Frames in super Hilbert modules

Mehdi Rashidi-Kouchi

Abstract. In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.

1. Introduction

Super Hilbert spaces arose naturally as the state space of a quantum field in the functional Schrödinger representation of spinor quantum field theory and it provided a means to bring super symmetric quantum field theories into a form resembling standard quantum mechanics, the super Hilbert space has certain advantages compared with the Hilbert space in quantum mechanics [7, 9, 23, 25]. Balan [4] introduced the concept of super frames and presented some density results for Weyl-Heisenberg super frames. In [18], Han and Larson derived necessary and sufficient conditions for the direct sum of two frames to be a super frame. And in [13], Gu and Han investigated the connection between decomposable Parseval wavelet frames and super wavelet frames and gave some necessary and sufficient conditions for extendable Parseval wavelet frames. In [1, 19, 30] frames, g-frames and g-Riesz frames in super Hilbert spaces has been studied.

Frames for Hilbert spaces were first introduced in 1952 by Duffin and Schaeffer [8] for study of nonharmonic Fourier series. They were reintroduced and development in 1986 by Daubechies, Grossmann and Meyer.

2010 Mathematics Subject Classification. Primary 42C40; Secondary 41A58, 47A58.

Key words and phrases. Super Hilbert, Frame, G-Frame, Hilbert C*-module.

Received: 16 October 2016, Accepted: 22 November 2016.
and popularized from then on. Today frames have many applications in different subjects, for example in image and signal processing [2, 6] and coherent states [12-13].

Let H be a Hilbert space, and J be a finitely or countably index set. A sequence $\{f_j\}_{j \in J} \subseteq H$ is called a frame for H if there exist the constants $C, D > 0$ such that

$$C \|f\|^2 \leq \sum_{j \in J} |\langle f, f_j \rangle|^2 \leq D \|f\|^2;$$

for all $f \in H$. The constants C and D are called frame bounds. If $C = D$ we call this frame a tight frame and if $C = D = 1$ it is called a Parseval frame.

In [29], Sun introduced a generalization of frames and showed the other concepts of generalizations of frames can be presented by g-frames. Also, Sun proved that generalized frames have many properties of frames.

Let U and V be two Hilbert spaces and $\{V_j : j \in J\}$ be a sequence of subspaces of V, where J is a subset of \mathbb{Z}. $L(U,V_j)$ is the collection of all bounded linear operators from U into V_j. The sequence $\{\Lambda_j \in L(U,V_j) : j \in J\}$ is called to be a generalized frame, or simply a g-frame, for U with respect to $\{V_j : j \in J\}$ if there exist two positive constants C and D such that

$$C \|f\|^2 \leq \sum_{j \in J} \|\Lambda_j f\|^2 \leq D \|f\|^2;$$

for all $f \in U$. The constants C and D are called g-frame bounds. If $C = D$ we call this g-frame a tight g-frame and if $C = D = 1$ it is called a Parseval g-frame.

The notion of frames in Hilbert C^*-modules has been introduced and has been investigated in [11]. Frank and Larson [11, 13] defined the standard frames in Hilbert C^*-modules in finitely or countably generated Hilbert C^*-modules over unital C^*-algebras. The extended results of this more general framework are not a routine generalization, because there are essential differences between Hilbert C^*-modules and Hilbert spaces. For example, any closed subspace in a Hilbert space has an orthogonal complement, but this fails in Hilbert C^*-module. Also, there is no explicit analogue of the Riesz representation theorem of continuous functionals in Hilbert C^*-modules.

We refer the readers for more details on Hilbert C^*-modules and a discussion of basic properties of frames in Hilbert spaces and Hilbert C^*-modules and their generalizations to [3, 10, 24, 26-28].
Let \mathcal{H} be a Hilbert C^*-module, and J a set which is finite or countable. A sequence $\{f_j\}_{j \in J} \subseteq \mathcal{H}$ is called a frame for \mathcal{H} if there exist constants $C, D > 0$ such that

\[
C \langle f, f \rangle \leq \sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle \leq D \langle f, f \rangle,
\]

for all $f \in \mathcal{H}$. The constants C and D are called the frame bounds. Basic properties of frames in Hilbert C^*-modules are studied in [10, 16, 17, 22].

A. Khosravi and B. Khosravi [21] defined g-frames in Hilbert C^*-modules. Let U and V be two Hilbert C^*-modules over the same C^*-algebra A and $\{V_j : j \in J\}$ be a sequence of subspaces of V, where J is a subset of \mathbb{Z}. Let $\text{End}_A(U, V_j)$ be the collection of all adjointable A-linear maps from U into V_j, i.e. let T be an A-linear map from U into V_j, if $\langle Tf, g \rangle = \langle f, T^*g \rangle$ for all $f \in U$ and $g \in V_j$ then, it implies that $T \in \text{End}_A(U, V_j)$.

The sequence $\{\Lambda_j \in \text{End}_A(U, V_j) : j \in J\}$ is said to be a generalized frame (or simply a g-frame) for Hilbert C^*-module U with respect to $\{V_j : j \in J\}$ if there are two positive constants C and D such that

\[
C \langle f, f \rangle \leq \sum_{j \in J} \langle \Lambda_j f, \Lambda_j f \rangle \leq D \langle f, f \rangle,
\]

for all $f \in U$. The constants C and D are called g-frame bounds.

In this paper, we define super Hilbert modules that they are generalization of super Hilbert spaces in Hilbert C^*-module setting. Also we define frames in a super Hilbert module and characterize them by using g-frames in a Hilbert C^*-module. Moreover disjoint frames and complementary frames in Hilbert C^*-modules are introduced and are investigated.

2. Preliminaries

Hilbert C^*-modules form a wide category between Hilbert spaces and Banach spaces.

Definition 2.1. Let A be a C^*-algebra with involution \ast. An inner product A-module (or pre Hilbert A-module) is a complex linear space \mathcal{H} which is a left A-module with an A-valued inner product map $\langle \cdot, \cdot \rangle : \mathcal{H} \times \mathcal{H} \to A$ which satisfies the following properties:

(i) $\langle \alpha f + \beta g, h \rangle = \alpha \langle f, h \rangle + \beta \langle g, h \rangle$ for all $f, g, h \in \mathcal{H}$ and $\alpha, \beta \in \mathbb{C}$;

(ii) $\langle af, g \rangle = a \langle f, g \rangle$ for all $f, g \in \mathcal{H}$ and $a \in A$;

(iii) $\langle f, g \rangle = \langle g, f \rangle^\ast$ for all $f, g \in \mathcal{H}$;

(iv) $\langle f, f \rangle \geq 0$ for all $f \in \mathcal{H}$ and $\langle f, f \rangle = 0$ if and only if $f = 0$.

For $f \in \mathcal{H}$, we define a norm on \mathcal{H} by $\|f\|_\mathcal{H} = \|\langle f, f \rangle\|_A^{1/2}$. If \mathcal{H} is complete with this norm, it is called a (left) Hilbert C^*-module over A or a (left) Hilbert A-module.

An element a of a C^*-algebra A is positive if $a^* = a$ and its spectrum is a subset of positive real numbers. In this case, we write $a \geq 0$. By the property (4) of the above formula, $\langle f, f \rangle \geq 0$ for every $f \in \mathcal{H}$, hence we define the absolute value of f by $|f| = \langle f, f \rangle^{1/2}$.

For the frame $\{f_j : j \in J\}$ in a Hilbert A-module \mathcal{H}, the operator S defined by

$$Sf = \sum_{j \in J} \langle f, f_j \rangle f_j, \quad (f \in \mathcal{H}),$$

is called the frame operator. The frame operator S is invertible, positive, adjointable and self-adjoint. Since

$$\langle Sf, f \rangle = \left\langle \sum_{j \in J} \langle f, f_j \rangle f_j, f \right\rangle = \sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle, \quad (f \in \mathcal{H}),$$

it follows that

$$C \langle f, f \rangle \leq \langle Sf, f \rangle \leq D \langle f, f \rangle, \quad (f \in \mathcal{H}),$$

and the following reconstruction formula holds

$$f = SS^{-1}f = S^{-1}Sf = \sum_{j \in J} \langle S^{-1}f, f_j \rangle f_j = \sum_{j \in J} \langle f, S^{-1}f_j \rangle f_j,$$

for all $f \in \mathcal{H}$.

Let $\tilde{f}_j = S^{-1}f_j$, then

$$f = \sum_{j \in J} \langle f, \tilde{f}_j \rangle \tilde{f}_j = \sum_{j \in J} \langle f, f_j \rangle \tilde{f}_j,$$

for any $f \in \mathcal{H}$. The sequence $\{\tilde{f}_j : j \in J\}$ is also a frame for \mathcal{H} which is called the canonical dual frame of $\{f_j : j \in J\}$.

Like ordinary frames in Hilbert spaces, the notion of analysis and synthesis operators can be defined as follows:

Definition 2.2. Let $\{f_j\}_{j \in J}$ be a frame in Hilbert A-module \mathcal{H} over a unital C^*-algebra A, then the related analysis operator $U : \mathcal{H} \to \ell^2(A)$ is defined by

$$Uf = \{\langle f, f_j \rangle : j \in J\},$$

for all $f \in \mathcal{H}$. We define the synthesis operator $T : \ell^2(A) \to \mathcal{H}$ by

$$T(\{a_j\}) = \sum_{j \in J} a_j f_j,$$

for all $\{a_j\}_{j \in J} \in \ell^2(A)$.
For any \(g = \{g_j\}_{j \in J} \in \ell^2(A) \) and \(f \in \mathcal{H} \),
\[
\langle Uf, g \rangle = \langle \{\langle f, f_j \rangle\}, \{g_j\} \rangle \\
= \sum_{j \in J} \langle f, f_j \rangle g_j^* \\
= \sum_{j \in J} \langle f, g_j f_j \rangle \\
= \left\langle f, \sum_{j \in J} g_j f_j \right\rangle \\
= \langle f, Tg \rangle,
\]
it follows that \(U \) is adjointable and \(U^* = T \). Also
\[
U^*Uf = U^*(\langle f, f_j \rangle) = \sum_{j \in J} \langle f, f_j \rangle f_j = Sf,
\]
for all \(f \in \mathcal{H} \).

The following theorems characterize frames and Bessel sequences and frames in Hilbert \(A \)-modules.

Theorem 2.3 ([16]). A sequence \(\{f_j\}_{j \in J} \) in Hilbert \(A \)-module \(\mathcal{H} \) over an unital \(C^* \)-algebra \(A \) is a frame for \(\mathcal{H} \) if and only if the synthesis operator \(T \) is well defined and surjective.

Corollary 2.4 ([16]). A sequence \(\{f_j\}_{j \in J} \) in Hilbert \(A \)-module \(\mathcal{H} \) over an unital \(C^* \)-algebra \(A \) is a Bessel for \(\mathcal{H} \) if and only if the synthesis operator \(T \) is well defined and \(\|T\| \leq \sqrt{D} \).

The definition of super Hilbert space is given in [9] as following:

Definition 2.5. Super Hilbert space \(\mathcal{H} \) is a direct sum \(\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \) of two complex Hilbert spaces \((\mathcal{H}_0, \langle \cdot, \cdot \rangle_0), (\mathcal{H}_1, \langle \cdot, \cdot \rangle_1) \) equipped with the inner product \(\langle \langle \cdot, \cdot \rangle \rangle = \langle \cdot, \cdot \rangle_0 + \langle \cdot, \cdot \rangle_1 \).

It is easy to see that every super Hilbert space is a Hilbert space.

3. Main result

In this section, at first we define super Hilbert module that is a generalization of super Hilbert space in a Hilbert \(C^* \)-module setting. Then we investigate and characterize frames in super Hilbert modules.

Definition 3.1. Let \(\mathcal{H}_0 \) and \(\mathcal{H}_1 \) be two Hilbert \(A \)-modules with inner products \(\langle \cdot, \cdot \rangle_0 \) and \(\langle \cdot, \cdot \rangle_1 \) respectively. Super Hilbert module space \(\mathcal{H} \) is a direct sum \(\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_1 \) equipped with the inner product
\[
\langle \langle \cdot, \cdot \rangle \rangle = \langle \cdot, \cdot \rangle_0 + \langle \cdot, \cdot \rangle_1.
\]
Every direct sum of Hilbert C^*-modules is a Hilbert C^*-module [24]. Hence every super Hilbert module is a Hilbert C^*-module.

Definition 3.2. Let \mathcal{H} be a Hilbert A-module and $\{(\varphi_j, \psi_j) : j \in J\}$ be a sequence of elements of super Hilbert module $\mathcal{H} \oplus \mathcal{H}$ and Λ_j be defined by

$$\Lambda_j f = (\langle f, \varphi_j \rangle, \langle f, \psi_j \rangle), \quad \forall f \in \mathcal{H}.$$

If $\{\Lambda_j : j \in J\}$ is a g-frame for Hilbert A-module \mathcal{H} with respect to A^2, then we call it a g-frame associated with $\{(\varphi_j, \psi_j) : j \in J\}$.

The following lemma gives a necessary condition for $\{(\varphi_j, \psi_j) : j \in J\}$ to be a frame for super Hilbert module $\mathcal{H} \oplus \mathcal{H}$.

Lemma 3.3. Suppose that \mathcal{H} is a Hilbert C^*-module and that $\{(\varphi_j, \psi_j) : j \in J\}$ is a frame for super Hilbert module $\mathcal{H} \oplus \mathcal{H}$. Then both $\{\varphi_j : j \in J\}$ and $\{\psi_j : j \in J\}$ are frames for Hilbert C^*-module \mathcal{H}.

Proof. Since $\{\Phi_j = (\varphi_j, \psi_j) : j \in J\}$ is a frame for super Hilbert module $\mathcal{H} \oplus \mathcal{H}$, there exist constants $C, D > 0$ such that

$$C \langle \langle f, f \rangle \rangle \leq \sum_{j \in J} \langle \langle f, \Phi_j \rangle \rangle \langle \langle \Phi_j, f \rangle \rangle \leq D \langle \langle f, f \rangle \rangle,$$

for all $f = (f_1, f_2) \in \mathcal{H} \oplus \mathcal{H}$.

By the definition of the inner product in super Hilbert module, we would have

$$C \langle \langle f_1, f_1 \rangle \rangle + \langle \langle f_2, f_2 \rangle \rangle \leq \sum_{j \in J} \langle \langle f_1, \varphi_j \rangle \rangle + \langle \langle f_2, \psi_j \rangle \rangle \langle \langle \varphi_j, f_1 \rangle \rangle + \langle \langle \psi_j, f_2 \rangle \rangle \leq D \langle \langle f_1, f_1 \rangle \rangle + \langle \langle f_2, f_2 \rangle \rangle,$$

for all $f = (f_1, f_2) \in \mathcal{H} \oplus \mathcal{H}$. Substituting $f_2 = 0$ into the above inequality we obtain

$$C \langle \langle f_1, f_1 \rangle \rangle \leq \sum_{j \in J} \langle \langle f_1, \varphi_j \rangle \rangle \langle \langle \varphi_j, f_1 \rangle \rangle \leq D \langle \langle f_1, f_1 \rangle \rangle,$$

for all $f_1 \in \mathcal{H}$. This means $\{\varphi_j : j \in J\}$ is a frame for Hilbert C^*-module \mathcal{H}.

The same conclusion can be driven for $\{\psi_j : j \in J\}$ by letting $f_1 = 0$. \square

The following theorem gives a necessary condition for a frame in super Hilbert module $\mathcal{H} \oplus \mathcal{H}$ by using g-frames in Hilbert C^*-modules.

Theorem 3.4. Let \mathcal{H} be a Hilbert C^*-module and $\{(\varphi_j, \psi_j) : j \in J\}$ be a frame for super Hilbert module $\mathcal{H} \oplus \mathcal{H}$. Then $\{\Lambda_j : j \in J\}$ is a g-frame.
for Hilbert A-module with respect to A^2 associated with $\{(\varphi_j, \psi_j) : j \in J\}$.

Proof. By Lemma 6.3, both $\{\varphi_j : j \in J\}$ and $\{\psi_j : j \in J\}$ are frames for Hilbert C^*-module \mathcal{H}. Now by regard to this fact that

$$\langle \Lambda_j f, \Lambda_j f \rangle = \langle \langle f, \varphi_j \rangle, \langle f, \varphi_j \rangle \rangle + \langle \langle f, \psi_j \rangle, \langle f, \psi_j \rangle \rangle = \langle f, \varphi_j \rangle \langle f, \varphi_j \rangle + \langle f, \psi_j \rangle \langle f, \psi_j \rangle,$$

the operator sequence $\{\Lambda_j : j \in J\}$ is a g-frame for Hilbert A-module \mathcal{H} with respect to A^2 associated with $\{(\varphi_j, \psi_j) : j \in J\}$. \square

The following proposition is a generalization of a similar proposition in [30] for super Hilbert modules.

Proposition 3.5. Let $\{(\varphi_j, \psi_j) : j \in J\} \subseteq \mathcal{H} \bigoplus \mathcal{H}$ and

$$\Lambda_j f = ((f, \varphi_j), (f, \psi_j))^T,$$

for any $f \in \mathcal{H}$ and $j \in J$. Then $\{\Lambda_j : j \in J\}$ is a g-frame for Hilbert A-module \mathcal{H} with respect to A^2 associated with $\{(\varphi_j, \psi_j) : j \in J\}$ if and only if $\{\varphi_j : j \in J\} \bigcup \{\psi_j : j \in J\}$ is a frame for Hilbert A-module \mathcal{H}.

Proof. Since

$$\langle \Lambda_j f, \Lambda_j f \rangle = \langle f, \varphi_j \rangle \langle f, \varphi_j \rangle + \langle f, \psi_j \rangle \langle f, \psi_j \rangle,$$

we conclude $\{\Lambda_j : j \in J\}$ is a g-frame for Hilbert A-module \mathcal{H} with respect to A^2 associated with $\{(\varphi_j, \psi_j) : j \in J\}$ if and only if $\{\varphi_j : j \in J\} \bigcup \{\psi_j : j \in J\}$ is a frame for Hilbert A-module \mathcal{H}. \square

By the previous propositions, we get

Proposition 3.6. Suppose \mathcal{H} is a Hilbert A-module. Let $\{\varphi_j : j \in J\}$ and $\{\psi_j : j \in J\}$ be two frames for Hilbert A-module \mathcal{H} and $\{\Lambda_j : j \in J\}$ be a g-frames for Hilbert A-module \mathcal{H} with respect to A^2 where

$$\Lambda_j f = ((f, \varphi_j), (f, \psi_j))$$

for all $f \in \mathcal{H}$. Then the synthesis operator for $\{\Lambda_j : j \in J\}$ is the operator

$$T : \ell^2(A^2) \rightarrow \mathcal{H},$$

defined by

$$T(\{(a_j, b_j)\}_{j \in J}) = \sum_{j \in J} \Lambda_j^* (a_j, b_j) = \sum_{j \in J} (a_j \varphi_j + b_j \psi_j),$$

for all $\{(a_j, b_j)\}_{j \in J} \in \ell^2(A^2)$.
The analysis operator for \(\{ \Lambda_j : j \in J \} \) is the operator
\[
T^* : \mathcal{H} \rightarrow l^2(A^2),
\]
defined by
\[
T^* f = \{ \Lambda_j f \}_{j \in J} = \{ \langle (f, \varphi_j), (f, \psi_j) \rangle \}_{j \in J},
\]
for all \(f \in \mathcal{H} \).

Also the g-frame operator for \(\{ \Lambda_j : j \in J \} \) is the operator
\[
S_{\Lambda} : \mathcal{H} \rightarrow \mathcal{H},
\]
defined by
\[
S_{\Lambda} f = T T^* f = \sum_{j \in J} (\langle f, \varphi_j \rangle \varphi_j + \langle f, \psi_j \rangle \psi_j) = S_{\varphi} f + S_{\psi} f,
\]
for all \(f \in \mathcal{H} \).

In the following, we check super Hilbert modules by different space and different C*-algebra.

Proposition 3.7. Let \(A \) and \(B \) be unital C*-algebras, \(\{ \varphi_j : j \in J \} \) and \(\{ \psi_j : j \in J \} \) be sequences in Hilbert A-module \(\mathcal{H} \) and Hilbert B-module \(\mathcal{K} \), respectively. Then \(\{ \varphi_j : j \in J \} \) and \(\{ \psi_j : j \in J \} \) are frames in Hilbert A-module \(\mathcal{H} \) and Hilbert B-module \(\mathcal{K} \) respectively if and only if \(\{ \Lambda_j : j \in J \} \) is a g-frame in super Hilbert C*-module \(\mathcal{H} \oplus \mathcal{K} \) with respect to \(A \oplus B \) where \(\Lambda_j(f, g) = \langle (f, \varphi_j), (g, \psi_j) \rangle \) for all \((f, g) \in \mathcal{H} \oplus \mathcal{K} \).

Proof. Since
\[
\langle \Lambda_j(f, g), \Lambda_j(f, g) \rangle = \langle \langle f, \varphi_j \rangle, \langle g, \psi_j \rangle \rangle = \langle (f, \varphi_j), (g, \psi_j) \rangle \]
\[
= \langle \langle f, \varphi_j \rangle, \langle f, \varphi_j \rangle \rangle + \langle \langle g, \psi_j \rangle, \langle g, \psi_j \rangle \rangle = \langle f, \varphi_j \rangle \langle \varphi_j, f \rangle + \langle g, \psi_j \rangle \langle \psi_j, g \rangle,
\]
then \(\{ \varphi_j : j \in J \} \) and \(\{ \psi_j : j \in J \} \) are frames in Hilbert A-module \(\mathcal{H} \) and Hilbert B-module \(\mathcal{K} \) respectively if and only if \(\{ \Lambda_j : j \in J \} \) is a g-frame in super Hilbert C*-module \(\mathcal{H} \oplus \mathcal{K} \) with respect to \(A \oplus B \). □

In this case, we have the following proposition.

Proposition 3.8. Let \(A \) and \(B \) be unital C*-algebras, \(\{ \varphi_j : j \in J \} \) and \(\{ \psi_j : j \in J \} \) be frames in Hilbert A-module \(\mathcal{H} \) and Hilbert B-module \(\mathcal{K} \), respectively and \(\{ \Lambda_j : j \in J \} \) be a g-frame in super Hilbert C*-module \(\mathcal{H} \oplus \mathcal{K} \) with respect to \(A \oplus B \) where \(\Lambda_j(f, g) = \langle (f, \varphi_j), (g, \psi_j) \rangle \) for all \((f, g) \in \mathcal{H} \oplus \mathcal{K} \). Then the synthesis operator for \(\{ \Lambda_j : j \in J \} \) is the operator
\[
T : l^2(A \oplus B) \rightarrow \mathcal{H} \oplus \mathcal{K},
\]
defined by
\[
T((a_j, b_j)_{j \in J}) = \sum_{j \in J} \Lambda_j^*(a_j, b_j)
\]
\[
= \left(\sum_{j \in J} a_j \varphi_j, \sum_{j \in J} b_j \psi_j \right),
\]
for all \((a_j, b_j) : j \in J \subseteq A \oplus B.\)

The analysis operator for \(\{\Lambda_j : j \in J\}\) is the operator
\[
T^* : \mathcal{H} \oplus \mathcal{K} \to \ell^2(A \oplus B),
\]
defined by
\[
T^*(f, g) = \{\Lambda_j(f, g)\}_{j \in J}
\]
\[
= \{\langle f, \varphi_j \rangle, \langle g, \psi_j \rangle\}_{j \in J},
\]
for all \((f, g) \in \mathcal{H} \oplus \mathcal{K}.\)

Also the g-frame operator for \(\{\Lambda_j : j \in J\}\) is the operator
\[
S_\Lambda : \mathcal{H} \oplus \mathcal{K} \to \mathcal{H} \oplus \mathcal{K},
\]
defined by
\[
S_\Lambda(f, g) = TT^*(f, g)
\]
\[
= \left(\sum_{j \in J} \langle f, \varphi_j \rangle \varphi_j, \sum_{j \in J} \langle g, \psi_j \rangle \psi_j \right)
\]
\[
= (S_\varphi f, S_\psi g),
\]
for all \((f, g) \in \mathcal{H} \oplus \mathcal{K}.\)

Now we state the following propositions for the case of super Hilbert modules by different spaces and same C*-algebra.

Proposition 3.9. Let \(A\) be an unital C*-algebras, \(\{\varphi_j : j \in J\}\) and \(\{\psi_j : j \in J\}\) be sequences in Hilbert \(A\)-modules \(\mathcal{H}\) and \(\mathcal{K}\) respectively. Then \(\{\varphi_j : j \in J\}\) and \(\{\psi_j : j \in J\}\) are frames in Hilbert \(A\)-modules \(\mathcal{H}\) and \(\mathcal{K}\) respectively if and only if \(\{(\varphi_j, \psi_j) : j \in J\}\) is a frame in super Hilbert C*-module \(\mathcal{H} \oplus \mathcal{K}\).

Proposition 3.10. Let \(A\) be an unital C*-algebras, \(\{\varphi_j : j \in J\}\) and \(\{\psi_j : j \in J\}\) be sequences in Hilbert \(A\)-modules \(\mathcal{H}\) and \(\mathcal{K}\) respectively. Then \(\{\varphi_j : j \in J\}\) and \(\{\psi_j : j \in J\}\) are frames in Hilbert \(A\)-modules \(\mathcal{H}\) and \(\mathcal{K}\) respectively if and only if \(\{\Lambda_j : j \in J\}\) is a g-frame in super Hilbert C*-module \(\mathcal{H} \oplus \mathcal{K}\) with respect to \(A^2\) where \(\Lambda_j(f, g) = (\langle f, \varphi_j \rangle, \langle g, \psi_j \rangle)\) for all \((f, g) \in \mathcal{H} \oplus \mathcal{K}.\)
Proposition 3.11. Let A be an unital C^*-algebra, $\{\varphi_j : j \in J\}$ and $\{\psi_j : j \in J\}$ be frames in Hilbert A-module \mathcal{H} and \mathcal{K} respectively and $\{\Lambda_j : j \in J\}$ be a g-frame in super Hilbert C^*-module $\mathcal{H} \oplus \mathcal{K}$ with respect to A where $\Lambda_j(f, g) = (\langle f, \varphi_j \rangle, \langle g, \psi_j \rangle)$ for all $(f, g) \in \mathcal{H} \oplus \mathcal{K}$. Then the synthesis operator for $\{\Lambda_j : j \in J\}$ is the operator
\[
T : \ell^2(A^2) \to \mathcal{H} \oplus \mathcal{K},
\]
defined by
\[
T\left(\{(a_j, b_j)\}_{j \in J}\right) = \sum_{j \in J} \Lambda_j^*(a_j, b_j) = \left(\sum_{j \in J} a_j f_j, \sum_{j \in J} b_j g_j\right),
\]
for all $\{(a_j, b_j) : j \in J\} \subseteq A^2$. The analysis operator for $\{\Lambda_j : j \in J\}$ is the operator
\[
T^* : \mathcal{H} \oplus \mathcal{K} \to \ell^2(A^2),
\]
defined by
\[
T^*(f, g) = \{\Lambda_j(f, g)\}_{j \in J} = \{(f, \varphi_j), (g, \psi_j)\}_{j \in J},
\]
for all $(f, g) \in \mathcal{H} \oplus \mathcal{K}$. Also the g-frame operator for $\{\Lambda_j : j \in J\}$ is the operator
\[
S_\Lambda : \mathcal{H} \oplus \mathcal{K} \to \mathcal{H} \oplus \mathcal{K},
\]
defined by
\[
S_\Lambda(f, g) = TT^*(f, g) = \left(\sum_{j \in J} \langle f, \varphi_j \rangle \varphi_j, \sum_{j \in J} \langle g, \psi_j \rangle \psi_j\right) = (S_\varphi f, S_\psi g),
\]
for all $(f, g) \in \mathcal{H} \oplus \mathcal{K}$.

Let \mathcal{H} and \mathcal{K} be Hilbert C^*-modules on an unital C^*-algebra A. We say that the frame pairs $\{(\varphi_j), (\psi_j)\} \subset \mathcal{H} \oplus \mathcal{K}$ and $\{(\mu_j), (\nu_j)\} \subset \mathcal{H} \oplus \mathcal{K}$ are similar if there are bounded invertible operators $T_1 \in L(\mathcal{H})$ and $T_2 \in L(\mathcal{K})$ such that $T_1 \varphi_j = \mu_j$ and $T_2 \psi_j = \nu_j$ for all $j \in J$. A pair of frames $\{\varphi_j : j \in J\}$ and $\{\psi_j : j \in J\}$ is called disjoint if $\{(\varphi_j, \psi_j) : j \in J\}$ is a frame for super Hilbert module $\mathcal{H} \oplus \mathcal{K}$. A pair of Parseval frames $\{\varphi_j : j \in J\}$ and $\{\psi_j : j \in J\}$ is called strongly disjoint if $\{(\varphi_j, \psi_j) : j \in J\}$ is a Parseval frame for $\mathcal{H} \oplus \mathcal{K}$, and a pair of general
frames \(\{ \varphi_j : j \in J \} \) and \(\{ \psi_j : j \in J \} \) is called strongly disjoint if it is similar to a strongly disjoint pair of parseval frames.

Han and Larson in [18] have proved that \(\{ \varphi_j : j \in J \} \) is a parseval frame in a Hilbert space \(\mathcal{H} \) if and only if there are a Hilbert space \(\mathcal{K} \) and a parseval frame \(\{ \psi_j : j \in J \} \) in \(\mathcal{K} \) such that \(\{ (\varphi_j, \psi_j) : j \in J \} \) is an orthonormal basis for \(\mathcal{H} \oplus \mathcal{K} \). We extend this result for frames in Hilbert \(C^* \)-modules.

The following proposition in Hilbert \(C^* \)-module setting may be proved in much the same way as Proposition 1.1 in [18]. Also, the following results are related to Theorem 4.1, Propositions 5.1 and 5.2 in reference [10].

Proposition 3.12. Let \(\mathcal{H} \) be Hilbert \(C^* \)-module on unital \(C^* \)-algebra \(A \). Suppose that \(\{ \varphi_j : j \in J \} \) is a Parseval frame for \(\mathcal{H} \). Then there exist a Hilbert \(C^* \)-module \(\mathcal{M} \) and an orthonormal basis \(\{ e_j : j \in J \} \) for \(\mathcal{M} \) such that \(\varphi_j = Pe_j \), where \(P \) is the orthogonal projection from \(\mathcal{K} \) to \(\mathcal{H} \).

Proof. Let \(\mathcal{K} = \ell^2(A) \) and let \(\theta : \mathcal{H} \to \mathcal{K} \) be defined by

\[
\theta(f) = \{ \langle f, \varphi_j \rangle : j \in J \},
\]

for all \(f \in \mathcal{H} \). Since \(\{ \varphi_j : j \in J \} \) is a Parseval frame for Hilbert \(C^* \)-module \(\mathcal{H} \), we have

\[
\| \theta(f) \|^2 = \sum_{j \in J} |\langle f, \varphi_j \rangle|^2 = \| f \|^2.
\]

Thus \(\theta \) is well defined and is an isometry. So we can embed \(\mathcal{H} \) into \(\mathcal{K} \) by identifying \(\mathcal{H} \) with \(\theta(\mathcal{H}) \). Let \(P \) be the orthogonal projection from \(\mathcal{K} \) onto \(\theta(\mathcal{H}) \). Denote the standard orthonormal basis for \(\mathcal{K} \) by \(\{ e_j : j \in J \} \). We claim that \(Pe_j = \theta(\varphi_j) \). For any \(m \in J \), we have

\[
\langle \theta(\varphi_m), Pe_j \rangle = \langle P\theta(\varphi_m), e_j \rangle = \langle \theta(\varphi_m), e_n \rangle = \langle \varphi_m, \varphi_j \rangle = \langle \theta(\varphi_m), \theta(\varphi_j) \rangle.
\]

Since the vectors \(\theta(\varphi_j) \) span \(\theta(\mathcal{H}) \), it follows that \(Pe_j - \theta(\varphi_j) \perp \theta(\mathcal{H}) \). But \(\text{ran}(P) = \theta(\mathcal{H}) \). Hence \(Pe_j - \theta(\varphi_j) = 0 \), as required. \(\square \)

Corollary 3.13. A sequence \(\{ \varphi_j : j \in J \} \) is a parseval frame for Hilbert \(C^* \)-module \(\mathcal{H} \) if and only if there exist a Hilbert \(C^* \)-module \(\mathcal{M} \) and a parseval frame \(\{ \psi_j : j \in J \} \) for \(\mathcal{M} \) such that \(\{ (\varphi_j, \psi_j) : j \in J \} \) is an orthonormal basis for \(\mathcal{H} \oplus \mathcal{M} \).

Proof. By Proposition 3.12 there is a Hilbert \(C^* \)-module \(\mathcal{K} \supseteq \mathcal{H} \) and an orthonormal basis \(\{ e_j : j \in J \} \) of \(\mathcal{K} \) such that \(\varphi_j = Pe_j \), where \(P \) is the
projection from \mathcal{K} onto \mathcal{H}. Let $M = (I - P)K$ and $\psi_j = (I - P)e_j$, $j \in J$.

Since every orthonormal basis is Parseval frame, the pair of $\{\varphi_j : j \in J\}$ and $\{\psi_j : j \in J\}$ in Corollary is strongly disjoint.

Proposition 3.14. The extension of a tight frame to an orthonormal basis described in the statement of Corollary is unique up to unitary equivalence. That is if \mathcal{N} is another Hilbert C^*-module and $\{\phi_j : j \in J\}$ is a tight frame for \mathcal{N} such that $\{\langle \varphi_j, \psi_j \rangle : j \in J\}$ is an orthonormal basis for $\mathcal{H} \oplus \mathcal{N}$, then there is an unitary transformation U mapping M onto \mathcal{N} such that $U\psi_j = \phi_j$ for all $j \in J$. In particular, $\dim M = \dim \mathcal{N}$.

Proof. The proof is similar to Proposition 1.4. in [18] for Hilbert space.

If $\{\varphi_j : j \in J\}$ is a Parseval frame, we will call any normalized tight frame $\{\psi_j : j \in J\}$ such that $\{\langle \varphi_j, \psi_j \rangle : j \in J\}$ is an orthonormal basis for the direct sum space, as in Proposition, a strong complementary frame (or strong complement) to $\{\varphi_j : j \in J\}$. The above result says that every Parseval frame has a strong complement which is unique up to unitary equivalence.

Acknowledgment. The author would like to thank referees for their suggestions and attentions.

References

Young Researchers and Elite Club Kahnooj Branch, Islamic Azad University, Kerman, Iran.

E-mail address: m.rashidi@kahnoojiau.ac.ir