Document Type: Research Paper

Authors

1 Department of Non-harmonic analysis,Institute of Mathematics and Mechanics of NAS of Azerbaijan, Baku, Azerbaijan.

2 Ganja State University, Ganja, Azerbaijan.

Abstract

An atomic decomposition is considered in Banach space.  A method for constructing an atomic decomposition of Banach  space, starting with atomic decomposition of  subspaces  is presented. Some relations between them are established. The proposed method is used in the  study  of the  frame  properties of systems of eigenfunctions and associated functions of discontinuous differential operators.

Keywords

Main Subjects

[1] F.V. Atkinson, Discrete and Continuous Boundary Problems, Moscow, Mir, 1968.

[2] B.T. Bilalov and   T.B. Gasymov, On basicity of a part of a systems with infinite defect, Trans. of. NAS  of Azerb., XXVII(7), (2007), 53-59.

[3] B.T. Bilalov, Bases of Exponentials, Sines, and Cosines, Differ. Uravn. , 39.5 (2003), 619-622.

[4] B.T. Bilalov and T.R. Muradov, Defect bases of Banach spaces, Proc. IMM of NASA, XXII (XXX) (2005), 23-26.

[5] B.T. Bilalov, On the basis property of systems of exponentials, cosines, and sines in Lp . Dokl. Math., 365(1) (1999), 7-8.

[6] B.T. Bilalov, On bases for some systems of exponentials, cosines, and sines in Lp . Dokl. Math., 379(2) (2001), 7-9.

[7] B.T. Bilalov and Z.V. Mamedova, On the frame properties of  some degenerate trigonometric system,  Dokl. Acad. Nauk, LXVIII(5), (2012), 14-18.

[8] B.T. Bilalov and F.A. Guliyeva, t-frames and their Noetherian perturbation, Complex Anal. Oper. Theory, Vol.9, No 7, (2015),  1609-1631, DOI 10.1007/s11785-014-0416-9

[9] B.T. Bilalov and F.A. Guliyeva, Noetherian perturbation of frames. Pensee Journal, 75(12) (2013), 425-431.

[10] B.T. Bilalov and F.A. Guliyeva, On The Frame Properties of Degenerate System of Sines, Journal of Function Spaces and Applications. 2012 (2012), Article ID 184186, 12 pages, DOI:10.1155/2012/184186

[11] B.T. Bilalov and Ch.M. Hashimov, On Decomposition In Banach Spaces, Proceedings of the Institute of Mathematics and Mechanics, NAS  of Azerbaijan,  40 (2) (2014),  97-106.

[12] O. Christensen, An Introduction  to Frames and Riesz bases, Springer, 2003, 440 p.

[13] O. Christensen, Frames, Riesz bases and discrete Gabor-wavelet expansions,  Bull Amer. Math. Soc., 38  (2001),  273-291

[14] O. Christensen and  D.T. Stoeva, p-frames in separable Banach spaces, Advances in Computational Mathematics, 18 (2003),  17-126.

[15] I.C. Gohberg and A.S.Markus, On stability of bases of Banach and Hilbert spaces, Izv. Akad. Nauk. Mold. SSR., 5 (1962), 17-35.

[16] T.B. Gasymov and Sh.J.Mammadova, On convergence of spectral expansions for one discontinuous problem with spectral parameter in the boundary condition, Trans. Of NAS of Azerb.,  XXVI(4 (2006),  103-116.

[17] Z.G. Huseynov and A.M. Shykhammedov, On bases of sines and cosines in Sobolev spaces, Applied Mathematics Letters 25(3:4) (2012).

[18] X. He and H. Volkmer, Riesz bases of solutions of Sturm-Liouville equations, J. Fourier Anal. Appl., 7 (3) (2001), 297-307.

[19] A.A. Huseynli, On the stability of basisness in Lp (1<p<+∞) of cosines and sines, Turk J Math.,  35 (2011), 47-54.

[20] Ch. Heil, A Basis Theory  Primer, Springer, 2011, 534 p.

[21]  V.A. Il'in, Necessary and sufficient conditions for the basis property and the equiconvergence with a trigonometric series of spectral expansions in systems of exponentials, Dokl. Akad. Nauk SSSR 273 (4),  789-793.

[22] L.V. Kritskov, Necessary Condition for the Uniform Minimality of Kostyuchenko Type Systems, Azerbaijan Journal of Mathematics,  5(1)  (2015),  97-103.

[23] T. Kato, Theory of perturbations of linear operators, Moscow, "Mir", 1972, 738 p.

[24] V.D. Milman, Geometric theory of Banach spaces. Part I. The theory of basis and minimal systems, Uspekhi Mat. Nauk, 1970, 25:3(153) (1970), 113-174.

[25] V.A. Marchenko, Spectral theory of the Sturm-Liouville problem, Naukova Dumka, Kiev, 1972.

[26] T.I. Najafov and N.P. Nasibova, On the Noetherness of the Riemann Problem in Generalized Weighted Hardy Classes, Azerbaijan Journal of Mathematics, 5(2)  (2015), 109-124.

[27] D.L. Russel, On exponential bases for the Sobolev spaces over an interval, Journal of Math. Anal. and Appl., 87 (1982),  528-550.

[28] A.M. Sedletskii, Approximate properties of exponential systems in Sobolev spaces, Vestn. MGU, Ser. Mat., Mekh.,  6 (1999), 3-8.

[29] I. Singer, Bases in Banach  spaces, Vol 1, Springer, 1970, 673 p.

[30] I. Singer, Bases in Banach  spaces, Vol 2, Springer, 1981, 880 p.

[31] S.R. Sadigova and Z.A. Kasumov, On atomic decomposition for Hardy classes with respect to degenerate exponential systems, Proceedings of the Institute of Mathematics and Mechanics, NAS  of Azerbaijan,  40(1) (2014),  55-67.

[32] A.N. Tikhonov and A.A.Samarskii, Equations of Mathematical Physics,  Izd. MGU, Moscow, 1999.

[33] R.M.  Young, An Introduction to Nonharmonic Fourier series, Springer, 1980, 246 p.

[34] A.Sh. Shukurov, Impossibility of Power Series Expansion for Continuous Functions, Azerbaijan Journal of Mathematics,  6(1)  (2016),  122-125.