

≤
(
B∥SW ∥2∥S−1

W ∥2 +D + 2
√
BD∥SW ∥∥S−1

W ∥
)
∥f∥2,

where B and D are the frame bounds of {(Wi, 1)}i∈I and {hi}i∈I , re-
spectively. Hence, {(Vi, 1)}i∈I is a Bessel fusion frame. Moreover, by
Lemma 1.6 we have∑

i∈I
πViS

−1
W πWif =

∑
i∈I

πS−1
W Wi

S−1
W πWif +

∑
i∈I

πZiS
−1
W πWif

= f, f ∈ H.
□

Remark 3.9. The above theorem gives us a very simple method to
construct duals of finite fusion frames. More precisely, let {(Wi, 1)}i∈I
be a finite fusion frame for H. Take

Vi =

{
S−1
W Wi

S−1
W Wi ⊕ Zi

for
(
S−1
W Wi

)⊥
= ∅;

for
(
S−1
W Wi

)⊥ ̸= ∅,

where Zi is a 1-dimensional subspace of (S−1
W Wi)

⊥. To illustrate this
algorithm, let us consider the fusion frame {Wi}i∈I in Example 2.5.
Clearly (

S−1
W W1

)⊥
= span{(1, 1, 0), (0, 0, 1)},(

S−1
W W2

)⊥
= span{(1, 0, 0), (0, 0, 1)},(

S−1
W W3

)⊥
= span{(1, 0, 0), (0, 1, 0)}.

Therefore, we can introduce some duals:

(i)
(ii)
(iii)
(iv)

V1 = span{(1,−1, 0), (0, 0, 1)},
V1 = span{(1,−1, 0), (0, 0, 1)},
V1 = span{(1,−1, 0), (1, 1, 0)},
V1 = span{(1,−1, 0), (1, 1, 0)},

V2 = R2 × {0},
V2 = {0} × R2,
V2 = R2 × {0},
V2 = {0} × R2,

V3 = {0} × R2.
V3 = {0} × R2.
V3 = {0} × R2.
V3 = {0} × R2.
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19. A. Rahimi, Invariance of Fréchet frames under perturbation, Sa-
hand Communications in Mathematical Analysis, 1 (2014), pp. 41-
51.

1 Department of Sciences, Urmia University of Technology, P.O.Box
419-57155, Urmia, Iran.

E-mail address: e.osgooei@uut.ac.ir; osgooei@yahoo.com

2 Department of Mathematics and Computer Sciences, Hakim Sabzevari
University, P.O.Box 397, Sabzevar, Iran.

E-mail address: arefijamaal@hsu.ac.ir; arefijamaal@gmail.com


	1. Introduction and preliminaries
	2. Contrasting of duals of fusion frames
	3. More results on dual construction
	References

