Abstract. K-frames as a generalization of frames were introduced by L. Găvruţa to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator K in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new generalization of K-frames. After proving some characterizations of generalized K-frames, new results are investigated and some new perturbation results are established. Finally, we give several characterizations of K-duals.

1. Introduction and Basic Definitions

Frames in Hilbert spaces were introduced by J. Duffin and A.C. Schaffer [12] in 1952. In 1986, frames were brought to life by Daubechies, Grossmann and Meyer [9]. Now frames play an important role not only in the theoretics but also in many kinds of applications, and have been widely applied in signal processing [16], sampling [13, 14], coding and communications [22], filter bank theory [5], system modeling [11], and so on.

Frames are generalizations of orthonormal basis in Hilbert spaces. The elements of an orthonormal basis are linearly independent which allows every vector to be uniquely represented as a linear combination of the basis elements. This is very restrictive for practical problems. A frame also allows each element in the space to be written as a linear
combination of the elements in the frame, but linear independence between the frame elements is not required. For more information about frames see [6].

G-frames in a complex Hilbert space were introduced by W. Sun in [23] to deal with all existing frames as a united object and discussed some properties of them. Next many authors give new results, for instance see [24, 25].

On the other hand, a family of local atoms for a subspace \(H_0\) of a separable Hilbert space \(H\) as a family of analysis and synthesis systems with frame-like properties \(H_0\) was studied in [15] and generalized by L. Găvruta in [17] and called atomic systems. Let \(H\) be a Hilbert space and \(K \in B(H)\), the space of all bounded linear operators on \(H\). \(K\)-frames as a generalization of frames, i.e. frames are a special case of \(K\)-frame when \(K\) is the identity operator. It is proved that an atomic system for \(K\) is a \(K\)-frame and vice versa (see [17]). We refer to [17] and [26] for more information on these concepts. Recently, generalized \(K\)-frames and generalized atomic systems for operators introduced in [3] and [27]. Some characterizations and perturbation results for generalized \(K\)-frames are investigated in these papers. Also, some results about these concepts in Hilbert modules and Banach spaces can be found in [7, 8], respectively.

The paper is organized as follows. We continue this introductory section with a review of the basic definitions and results. In Section 2, some characterizations of g-\(K\)-frames are studied. In section 3, some more properties of generalized \(K\)-frames will be discussed. Many of our results are generalizations of results in [3, 26, 27]. In the next section some other perturbation results for g-\(K\)-frames are established. In the last section of this paper \(K\)-duals are studied.

Let us first recall the concepts of the atomic systems for \(K\) and \(K\)-frames. A sequence \(\{x_n\}_{n \in \mathbb{N}}\) in the Hilbert space \(H\) is called an atomic system for the bounded linear operator \(K\) on \(H\) if the following statements hold

(i) the series \(\sum_{n \in \mathbb{N}} c_n x_n\) converges for all \(c = \{c_n\}_{n \in \mathbb{N}} \in l^2\);
(ii) for any \(x \in H\), there exists \(a_x = \{a_n\}_{n \in \mathbb{N}} \in l^2\) such that \(Kx = \sum_{n \in \mathbb{N}} a_n x_n\) where \(\|a_x\|_2 \leq C\|x\|\); \(C\) is a positive constant.

Note that in (ii), the sequence \(a_x\) corresponding to \(x \in H\) is not unique, in general.

It is well-known that every bounded linear operator \(K\) on a separable Hilbert space admits an atomic system (see [17, Theorem 2]).
A sequence \(\{x_n\}_{n \in \mathbb{N}} \) is said to be a \(K \)-frame for \(H \) if there exist constants \(A, B > 0 \) such that
\[
A \|K^*x\|^2 \leq \sum_{n \in \mathbb{N}} |\langle x, x_n \rangle|^2 \leq B \|x\|^2, \quad (x \in H).
\]

In the sequel, it is assumed that \(\mathbb{J} \) is a finitely or countably index set.

For two Hilbert spaces \(H \) and \(F \) we denote by \(B(H, F) \) the collection of all bounded linear operators between \(H \) and \(F \), and we abbreviate \(B(H, H) \) by \(B(H) \). Also we denote the range of \(L \in B(H, F) \) by \(R(L) \).

Recall that if \(H \) and \(H_j, j \in \mathbb{J}, \) are Hilbert spaces then a sequence \(\{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\} \) is said to be a generalized frame (or simply g-frame) for \(H \) with respect to \(\{H_j\}_{j \in \mathbb{J}} \) if there are two positive constants \(A \) and \(B \) such that
\[
A \|x\|^2 \leq \sum_{j \in \mathbb{J}} \|\Lambda_j(x)\|^2 \leq B \|x\|^2, \quad (x \in H).
\]

The constants \(A \) and \(B \) are the lower and upper frame bounds, respectively. If the right-hand side of this inequality holds, then \(\{\Lambda_j\}_{j \in \mathbb{J}} \) is said to be a g-Bessel sequence.

For a sequence of Hilbert spaces \(\{H_j\}_{j \in \mathbb{J}} \), the space
\[
\bigoplus_{j \in \mathbb{J}} H_j := \left\{ \{x_j\}_{j \in \mathbb{J}} : x_j \in H_j \text{ and } \sum_{j \in \mathbb{J}} \|x_j\|^2 < \infty \right\},
\]
with the inner product \(\langle \{x_j\}, \{y_j\} \rangle = \sum_{j \in \mathbb{J}} \langle x_j, y_j \rangle \) is a Hilbert space.

Now for a g-Bessel sequence \(\{\Lambda_j\}_{j \in \mathbb{J}} \), we denote by \(T_\Lambda : \bigoplus_{j \in \mathbb{J}} H_j \to H \), \(T_\Lambda^* \) and \(S \) the the synthesis operator, analysis operator and frame operator of \(\{\Lambda_j\}_{j \in \mathbb{J}} \), respectively, which are defined as follows
\[
T_\Lambda(x_j)_{j \in \mathbb{J}} = \sum_{j \in \mathbb{J}} \Lambda_j^*x_j, \quad Sx = \sum_{j \in \mathbb{J}} \Lambda_j^*\Lambda_jx.
\]

The following proposition is a characterization of g-Bessel sequences.

Proposition 1.1 (\cite{19}). For a sequence \(\{\Lambda_j \in B(H, H_j) : j \in \mathbb{J}\} \), the following statements are equivalent:

(i) \(\{\Lambda_j\}_{j \in \mathbb{J}} \) is a g-Bessel sequence for \(H \) with respect to \(\{H_j\}_{j \in \mathbb{J}} \);

(ii) The operator
\[
T : (\{x_j\}_{j \in \mathbb{J}}) \mapsto \sum_{j \in \mathbb{J}} \Lambda_j^*x_j,
\]
is well-defined and bounded from \(\bigoplus_{j \in \mathbb{J}} H_j \) to \(H \).
Also it is well known that if \(\{\Lambda_j\}_{j \in J} \) is a g-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with bounds \(A \) and \(B \), then the g-frame operator \(S \) is an invertible bounded self-adjoint operator which satisfies
\[
A\|x\|^2 \leq \langle Sx, x \rangle \leq B\|f\|^2,
\]
and
\[
B^{-1}\|x\|^2 \leq \langle S^{-1}x, x \rangle \leq A^{-1}\|x\|^2,
\]
for all \(x \in H \).

Definition 1.2 ([4, 27]). A sequence \(\{\Lambda_j \in B(H, H_j) : j \in J\} \) is said to be a generalized atomic system (or simply g-atomic system) for the operator \(K \in B(H) \) if
\begin{enumerate}[(i)]

 \item for every \(\{x_j\}_{j \in J} \in \bigoplus_{j \in J} H_j \), \(\sum_{j \in J} \Lambda_j^* x_j \) converges in \(H \),

 \item there exists \(C > 0 \) such that for all \(x \in H \), there is a sequence \(a_x = \{a_j\}_{j \in J} \in \bigoplus_{j \in J} H_j \), for which
\[
Kx = \sum_{j \in J} \Lambda_j^* a_j \quad \text{and} \quad \|a_x\| = \left(\sum_{j \in J} \|a_j\|^2 \right)^{1/2} \leq C\|x\|.
\end{enumerate}

Definition 1.3 ([4, 27]). Suppose that \(K \in B(H) \). A sequence \(\{\Lambda_j \in B(H, H_j) : j \in J\} \) is said to be a generalized \(K \)-frame (or g-\(K \)-frame) for \(H \) with respect to \(\{H_j : j \in J\} \) if there are two positive constants \(A, B \) such that
\[
A\|K^* x\| \leq \sum_{j \in J} \|\Lambda_j x\|^2 \leq B\|x\|^2, \quad (x \in H).
\]

The following result in operator theory has an important role in our discussion.

Theorem 1.4 ([11]). Let \(H, H_1 \) and \(H_2 \) be Hilbert spaces and \(L_1 \in B(H_1, H), \) \(L_2 \in B(H_2, H) \). The following statements are equivalent:
\begin{enumerate}[(i)]

 \item \(R(L_1) \subseteq R(L_2) \);

 \item \(L_1 L_1^* \leq \lambda L_2 L_2^* \), for some \(\lambda \geq 0 \);

 \item there exists a bounded operator \(T \in B(H_1, H_2) \) such that \(L_1 = L_2 T \).
\end{enumerate}

Throughout the paper \(H, F \) and \(H_j \) for any \(j \in J \) are separable Hilbert spaces.

2. G-\(K \)-FRAMES AND G-ATOMIC SYSTEMS

First we give the following definition that a generalized atomic system in \([4, 27]\) is the special case of g-atomic systems.
Definition 2.1. Let $K \in B(H)$. A bounded linear operator $\Xi : H \to F$ is called a generalized atomic system (or g-atomic system) for $K \in B(H)$ with respect to F if there exists $C > 0$ such that for all $x \in H$, there is $a_x \in F$ such that

$$Kx = \Xi^*a_x \quad \text{and} \quad \|a_x\| \leq C\|x\|.$$

Theorem 2.2. Let $K \in B(H)$. Then there exists a g-atomic system for $K \in B(H)$ with respect to F.

Proof. Define $\Xi : H \to F$ by $\Xi(e_j) = \delta_j$ for all $j \in J$, where $\{e_j\}_{j \in J}$ and $\{\delta_j\}_{j \in J}$ are orthonormal bases for H and F, respectively. Then we have $\Xi \in B(H, F)$ and $\Xi^*\Xi Kx = Kx$. Therefore Ξ is a g-atomic system for $K \in B(H)$ with respect to F. Note that $\|a_x\| := \|\Xi Kx\| \leq \|\Xi\|\|K\|\|x\|$. □

Now we give a new definition of generalized K-frames.

Definition 2.3. A bounded linear operator Ξ from H to F is called a generalized K-frame (or g-K-frame) for H with respect to F if there are two positive constants A, B such that

$$A\|K^*x\|^2 \leq \|\Xi x\|^2 \leq B\|x\|^2, \quad (x \in H).$$

Now we have the following characterization of g-atomic systems.

Theorem 2.4. Let $K \in B(H)$ and Ξ be a bounded linear operator from H to F. Then the following statements are equivalent:

(i) $\Xi : H \to F$ is a g-atomic system for $K \in B(H)$ with respect to F;

(ii) $\Xi : H \to F$ is a g-K-frame for H with respect to F;

(iii) An operator $\Xi : H \to F$ is bounded and there exists another bounded operator $Q : H \to F$ such that $K = \Xi^*Q$;

(iv) ΞL is a g-atomic system for L^*K, where L is surjective on H;

(v) An operator $\Xi : H \to F$ is bounded, linear and there exists another bounded operator $Q : H \to F$ such that $K^* = Q^*\Xi$;

(vi) An operator $\Xi : H \to F$ is bounded, linear and $R(K) \subseteq R(\Xi^*)$.

Proof. Assume that $K \in B(H)$ and Ξ is the bounded linear operator from H to F.

(i) \Rightarrow (ii) For any $x \in H$ we have

$$\|K^*(x)\| = \sup_{\|y\| = 1} |\langle K^*x, y \rangle|$$

$$= \sup_{\|y\| = 1} |\langle x, Ky \rangle|,$$
by definition of g-atomic system for $K \in B(H)$ with respect to F, there exists $C > 0$ such that for any $y \in H$, there is $a_y \in F$, for which $||a_y|| \leq C||y||$ and $Ky = T^*a_y$. Thus

$$||K^*x|| = \sup_{||y||=1} |\langle x, \Xi^*a_y \rangle|$$

$$= \sup_{||y||=1} |\langle \Xi x, a_y \rangle|$$

$$\leq \sup_{||y||=1} ||\Xi x|| \ ||a_y||$$

$$\leq \sup_{||y||=1} C||\Xi x||.$$

Hence

$$\frac{1}{C^2} ||K^*x||^2 \leq ||\Xi x||^2,$$

which implies that (ii) is holds.

(ii) \Rightarrow (iii) By Theorem 1.4 there exists a bounded operator $Q : H \to F$ such that $K = \Xi^*Q$.

(iii) \Rightarrow (i) Take $a_x := Qx$, for every $x \in H$.

(iv) \Rightarrow (i) Let $\Xi L : H \to F$ be a g-atomic system for L^*K, then for all $x \in H$, there exists $b_x \in F$ such that $L^*K = (\Xi L)^*b_x = L^*\Xi^*b_x$ so $L^*(Kx - \Xi^*b_x) = 0$. Due to injectivity of L^*, we have $Kx = \Xi^*b_x$. Therefore Ξ is a g-atomic system for $K \in B(H)$ with respect to F. [i) \Rightarrow (iv)] Let Ξ be a g-atomic system for $K \in B(H)$ with respect to F as in Definition 2.11, then $Kx = \Xi a_x$ and $L^*K = L^*\Xi^*a_x = (\Xi L)^*a_x$, it means that ΞL is a g-atomic system for L^*K.

(iii) \Leftrightarrow (v) It is obvious.

(v) \Leftrightarrow (vi) It follows from Theorem 4.1.

\[\square \]

In view of Theorem 2.4, suppose that $F = \bigoplus_{j \in J} H_j$ and consider an operator $\Lambda_j : H \to H_j$ by $x \mapsto \Lambda_j x$, for all $j \in J$. Now, define $\Xi : H \to \bigoplus_{j \in J} H_j$ by $\Xi(x) = \{\Lambda_j x\}_{j \in J}$. Then we have the following corollary generalized [3, Theorem 2.5] and [27, Theorem 3.8].

Corollary 2.5. For $\{\Lambda_j \in B(H, H_j) : j \in J\}$, the following statements are equivalent:

(i) $\{\Lambda_j\}_{j \in J}$ is a g-atomic system for $K \in B(H)$ with respect to $\{H_j\}_{j \in J}$;

(ii) $\{\Lambda_j\}_{j \in J}$ is a g-K-frame for H with respect to $\{H_j\}_{j \in J}$;
(iii) \(\{ \Lambda_j \}_{j \in \mathbb{J}} \) is a \(g \)-Bessel sequence and there exists another \(g \)-Bessel sequence \(\{ \Delta_j \}_{j \in \mathbb{J}} \) such that for all \(x \in H \),

\[
K(x) = \sum_{j \in \mathbb{J}} \Lambda_j^* \Delta_j(x);
\]

(2.1)

(iv) \(\{ \Lambda_j L \}_{j \in \mathbb{J}} \) is a \(g \)-atomic system for \(L^* K \), where \(L \) is surjective on \(H \);

(v) \(\{ \Lambda_j \}_{j \in \mathbb{J}} \) is a \(g \)-Bessel sequence and there exists another \(\Delta_j \) Bessel sequence \(\{ \Delta_j \}_{j \in \mathbb{J}} \) such that

\[
K^*(x) = \sum_{j \in \mathbb{J}} \Delta_j^* \Lambda_j(x);
\]

(vi) \(\{ \Lambda_j \}_{j \in \mathbb{J}} \) is a \(g \)-Bessel sequence and \(R(K) \subseteq R(T) \), where \(T \) is the synthesis operator of \(\{ \Lambda_j \}_{j \in \mathbb{J}} \).

Also with the notations of the previous corollary, the following characterization of \(g \)-atomic systems is valid.

Theorem 2.6. \(\{ \Lambda_j \}_{j \in \mathbb{J}} \) is a \(g \)-null frame for \(H \) with respect to \(\{ H_j \}_{j \in \mathbb{J}} \) if and only if there exist \(A, B > 0 \) such that

\[
A K K^* \leq \sum_{j \in \mathbb{J}} \Lambda_j^* \Lambda_j \leq B I,
\]

where \(I \) is the identity operator on \(H \). Moreover, in this case

\[
\| K \| \leq \sqrt{\frac{B}{A}}.
\]

Proof. Since \(\{ \Lambda_j \}_{j \in \mathbb{J}} \) is a \(g \)-null frame for \(H \) with respect to \(\{ H_j \}_{j \in \mathbb{J}} \) then for any \(x \in H \) we have

\[
A \| K x \| ^2 \leq \sum_{j=1}^{\infty} \langle \Lambda_j x, \Lambda_j x \rangle
\]

\[
= \left\langle \sum_{j=1}^{\infty} \Lambda_j^* \Lambda_j x, x \right\rangle
\]

\[
\leq B \| x \|^2,
\]

which is equivalent to

\[
\langle A K K^* x, x \rangle \leq \left\langle \sum_{j=1}^{\infty} \Lambda_j^* \Lambda_j x, x \right\rangle \leq \langle B x, x \rangle, \quad (x \in H).
\]
This proves the first part. Furthermore $AKK^* \leq BI$ implies that $A\|K\|^2 \leq B$ and so

$$\|K\| \leq \sqrt{\frac{B}{A}}.$$

The following equivalent conditions for the sequence $\{\Lambda_j\}_{j \in J}$ to be a g-K-frame for H with respect to $\{H_j\}_{j \in J}$ may be useful which can be proved by Theorem 1.4 and the Theorem 2.6.

Proposition 2.7. For a sequence $\{\Lambda_j \in B(H, H_j) : j \in J\}$, the following statements are equivalent:

(i) $\{\Lambda_j\}_{j \in J}$ is a g-K-frame for H with respect to $\{H_j\}_{j \in J}$;

(ii) The operator

$$T : (\{x_j\}_{j \in J}) \mapsto \sum_{j \in J} \Lambda_j^* x_j,$$

is well-defined and bounded from $\bigoplus_{j \in J} H_j$ to H and $R(K) \subseteq R(T)$;

(iii) The operator

$$S : x \mapsto \sum_{j \in J} \Lambda_j^* \Lambda_j x,$$

is well-defined and bounded from H to H and there exists $A > 0$ such that $AKK^* \leq S$.

Let $\{e_{j,k} : k \in K_j\}$ be an orthonormal basis for H_j. For $j \in J$ and $k \in K_j$, define $F_{j,k} := (0, 0, \ldots, e_{j,k}, 0, \ldots)$. Then $\{F_{j,k} : j \in J, k \in K_j\}$ is an orthonormal basis for $\bigoplus_{j \in J} H_j$.

With these notations we state now another characterization of g-K-frames as follows.

Theorem 2.8. $\{\Lambda_j\}_{j \in J}$ is a g-K-frame for H with respect to $\{H_j\}_{j \in J}$ if and only if there exists a bounded linear operator $\Theta : \bigoplus_{j \in J} H_j \to H$ such that for any $i \in J$ and $k \in K_i$,

$$\langle x, \Theta(F_{i,k}) \rangle = \langle \{\Lambda_j x\}_{j \in J}, F_{i,k} \rangle,$$

and $R(K) \subset R(\Theta)$.

Proof. $\{\Lambda_j\}_{j \in J}$ is a g-K-frame for H with respect to $\{H_j\}_{j \in J}$, so for some $A, B > 0$,

$$A\|K^* x\|^2 \leq \sum_{j=1}^{\infty} \langle \Lambda_j x, \Lambda_j x \rangle \leq B\|x\|^2, \quad (x \in H).$$
Let $T : H \to \bigoplus_{j \in \mathbb{J}} H_j$ be defined by $T(x) = \{\Lambda_j x\}_{j \in \mathbb{J}}$. Trivially T is a bounded linear operator and

$$\langle x, T^* F_{i,k} \rangle = \langle Tx, F_{i,k} \rangle = \langle \{\Lambda_j x\}_{j \in \mathbb{J}}, F_{i,k} \rangle, \quad i \in \mathbb{J}, k \in \mathbb{K}_i.$$

Now (2.2) implies that

$$A \|K^* x\|^2 \leq \|T(x)\|^2.$$

Hence $AKK^* \leq \Theta \Theta^*$, where $\Theta = T^*$. Therefore by Theorem 2.8, $R(K) \subset R(\Theta)$.

Conversely, let $\langle x, \Theta(F_{i,k}) \rangle = \langle \{\Lambda_j x\}_{j \in \mathbb{J}}, F_{i,k} \rangle$, $i \in \mathbb{J}$ and $k \in \mathbb{K}_i$, where $\Theta \in B(\bigoplus_{j \in \mathbb{J}} H_j, H)$ and $R(K) \subset R(\Theta)$. We have $\Theta^*(x) = \{\Lambda_j x\}_{j \in \mathbb{J}}$. Indeed,

$$\langle \{\Lambda_j x\}_{j \in \mathbb{J}}, F_{i,k} \rangle = \langle x, \Theta(F_{i,k}) \rangle = \langle \Theta^* x, F_{i,k} \rangle, \quad i \in \mathbb{J}, k \in \mathbb{K}_i.$$

Obviously $\{\Lambda_j\}_{j \in \mathbb{J}}$ is a g-Bessel sequence, since

$$\sum_{j=1}^{\infty} \langle \Lambda_j x, \Lambda_j x \rangle = \|\Theta^* x\|^2 \leq \|\Theta^*\|^2 \|x\|^2, \quad (x \in H).$$

Also $R(K) \subset R(\Theta)$ and Theorem 2.8 imply that there exists $B > 0$ such that $BK^* \leq \Theta \Theta^*$. Therefore

$$B \|K^* x\|^2 \leq \|\Theta^* x\|^2 = \sum_{j=1}^{\infty} \langle \Lambda_j x, \Lambda_j x \rangle, \quad (x \in H).$$

Recall that if X and Y are two Banach spaces and $Q \in B(X,Y)$, then Q^+ is said to be the pseudo-inverse of Q if $QQ^+Q = Q$. In particular, for any $y \in R(Q)$, $QQ^+y = y$. For more details one can see [20]. An important difference of ordinary g-frames with g-K-frames is the fact that with the notations of Corollary 2.8, $\{\Lambda_j\}_{j \in \mathbb{J}}$ and $\{\Delta_j\}_{j \in \mathbb{J}}$ are not interchangeable for any $x \in R(K)$, in general. One may see Example 3.2. of [20] for details.

We are going to show that there exists another type such that $\{\Lambda_j\}_{j \in \mathbb{J}}$ and a sequence derived by $\{\Delta_j\}_{j \in \mathbb{J}}$ are interchangeable in $R(K)$.

Theorem 2.9. Let $\{\Lambda_j\}_{j \in \mathbb{J}}$ and $\{\Delta_j\}_{j \in \mathbb{J}}$ are as in Corollary 2.8. If the range of $K \in B(H)$ is closed and K^+ is the pseudo-inverse of K, then there exists a sequence of operators $\{\Omega_j\}_{j \in \mathbb{J}} = \{\Delta_j K^+ |_{R(K)}\}_{j \in \mathbb{J}}$ derived by $\{\Delta_j\}_{j \in \mathbb{J}}$ such that

$$x = \sum_{j=1}^{\infty} \Omega_j^* \Lambda_j x, \quad (x \in R(K)).$$
and

\[x = \sum_{j=1}^{\infty} \Lambda_j^* \Omega_j x, \quad (x \in R(K)). \]

Proof. Existence of \(K^+ \) is guaranteed by the fact that the range of \(K \) is closed. By (2.1), for any \(x \in R(K) \) we have

\[\langle x, x \rangle = \langle KK^+ x, x \rangle \]

\[= \left(\sum_{j=1}^{\infty} \Lambda_j^* \Delta_j^* K^+ |_{R(K)} x, x \right) \]

\[= \langle x, \sum_{j=1}^{\infty} (K^+ |_{R(K)})^* \Delta_j^* \Lambda_j x \rangle \]

\[= \langle x, \sum_{j=1}^{\infty} \Omega_j^* \Lambda_j x \rangle. \]

So

\[x = \sum_{j=1}^{\infty} \Omega_j^* \Lambda_j x, \]

for all \(x \in R(K) \). Now define an operator \(L : H \to H \) by

\[Lx = \sum_{j=1}^{\infty} \Lambda_j^* \Omega_j x. \]

Let the upper bounds of \(\{ \Omega_j \}_{j \in \mathbb{J}}, \{ \Lambda_j \}_{j \in \mathbb{J}} \) are \(B \) and \(C \), respectively, then

\[\|L\| = \sup_{\|x\|=1} |\langle Lx, x \rangle| \]

\[\leq \sup_{\|x\|=1} \left(\sum_{j \in \mathbb{J}} \| \Omega_j x \|^2 \right)^{\frac{1}{2}} \left(\sum_{j \in \mathbb{J}} \| \Lambda_j x \|^2 \right)^{\frac{1}{2}} \]

\[\leq \sqrt{BC}. \]

So \(L \in B(H) \). For \(x, y \in H \), we have

\[\langle Lx, y \rangle = \left(\sum_{j=1}^{\infty} \Lambda_j^* \Omega_j x, y \right) \]

\[= \sum_{j=1}^{\infty} \langle \Omega_j x, \Lambda_j y \rangle \]
and
\[
\langle x, y \rangle = \langle x, \sum_{j=1}^{\infty} \Omega_j^* \Lambda_j y \rangle = \sum_{j=1}^{\infty} \langle \Omega_j x, \Lambda_j y \rangle.
\]

So \(\langle Lx, y \rangle = \langle x, y \rangle \), for all \(x, y \in H \), which implies that \(L = I_{R(K)} \). This completes the proof. \(\square \)

Let \(\{\Omega_j\}_{j \in J} \) and \(\{\Lambda_j\}_{j \in J} \) be as in Theorem 2.8. Then it is obvious that (2.3) or (2.4) hold if and only if \(T_\Omega^* T_{\Lambda} = I_{R(K)} \), where \(T_\Lambda^* \) and \(T_\Omega^* \) are the analysis operators for \(\{\Lambda_j\}_{j \in J} \) and \(\{\Omega_j\}_{j \in J} \), respectively.

Corollary 2.10. If \(\{\Omega_j\}_{j \in J} \) and \(\{\Lambda_j\}_{j \in J} \) are \(g \)-\(K \)-frames for \(H \) with respect to \(\{H_j\}_{j \in J} \) and \(T_\Lambda^* \) and \(T_\Omega^* \) are analysis operator for \(\{\Lambda_j\}_{j \in J} \) and \(\{\Omega_j\}_{j \in J} \), respectively, then \(R(\Omega_j) \perp R(\Lambda_j) \) for all \(j \in J \) if and only if \(R(T_\Omega^*) \perp R(T_\Lambda^*) \).

3. Some more properties of \(g \)-\(K \)-frames

In this section, first using a \(g \)-atomic system and some elements of \(B(H) \), we are going to construct new \(g \)-atomic systems.

Proposition 3.1. Let \(K, L \in B(H) \) and \(\{\Lambda_j\}_{j \in J} \) be a \(g \)-\(K \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with the frame bounds \(A, B \).

(i) If \(T : H \to H \) is an isometry such that \(K^* T = TK^* \), then \(\{\Lambda_j T^* \}_{j \in J} \) is a \(g \)-\(K \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with the same frame bounds.

(ii) \(\{\Lambda_j L^* \}_{j \in J} \) is a \(g \)-\(L^* K \)-frame with the frame bounds \(A \) and \(B \|L\|^2 \), respectively.

(iii) For any \(n \in \mathbb{N} \), \(\{\Lambda_j (L^*)^n \}_{j \in J} \) is a \(g \)-\(L^n K \)-frame.

(iv) If \(\{\Lambda_j\}_{j \in J} \) is a \(g \)-\(K \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) and \(R(L) \subseteq R(K) \), then \(\{\Lambda_j\}_{j \in J} \) is also a \(g \)-\(L \)-frame.

Proof. Since \(\{\Lambda_j\}_{j \in J} \) is a \(g \)-\(K \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with the frame bounds \(A, B > 0 \), so
\[
A \|K^* x\|^2 \leq \sum_{j \in J} \langle \Lambda_j x, \Lambda_j x \rangle \leq B \|x\|^2, \quad (x \in H).
\]

Hence for any \(x \in H \)
\[
\sum_{j \in J} \|\Lambda_j T x\|^2 \leq B \|T x\|^2 = B \|x\|^2.
\]
On the other hand for all $x \in H$ we have

$$\sum_{j=1}^{\infty} \|A_j Tx\|^2 \geq A\|K^* Tx\|^2$$

$$= A\langle K^* Tx, K^* Tx \rangle$$

$$= A\langle TK^* x, TK^* x \rangle$$

$$= A\langle K^* x, K^* x \rangle$$

$$= A\|K^* x\|^2,$$

which proves (i).

For proving (ii), one may see that for any $x \in H$,

$$A\|(LK)^* x\|^2 = A\|K^* L^* x\|^2$$

$$\leq \sum_{j=1}^{\infty} \|A_j L^* x\|^2$$

$$\leq B\|L^* x\|^2$$

$$\leq B\|L\|^2\|x\|^2.$$

(iii) is trivial by applying (ii).

For proving (iv), if A and B are the g-K-frame bounds of $\{A_j\}_{j \in J}$ then by the fact that $R(L) \subseteq R(K)$ and Theorem 1.4, there exists $\lambda > 0$ such that for any $x \in H$, $\|L^* x\|^2 \leq \lambda\|K^* x\|^2$ and

$$\frac{A}{\lambda}\|L^* x\|^2 \leq A\|K^* x\|^2$$

$$\leq \sum_{j \in J} \|A_j x\|^2$$

$$\leq B\|x\|^2.$$

□

As a corollary of (iv) one can easily see that every g-frame is indeed a g-K-frame, for any $K \in B(H)$.

Proposition 3.2. Let $K \in B(H)$ and $\{A_j\}_{j \in J}$ be a g-frame for H with respect to $\{H_j\}_{j \in J}$ with the frame bounds A, B, then $\{A_j K^*\}_{j \in J}$ is a g-K-frame for H with respect to $\{H_j\}_{j \in J}$ with the frame bounds $A, B\|K\|^2$.

The frame operator of $\{A_j K^*\}_{j \in J}$ is $S' = KSK^*$, where S is the frame operator of $\{A_j\}_{j \in J}$.
Proof. Since \(\{\Lambda_j\}_{j \in J} \) is a g-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \), for any \(x \in H \) we have
\[
A \|K^*x\|^2 \leq \sum_{j \in J} \|\Lambda_j K^*x\|^2 \\
\leq B \|K^*x\|^2 \\
\leq B \|K\|^2 \|x\|^2.
\]
But by definition of \(S \)
\[
SK^*x = \sum_{j \in J} \Lambda_j^* \Lambda_j K^*x.
\]
Thus
\[
KSK^*x = \sum_{j \in J} K \Lambda_j^* \Lambda_j K^*x \\
= \sum_{j \in J} (\Lambda_j K^*)^* (\Lambda_j K^*)x.
\]
Hence \(S' = KSK^* \).

Corollary 3.3. Let \(K \in B(H) \) and \(\{\Lambda_j\}_{j \in J} \) be a g-orthonormal basis, then \(\{\Lambda_j K^*\}_{j \in J} \) is a g-K-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \).

Proposition 3.4. Suppose that \(K \in B(H) \) and \(\{\Lambda_j\}_{j \in J} \) is a g-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \), then \(\{\Lambda_j S^{-1} K\}_{j \in J} \) is a g-K-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \), with the frame operator \(S' = K^* S^{-1} K \), where \(S \) is the frame operator of \(\{\Lambda_j\}_{j \in J} \).

Proof. By Corollary 2.5, it is enough to show that \(\{\Lambda_j S^{-1} K\}_{j \in J} \) is a g-atomic system. If \(S \) is the frame operator of \(\{\Lambda_j S^{-1} K\}_{j \in J} \), then it is well-known that
\[
x = \sum_{j \in J} \alpha_j^* \alpha_j S^{-1} x,
\]
for all \(x \in H \). Thus
\[
Kx = \sum_{j \in J} \alpha_j^* \alpha_j S^{-1} Kx, \quad (x \in H).
\]
Trivially \(\{\Lambda_j S^{-1} K\}_{j \in J} \) is a g-Bessel sequence, since for \(x \in H \),
\[
\sum_{j \in J} \| \Lambda_j S^{-1} K x \|^2 \leq B \| S^{-1} K x \|^2 \\
\leq B \| S^{-1} \|^2 \| K \| \| x \|^2.
\]
Also
\[SS^{-1}Kx = \sum_{j \in J} \Lambda_j^* \Lambda_j S^{-1}Kx, \quad (x \in H), \]
and so
\[K^*S^{-1}SS^{-1}Kx = \sum_{j \in J} KS^{-1}\Lambda_j^* \Lambda_j S^{-1}Kx \]
\[= \sum_{j \in J} (\Lambda_j S^{-1}K)^* (\Lambda_j S^{-1}K)x, \]
which implies that \(S' = K^*S^{-1}K \). \hfill \Box

Corollary 3.5. If \(K \in B(H) \) and \(\{\Lambda_j\}_{j \in J} \) is a \(g \)-orthonormal basis, then \(\{\Lambda_j S^{-1}K\}_{j \in J} \) is a \(g \)-\(K \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \).

Proposition 3.6. If \(L \in B(H) \), \(R(K) \subset R(L^*) \) and \(\{\Lambda_j\}_{j \in J} \) is a \(g \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \), then \(\{\Lambda_j L\}_{j \in J} \) is a \(g \)-\(K \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) with the frame operator \(S' = L^*SL \), where \(S \) is the frame operator of \(\{\Lambda_j\}_{j \in J} \).

Proof. By the facts that \(\{\Lambda_j\}_{j \in J} \) is a \(g \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \) and \(R(K) \subset R(L^*) \), we may find positive real numbers \(A, B > 0 \) such that
\[A\|K^*x\|^2 \leq A\|Lx\|^2 \leq \sum_{j \in J} \|\Lambda_j Lx\|^2 \leq B\|Lx\|^2 \leq B\|L\|^2\|x\|^2, \quad (x \in H). \]

The proof of \(S' = L^*SL \) is similar to the proof of (3.1). \hfill \Box

If \(\{\Lambda_j\}_{j \in J} \) is a \(g \)-\(K_1 \)-frame, \(\{\Omega_j\}_{j \in J} \) is a \(g \)-\(K_2 \)-frame and \(R(K_1) \subset R(K_2) \), then applying Theorem 1.4 one may easily see that \(\{\Omega_j\}_{j \in J} \) is a \(g \)-\(K_1 \)-frame.

4. Some perturbation results

In this section, a perturbation result for generalized atomic systems is investigated. A version of the following theorem for Hilbert \(C^* \)-modules can be seen in [25].

Theorem 4.1. Assume that \(K \in B(H) \). Let \(\{\Lambda_j\}_{j \in J} \) be a \(g \)-\(K \)-frame for \(H \) with respect to \(\{H_j\}_{j \in J} \), with \(g \)-\(K \)-frame bounds \(A, B > 0 \). If there exists a constant \(M > 0 \), such that
\[\sum_{j \in J} \|(\Lambda_j - \Theta_j)f\|^2 \leq M \min \left(\sum_{j \in J} \|\Lambda_j f\|^2, \sum_{j \in J} \|\Theta_j f\|^2 \right), \quad (4.1) \]
for any $f \in H$, then $\{\Theta_j\}_{j \in J}$ is a g-K-frame for H with respect to $\{H_j\}_{j \in J}$. The converse is valid for any $f \in R(K)$, when $R(K)$ is closed.

Proof. First suppose that (4.1) is valid. For any $f \in H$, we have

$$\left(\sum_{j \in J} \|\Lambda_j f\|^2 \right)^{\frac{1}{2}} = \|\{\Lambda_j f\}_{j \in J}\|
\leq \|(\Lambda_j - \Theta_j)f\|_{j \in J} + \|\Theta_j f\|_{j \in J}\|
\leq (\sqrt{M} + 1) \|\Theta_j f\|_{j \in J},$$

which implies that

$$\sum_{j \in J} \|\Lambda_j f\|^2 \leq (\sqrt{M} + 1)^2 \sum_{j \in J} \|\Theta_j f\|^2.$$

So for any $f \in H$

$$\sum_{j \in J} \|\Theta_j f\|^2 \geq \frac{1}{(\sqrt{M} + 1)^2} \sum_{j \in J} \|\Lambda_j f\|^2
\geq \frac{A}{(\sqrt{M} + 1)^2} \|K^* f\|^2.$$ \hfill (4.2)

On the other hand

$$\left(\sum_{j \in J} \|\Theta_j f\|^2 \right)^{\frac{1}{2}} \leq \left(\sum_{j \in J} \|\Lambda_j f - \Theta_j f\|^2 \right)^{\frac{1}{2}} \leq \sqrt{M} \left(\sum_{j \in J} \|\Lambda_j f\|^2 \right)^{\frac{1}{2}}
\leq (\sqrt{M} + 1) \left(\sum_{j \in J} \|\Lambda_j f\|^2 \right)^{\frac{1}{2}}
\leq \sqrt{B}(1 + \sqrt{M}) \|f\|.$$

Combining (4.2) and (4.3), we conclude that $\{\Theta_j\}_{j \in J}$ is a g-L-frame for H with respect to $\{H_j\}_{j \in J}$ with g-K-frame bounds $A/E(\sqrt{M} + 1)^2$, $B(1 + \sqrt{M})^2$, respectively. For the converse, suppose that $\{\Theta_j\}_{j \in J}$ is a g-K-frame for H with respect to $\{H_j\}_{j \in J}$ with frame bounds C, D, respectively. Closeness of the range of $K \in B(H)$ implies that its pseudo-inverse K^+
exists, so \(I_{R(K)} = KK^+|_{R(K)} f \), where \(R(K) \) is the range of \(K \). Hence \(I_{R(K)}^* = (K^+|_{R(K)})^* K^* \). Thus for any \(f \in R(K) \),

\[
\left(\sum_{j \in J} \| (A_j - \Theta_j) f \|^2 \right)^{\frac{1}{2}} \leq \left(\sum_{j \in J} \| A_j f \|^2 \right)^{\frac{1}{2}} + \left(\sum_{j \in J} \| \Theta_j f \|^2 \right)^{\frac{1}{2}} \\
\leq \left(\sum_{j \in J} \| A_j f \|^2 \right)^{\frac{1}{2}} + \sqrt{B} \| f \| \\
= \left(\sum_{j \in J} \| A_j f \|^2 \right)^{\frac{1}{2}} + \sqrt{B} \| (K^+|_{R(K)})^* K^* f \| \\
\leq \left(\sum_{j \in J} \| A_j f \|^2 \right)^{\frac{1}{2}} + \sqrt{B} \| K^+|_{R(K)} \| \| K^* f \| \\
\leq \left(\sum_{j \in J} \| A_j f \|^2 \right)^{\frac{1}{2}} + \sqrt{B} \| K^+|_{R(K)} \| \left(\sum_{j \in J} \| A_j f \|^2 \right)^{\frac{1}{2}} \\
= \left(1 + \frac{\sqrt{B} \| K^+|_{R(K)} \|}{\sqrt{A}} \right) \left(\sum_{j \in J} \| A_j f \|^2 \right)^{\frac{1}{2}}.
\]

On the other hand for any \(f \in R(K) \) we have

\[
\left(\sum_{j \in J} \| (A_j - \Theta_j) f \|^2 \right)^{\frac{1}{2}} \leq \left(\sum_{j \in J} \| A_j f \|^2 \right)^{\frac{1}{2}} + \left(\sum_{j \in J} \| \Theta_j f \|^2 \right)^{\frac{1}{2}} \\
\leq \left(\sum_{j \in J} \| \Theta_j f \|^2 \right)^{\frac{1}{2}} + \sqrt{B} \| f \| \\
= \left(\sum_{j \in J} \| \Theta_j f \|^2 \right)^{\frac{1}{2}} + \sqrt{B} \| (K^+|_{R(K)})^* K^* f \| \\
\leq \left(\sum_{j \in J} \| \Theta_j f \|^2 \right)^{\frac{1}{2}} + \sqrt{B} \| K^+|_{R(K)} \| \| K^* f \|.
\]
Thus for any $f \in R(K)$,
\[
\left(\sum_{j \in J} \| (\Lambda_j - \Theta_j) f \|^2 \right)^{\frac{1}{2}} \leq \left(\sum_{j \in J} \| \Theta_j f \|^2 \right)^{\frac{1}{2}} + \sqrt{B} \| K^+ |_{R(K)} \| \| K^* f \|
\]
\[
\leq \left(\sum_{j \in J} \| \Theta_j f \|^2 \right)^{\frac{1}{2}} + \frac{\sqrt{B} \| K^+ |_{R(K)} \|}{\sqrt{C}} \left(\sum_{j \in J} \| \Theta_j f \|^2 \right)^{\frac{1}{2}}
\]
\[
= \left(1 + \frac{\sqrt{B} \| K^+ |_{R(K)} \|}{\sqrt{C}} \right) \left(\sum_{j \in J} \| \Theta_j f \|^2 \right)^{\frac{1}{2}}.
\]

Letting
\[
M = \min \left\{ \left(1 + \frac{\sqrt{D} \| K^+ |_{R(K)} \|}{\sqrt{A}} \right)^2, \left(1 + \frac{\sqrt{B} \| K^+ |_{R(K)} \|}{\sqrt{C}} \right)^2 \right\},
\]
one can see that (4.1) holds for any $f \in R(K)$. \qed

For $K = I$ we have the following result which is proved in [25] for Hilbert C^*-modules.

Corollary 4.2. Let $\{\Lambda_j\}_{j \in J}$ be a g-frame for H with respect to $\{H_j\}_{j \in J}$, with g-frame bounds $A, B > 0$. Let $\{\Theta_j \in B(H, H_j) : j \in J\}$. Then the following statements are equivalent:

(i) $\{\Theta_j\}_{j \in J}$ is a g-frame for H with respect to $\{H_j\}_{j \in J}$;

(ii) There exists a constant $M > 0$, such that for any $f \in H$, we have
\[
\sum_{j \in J} \| (\Lambda_j - \Theta_j) f \|^2 \leq M \min \left(\sum_{j \in J} \| \Lambda_j f \|^2, \sum_{j \in J} \| \Theta_j f \|^2 \right).
\]

5. **G-\(K\)-DUALS**

In this section the duals of g-\(K\)-frames are studied. First, we give a new definition of generalized dual frame that generalize some results of previous work (see [20]).

Definition 5.1. Let $K \in B(H)$ and $\Xi : H \to F$ be a bounded operator. A bounded operator $\Upsilon \in B(H, F)$ is called a generalized K-dual (or g-K-dual) of Ξ if $K = \Xi^\ast \Upsilon$.

In view of Definition 5.1, one can see that Ξ and Υ are g-atomic system for $K \in B(H)$ and $K^* \in B(H)$ with respect to F, respectively. It is obvious that Ξ and Υ are not interchangeable in general unless K is self adjoint. Let Ξ be a g-K-frame for H with respect to F. If
$K \in B(H)$ has closed range then it has a pseudo-inverse K^+ and by applying a similar process to [26], one may prove that

$$A\|K^+\|^2 \|x\| \leq \|\Xi^* \Xi x\| \leq B\|x\|, \quad (x \in H).$$

So $S : R(K) \to S(R(K))$ is a homeomorphism. Moreover

$$B^{-1}\|x\| \leq \|\Xi^* \Xi x\| \leq A^{-1}\|K^+\|^2 \|x\|, \quad (x \in S(R(K))).$$

Also $\Xi P(S^{-1})K$ is a g-K-dual of Ξ, where P is the orthogonal projection of H onto $S(R(K))$ and $S := \Xi^* \Xi$. Indeed,

$$\Xi^* \Xi P(S^{-1})K = SP(S^{-1})K = K.$$

This g-K-dual of Ξ, $\Xi P(S^{-1})K$, is denoted by Π.

Theorem 5.2. Let Ξ be a g-K-frame for H with respect to F with g-K-frame bounds A and B, respectively. Then there exists a one-to-one correspondence between g-K-duals of Ξ and operator $\Psi \in B(H,F)$ such that $\Xi^* \Psi = 0$.

Proof. Suppose that Φ is a g-K-dual of Ξ with the bounds A_1 and B_1, respectively. Define $\Psi : H \to F; x \mapsto \Psi x$ by

$$\Psi x = \Phi x - \Pi x.$$

Then Ψ is bounded by (5.1). Indeed,

$$\|\Psi x\|^2 = \|\Phi x - \Pi x\|^2 \leq \|\Phi x\|^2 + \|\Xi P(S^{-1})K x\|^2 + 2\|\Phi x\|\|\Xi P(S^{-1})K x\| \leq \left(B_1 + A^{-1}\|K^+\|^2\|K\|^2 + 2\sqrt{B_1 A^{-1}\|K^+\|^2\|K\|^2}\right)\|x\|^2.$$

Moreover,

$$\Xi^* \Psi x = \Xi^* \Phi x = \Xi^* \Phi x - \Xi^* \Pi x = K x - \Xi^* \Xi P(S^{-1})K x = K x - K x = 0.$$

Conversely, Let $\psi \in B(H,F)$ such that $\Xi \Psi = 0$. Set

$$\Phi x = \Pi x + \Psi x, \quad (x \in H),$$

Then Φ is a bounded operator. Moreover,

$$\Xi^* \Phi x = \Xi^* \Pi x + \Xi^* \Psi x = K x.$$

Therefore Φ is a g-K-dual of Ξ. \square

The following corollary in g-K-frame is a generalization of [3, Theorem 3.4].

Corollary 5.3. Let $\{\Lambda_j\}_{j \in J}$ be a g-K-frame for H with respect to $\{H_j\}_{j \in J}$. Then there exists a one-to-one correspondence between K-duals of $\{\Lambda_j\}_{j \in J}$ and operator $\psi \in B(H, \bigoplus_{j \in J} H_j)$ such that $T \psi = 0$, where T is the synthesis operator of $\{\Lambda_j\}_{j \in J}$.
Theorem 5.4. Let $K \in B(H)$. A bounded operator $\Xi : H \to F$ has a K-dual if and only if there exists a Bessel sequence $\{y_j\}_{j \in J}$ such that for every $x \in H$

$$Kx = \sum_{j \in J} \langle x, y_j \rangle x_j,$$

where $x_j := \Xi^*\delta_j$, $j \in J$, and $\{\delta_j\}_{j \in J}$ is an orthonormal basis for F.

Proof. It follows from Theorem 1.4, [17, Theorem 3] and the equality $\|\Xi x\|^2 = \sum_j |\langle x, x_j \rangle|^2$, for any $x \in H$. Indeed,

$$\|\Xi x\|^2 = \langle \Xi x, \Xi x \rangle = \left\langle \sum_j \langle \Xi x, \delta_j \rangle \delta_j, \Xi x \right\rangle = \sum_j \langle \Xi x, \delta_j \rangle \langle \delta_j, \Xi x \rangle = \sum_j \langle x, \Xi^*\delta_j \rangle \langle \Xi^*\delta_j, x \rangle = \sum_j |\langle x, x_j \rangle|^2.$$

□

References

1 Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, P.O. Box 1159-91775, Iran.

 E-mail address: bdastorian@gmail.com

2 Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, P.O. Box 1159-91775, Iran.

 E-mail address: janfada@um.ac.ir