• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Sahand Communications in Mathematical Analysis
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 13 (2019)
Volume Volume 12 (2018)
Volume Volume 11 (2018)
Volume Volume 10 (2018)
Volume Volume 09 (2018)
Volume Volume 08 (2017)
Volume Volume 07 (2017)
Volume Volume 06 (2017)
Issue Issue 1
Volume Volume 05 (2017)
Volume Volume 04 (2016)
Volume Volume 03 (2016)
Volume Volume 02 (2015)
Volume Volume 01 (2014)
Faraji, H., Nourouzi, K. (2017). A generalization of Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces. Sahand Communications in Mathematical Analysis, 06(1), 77-86. doi: 10.22130/scma.2017.23831
Hamid Faraji; Kourosh Nourouzi. "A generalization of Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces". Sahand Communications in Mathematical Analysis, 06, 1, 2017, 77-86. doi: 10.22130/scma.2017.23831
Faraji, H., Nourouzi, K. (2017). 'A generalization of Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces', Sahand Communications in Mathematical Analysis, 06(1), pp. 77-86. doi: 10.22130/scma.2017.23831
Faraji, H., Nourouzi, K. A generalization of Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces. Sahand Communications in Mathematical Analysis, 2017; 06(1): 77-86. doi: 10.22130/scma.2017.23831

A generalization of Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces

Article 7, Volume 06, Issue 1, Spring 2017, Page 77-86  XML PDF (87.08 K)
Document Type: Research Paper
DOI: 10.22130/scma.2017.23831
Authors
Hamid Faraji1; Kourosh Nourouzi email 2
1Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2Faculty of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran.
Abstract
In this paper, we give some results on the common fixed point of self-mappings defined on complete $b$-metric spaces. Our results generalize Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces. In particular, we show that two self-mappings satisfying a contraction type inequality have a unique common fixed point. We also give some examples to illustrate the given results.
Keywords
$b$-metric space; Common fixed point; Altering distance function
Main Subjects
Fixed point theory
References
[1] H. Alsulami, E. Karapınar, and H. Piri, Fixed points of generalized $F$-Suzuki type contraction in complete $b$-metric spaces, Discrete Dyn. Nat. Soc., (2015), Art. ID 969726, 8 pp.

[2] H. Aydi, M.F. Bota, E. Karapinar, and S. Moradi, A common fixed point for weak $phi$-contractions on $b$-metric spaces, Fixed Point Theory, 13 (2012), no. 2, 337-346.

[3] I.A. Bakhtin, The contraction mapping principle in almost metric space, Functional analysis, (Russian), Ulýanovsk. Gos. Ped. Inst., Ulýanovsk, (1989) 26-37.

[4] M.F. Bota and E. Karapinar, A note on "Some results on multi-valued weakly Jungck mappings in b-metric space", Cent. Eur. J. Math., 11 (2013), No. 9, 1711-1712.

[5] M.F. Bota, E. Karapinar, and O. Mlesnite, Ulam-Hyers stability results for fixed point problems via $alpha - psi$-contractive mapping in $b$-metric space, Abstr. Appl. Anal. (2013), Art. ID 825293, 6 pp.

[6] S.K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci., 25 (1972) 727-730.

[7] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostraviensis 1 (1993) 5-11.

[8] S. Czerwik, Nonlinear Set-valued contraction mappings in $b$-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998) 263-276.

[9] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968) 71-76.

[10] M.A. Khamsi and N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal., 73 (2010), no. 9, 3123-3129.

[11] M.S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), no. 1, 1-9.

[12] W. Kirk and N. Shahzad, Fixed point theory in distance spaces, Springer, Cham, 2014.

[13] M.A. Kutbi, E. Karapinar, J. Ahmad, and A. Azam, Some fixed point results for multi-valued mappings in $b$-metric spaces, J. Inequal. Appl. 2014, (2014:126), 11 pp.

[14] C.S. Wong, Common fixed points of two mappings, Pacific J. Math., 48 (1973) 299-312.

Statistics
Article View: 1,684
PDF Download: 1,028
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.