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Frames in super Hilbert modules

Mehdi Rashidi-Kouchi

Abstract. In this paper, we define super Hilbert module and in-
vestigate frames in this space. Super Hilbert modules are general-
ization of super Hilbert spaces in Hilbert C*-module setting. Also,
we define frames in a super Hilbert module and characterize them
by using of the concept of g-frames in a Hilbert C*-module. Finally,
disjoint frames in Hilbert C*-modules are introduced and investi-
gated.

1. Introduction

Super Hilbert spaces arose naturally as the state space of a quantum
field in the functional Schrodinger representation of spinor quantum field
theory and it provided a means to bring super symmetric quantum field
theories into a form resembling standard quantum mechanics, the super
Hilbert space has certain advantages compared with the Hilbert space
in quantum mechanics [7, 9, 23, 25]. Balan [4] introduced the concept
of super frames and presented some density results for Weyl-Heisenberg
super frames. In [18], Han and Larson derived necessary and sufficient
conditions for the direct sum of two frames to be a super frame. And
in [15], Gu and Han investigated the connection between decomposable
Parseval wavelet frames and super wavelet frames and gave some neces-
sary and sufficient conditions for extendable Parseval wavelet frames. In
[1, 19, 30] frames, g-frames and g-Riesz frames in super Hilbert spaces
has been studied.

Frames for Hilbert spaces were first introduced in 1952 by Duffin and
Schaeffer [8] for study of nonharmonic Fourier series. They were reintro-
duced and development in 1986 by Daubechies, Grossmann and Meyer
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[6], and popularized from then on. Today frames have many applica-
tions in different subjects, for example in image and signal processing
[2, 3] and coherent states [12–14]

Let H be a Hilbert space, and J be a finitely or countably index set.
A sequence {fj}j∈J ⊆ H is called a frame for H if there exist the con-
stants C,D > 0 such that

(1.1) C∥f∥2 ≤
∑
j∈J

| ⟨f, fj⟩ |2≤ D∥f∥2,

for all f ∈ H. The constants C and D are called frame bounds. If
C = D we call this frame a tight frame and if C = D =1 it is called a
Parseval frame.

In [29], Sun introduced a generalization of frames and showed the
other concepts of generalizations of frames can be presented by g-frames.
Also, Sun proved that generalized frames have many properties of frames.

Let U and V be two Hilbert spaces and {Vj : j ∈ J} be a sequence
of subspaces of V, where J is a subset of Z. L(U, Vj) is the collection
of all bounded linear operators from U into Vj . The sequence {Λj ∈
L(U, Vj) : j ∈ J} is called to be a generalized frame, or simply a g-frame,
for U with respect to {Vj : j ∈ J} if there exist two positive constants
C and D such that

(1.2) C∥f∥2 ≤
∑
j∈J

∥Λjf∥2 ≤ D∥f∥2,

for all f ∈ U . The constants C and D are called g-frame bounds. If
C = D we call this g-frame a tight g-frame and if C = D =1 it is called
a Parseval g-frame.

The notion of frames in Hilbert C∗-modules has been introduced and
has been investigated in [11]. Frank and Larson [10, 11] defined the
standard frames in Hilbert C∗-modules in finitely or countably gener-
ated Hilbert C∗-modules over unital C∗-algebras. The extended results
of this more general framework are not a routine generalization, because
there are essential differences between Hilbert C∗-modules and Hilbert
spaces. For example, any closed subspace in a Hilbert space has an or-
thogonal complement, but this fails in Hilbert C∗-module. Also, there is
no explicit analogue of the Riesz representation theorem of continuous
functionals in Hilbert C∗-modules.

We refer the readers for more details on Hilbert C∗-modules and a
discussion of basic properties of frames in Hilbert spaces and Hilbert
C∗-modules and their generalizations to [5, 10, 24, 26–28].



FRAMES IN SUPER HILBERT MODULES 131

Let H be a Hilbert C∗-module, and J a set which is finite or count-
able. A sequence {fj}j∈J ⊆ H is called a frame for H if there exist
constants C,D > 0 such that

(1.3) C⟨f, f⟩ ≤
∑
j∈J

⟨f, fj⟩⟨fj , f⟩ ≤ D⟨f, f⟩,

for all f ∈ H. The constants C andD are called the frame bounds. Basic
properties of frames in Hilbert C∗-modules are studied in [10, 16, 17, 22].

A. Khosravi and B. Khosravi [21] defined g-frames in Hilbert C∗-
modules. Let U and V be two Hilbert C∗-modules over the same C∗-
algebra A and {Vj : j ∈ J} be a sequence of subspaces of V , where J
is a subset of Z. Let End∗A(U, Vj) be the collection of all adjointable
A-linear maps from U into Vj , i.e. let T be an A-linear map from U into
Vj , if ⟨Tf, g⟩ = ⟨f, T ∗g⟩ for all f ∈ U and g ∈ Vj then, it implies that
T ∈ End∗A(U, Vj). The sequence {Λj ∈ End∗A(U, Vj) : j ∈ J} is said to
be a generalized frame (or simply a g-frame) for Hilbert C∗-module U
with respect to {Vj : j ∈ J} if there are two positive constants C and D
such that

(1.4) C⟨f, f⟩ ≤
∑
j∈J

⟨Λjf,Λjf⟩ ≤ D⟨f, f⟩,

for all f ∈ U . The constants C and D are called g-frame bounds.
In this paper, we define super Hilbert modules that they are gen-

eralization of super Hilbert spaces in Hilbert C*-module setting. Also
we define frames in a super Hilbert module and characterize them by
using g-frames in a Hilbert C*-module. Moreover disjoint frames and
complementary frames in Hilbert C*-modules are introduced and are
investigated.

2. Preliminaries

Hilbert C∗-modules form a wide category between Hilbert spaces and
Banach spaces.

Definition 2.1. Let A be a C∗-algebra with involution ∗. An inner
product A-module (or pre Hilbert A-module) is a complex linear space
H which is a left A-module with an A-valued inner product map ⟨., .⟩ :
H×H → A which satisfies the following properties:

(i) ⟨αf +βg, h⟩ = α⟨f, h⟩+β⟨g, h⟩ for all f, g, h ∈ H and α, β ∈ C;
(ii) ⟨af, g⟩ = a⟨f, g⟩ for all f, g ∈ H and a ∈ A;
(iii) ⟨f, g⟩ = ⟨g, f⟩∗ for all f, g ∈ H;
(iv) ⟨f, f⟩ ≥ 0 for all f ∈ H and ⟨f, f⟩ = 0 if and only if f = 0.
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For f ∈ H, we define a norm on H by ∥f∥H = ∥⟨f, f⟩∥1/2A . If H is
complete with this norm, it is called a (left) Hilbert C∗-module over A
or a (left) Hilbert A-module.

An element a of a C∗-algebra A is positive if a∗ = a and its spectrum
is a subset of positive real numbers. In this case, we write a ≥ 0. By
the property (4) of the above formula, ⟨f, f⟩ ≥ 0 for every f ∈ H, hence

we define the absolute value of f by |f | = ⟨f, f⟩1/2.
For the frame {fj : j ∈ J} in a Hilbert A-module H, the operator S

defined by

Sf =
∑
j∈J

⟨f, fj⟩fj , (f ∈ H),

is called the frame operator. The frame operator S is invertible, positive,
adjointable and self-adjoint. Since

⟨Sf, f⟩ =

⟨∑
j∈J

⟨f, fj⟩fj , f

⟩
=

∑
j∈J

⟨f, fj⟩⟨fj , f⟩, (f ∈ H),

it follows that

C⟨f, f⟩ ≤ ⟨Sf, f⟩ ≤ D⟨f, f⟩, (f ∈ H),

and the following reconstruction formula holds

f = SS−1f = S−1Sf =
∑
j∈J

⟨S−1f, fj⟩fj =
∑
j∈J

⟨f, S−1fj⟩fj ,

for all f ∈ H.
Let f̃j = S−1fj , then

f =
∑
j∈J

⟨f, f̃j⟩fj =
∑
j∈J

⟨f, fj⟩f̃j ,

for any f ∈ H. The sequence {f̃j : j ∈ J} is also a frame for H which is
called the canonical dual frame of {fj : j ∈ J}.

Like ordinary frames in Hilbert spaces, the notion of analysis and
synthesis operators can be defined as follows:

Definition 2.2. Let {fj}j∈J be a frame in Hilbert A-module H over a
unital C∗-algebra A, then the related analysis operator U : H → ℓ2(A)
is defined by

Uf = {⟨f, fj⟩ : j ∈ J},
for all f ∈ H. We define the synthesis operator T : ℓ2(A) → H by

T ({aj}) =
∑
j∈J

ajfj ,

for all {aj}j∈J ∈ ℓ2(A).
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For any g = {gj}j∈J ∈ ℓ2(A) and f ∈ H,

⟨Uf, g⟩ = ⟨{⟨f, fj⟩}, {gj}⟩

=
∑
j∈J

⟨f, fj⟩g∗j

=
∑
j∈J

⟨f, gjfj⟩

=

⟨
f,
∑
j∈J

gjfj

⟩
= ⟨f, Tg⟩,

it follows that U is adjointable and U∗ = T . Also

U∗Uf = U∗(⟨f, fj⟩) =
∑
j∈J

⟨f, fj⟩fj = Sf,

for all f ∈ H.
The following theorems characterize frames and Bessel sequences and

frames in Hilbert A-modules.

Theorem 2.3 ([16]). A sequence {fj}j∈J in Hilbert A-module H over
an unital C∗-algebra A is a frame for H if and only if the synthesis
operator T is well defined and surjective.

Corollary 2.4 ([16]). A sequence {fj}j∈J in Hilbert A-module H over
an unital C∗-algebra A is a Bessel for H if and only if the synthesis
operator T is well defined and ∥T∥ ≤

√
D.

The definition of super Hilbert space is given in [9] as following:

Definition 2.5. Super Hilbert space H is a direct sum H = H0
⊕

H1

of two complex Hilbert spaces (H0, ⟨., .⟩0), (H1, ⟨., .⟩1) equipped with the
inner product ⟨⟨., .⟩⟩ = ⟨., .⟩0 + ⟨., .⟩1.

It is easy to see that every super Hilbert space is a Hilbert space.

3. Main result

In this section, at first we define super Hilbert module that is a gen-
eralization of super Hilbert space in a Hilbert C*-module setting. Then
we investigate and characterize frames in super Hilbert modules.

Definition 3.1. Let H0 and H1 be two Hilbert A-modules with inner
products ⟨., .⟩0 and ⟨., .⟩1 respectively. Super Hilbert module space H is
a direct sum H = H0

⊕
H1 equipped with the inner product

⟨⟨., .⟩⟩ = ⟨., .⟩0 + ⟨., .⟩1.
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Every direct sum of Hilbert C∗-modules is a Hilbert C∗-modules [24].
Hence every super Hilbert module is a Hilbert C∗-module.

Definition 3.2. Let H be a Hilbert A-module and {(φj , ψj) : j ∈ J}
be a sequence of elements of super Hilbert module H

⊕
H and Λj be

defined by

Λjf = (⟨f, φj⟩, ⟨f, ψj⟩) , ∀f ∈ H.
If {Λj : j ∈ J} is a g-frame for Hilbert A-module H with respect to A2,
then we call it a g-frame associated with {(φj , ψj) : j ∈ J}.

The following lemma gives a necessary condition for {(φj , ψj) : j ∈ J}
to be a frame for super Hilbert module H

⊕
H.

Lemma 3.3. Suppose that H is a Hilbert C*-module and that {(φj , ψj) :
j ∈ J} is a frame for super Hilbert module H

⊕
H. Then both {φj : j ∈

J} and {ψj : j ∈ J} are frames for Hilbert C*-module H.

Proof. Since {Φj = (φj , ψj) : j ∈ J} is a frame for super Hilbert module
H

⊕
H, there exist constants C,D > 0 such that

C⟨⟨f, f⟩⟩ ≤
∑
j∈J

⟨⟨f,Φj⟩⟩⟨⟨Φj , f⟩⟩ ≤ D⟨⟨f, f⟩⟩,

for all f = (f1, f2) ∈ H
⊕

H.
By the definition of the inner product in super Hilbert module, we

would have

C (⟨f1, f1⟩+ ⟨f2, f2⟩) ≤
∑
j∈J

(⟨f1, φj⟩+ ⟨f2, ψj⟩) (⟨φj , f1⟩+ ⟨ψj , f2⟩)

≤ D (⟨f1, f1⟩+ ⟨f2, f2⟩) ,

for all f = (f1, f2) ∈ H
⊕

H. Substituting f2 = 0 into the above
inequality we obtain

C⟨f1, f1⟩ ≤
∑
j∈J

⟨f1, φj⟩⟨φj , f1⟩ ≤ D⟨f1, f1⟩,

for all f1 ∈ H. This means {φj : j ∈ J} is a frame for Hilbert C∗-module
H.

The same conclusion can be driven for {ψj : j ∈ J} by letting f1 =
0. □

The following theorem gives a necessary condition for a frame in super
Hilbert module H

⊕
H by using g-frames in Hilbert C*-modules.

Theorem 3.4. Let H be a Hilbert C*-module and {(φj , ψj) : j ∈ J} be a
frame for super Hilbert module H

⊕
H. Then {Λj : j ∈ J} is a g-frame
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for Hilbert A-module with respect to A2 associated with {(φj , ψj) : j ∈
J}.

Proof. By Lemma 3.3, both {φj : j ∈ J} and {ψj : j ∈ J} are frames
for Hilbert C∗-module H. Now by regard to this fact that

⟨Λjf,Λjf⟩ = ⟨(⟨f, φj⟩, ⟨f, ψj⟩), (⟨f, φj⟩, ⟨f, ψj⟩)⟩
= ⟨⟨f, φj⟩, ⟨f, φj⟩⟩+ ⟨⟨f, ψj⟩, ⟨f, ψj⟩⟩
= ⟨f, φj⟩⟨φj , f⟩+ ⟨f, ψj⟩⟨ψj , f⟩,

the operator sequence {Λj : j ∈ J} is a g-frame for Hilbert A-module H
with respect to A2 associated with {(φj , ψj) : j ∈ J}. □

The following proposition is a generalization of a similar proposition
in [30] for super Hilbert modules.

Proposition 3.5. Let {(φj , ψj) : j ∈ J} ⊆ H
⊕

H and

Λjf = (⟨f, φj⟩, ⟨f, ψj⟩)T ,
for any f ∈ H and j ∈ J . Then {Λj : j ∈ J} is a g-frame for Hilbert
A-module H with respect to A2 associated with {(φj , ψj) : j ∈ J} if and
only if {φj : j ∈ J}

∪
{ψj : j ∈ J} is a frame for Hilbert A-module H.

Proof. Since

⟨Λjf,Λjf⟩ = ⟨f, φj⟩⟨φj , f⟩+ ⟨f, ψj⟩⟨ψj , f⟩,
we conclude {Λj : j ∈ J} is a g-frame for Hilbert A-module H with
respect to A2 associated with {(φj , ψj) : j ∈ J} if and only if {φj : j ∈
J}

∪
{ψj : j ∈ J} is a frame for Hilbert A-module H. □

By the previous propositions, we get

Proposition 3.6. Suppose H is a Hilbert A-module. Let {φj : j ∈ J}
and {ψj : j ∈ J} be two frames for Hilbert A-module H and {Λj :
j ∈ J} be a g-frames for Hilbert A-module H with respect to A2 where
Λjf = (⟨f, φj⟩, ⟨f, ψj⟩) for all f ∈ H. Then the synthesis operator for
{Λj : j ∈ J} is the operator

T : ℓ2(A2) → H,
defined by

T ({(aj , bj)}j∈J) =
∑
j∈J

Λ∗
j (aj , bj)

=
∑
j∈J

(ajφj + bjψj),

for all {(aj , bj)}j∈J ∈ l2(A2).
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The analysis operator for {Λj : j ∈ J} is the operator

T ∗ : H → ℓ2(A2),

defined by
T ∗f = {Λjf}j∈J = {(⟨f, φj⟩, ⟨f, ψj⟩)}j∈J ,

for all f ∈ H.
Also the g-frame operator for {Λj : j ∈ J} is the operator

SΛ : H → H,
defined by

SΛf = TT ∗f

=
∑
j∈J

(⟨f, φj⟩φj + ⟨f, ψj⟩ψj)

= Sφf + Sψf,

for all f ∈ H.

In the following, we check super Hilbert modules by different space
and different C*-algebra.

Proposition 3.7. Let A and B be unital C∗-algebras, {φj : j ∈ J} and
{ψj : j ∈ J} be sequences in Hilbert A-module H and Hilbert B-module
K, respectively. Then {φj : j ∈ J} and {ψj : j ∈ J} are frames in
Hilbert A-module H and Hilbert B-module K respectively if and only if
{Λj : j ∈ J} is a g-frame in super Hilbert C∗-module H

⊕
K with respect

to A⊕B where Λj(f, g) = (⟨f, φj⟩, ⟨g, ψj⟩) for all (f, g) ∈ H
⊕

K.

Proof. Since

⟨Λj(f, g),Λj(f, g)⟩ = ⟨(⟨f, φj⟩, ⟨g, ψj⟩), (⟨f, φj⟩, ⟨g, ψj⟩)⟩
= ⟨⟨f, φj⟩, ⟨f, φj⟩⟩+ ⟨⟨g, ψj⟩, ⟨g, ψj⟩⟩
= ⟨f, φj⟩⟨φj , f⟩+ ⟨g, ψj⟩⟨ψj , g⟩,

then {φj : j ∈ J} and {ψj : j ∈ J} are frames in Hilbert A-module H
and Hilbert B-module K respectively if and only if {Λj : j ∈ J} is a
g-frame in super Hilbert C∗-module H

⊕
K with respect to A⊕B. □

In this case, we have the following proposition.

Proposition 3.8. Let A and B be unital C∗-algebras, {φj : j ∈ J} and
{ψj : j ∈ J} be frames in Hilbert A-module H and Hilbert B-module K
respectively and {Λj : j ∈ J} be a g-frame in super Hilbert C∗-module
H

⊕
K with respect to A ⊕ B where Λj(f, g) = (⟨f, φj⟩, ⟨g, ψj⟩) for all

(f, g) ∈ H
⊕

K. Then the synthesis operator for {Λj : j ∈ J} is the
operator

T : ℓ2(A⊕B) → H
⊕

K,
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defined by

T ({(aj , bj)}j∈J) =
∑
j∈J

Λ∗
j (aj , bj)

=

∑
j∈J

ajφj ,
∑
j∈J

bjψj

 ,

for all {(aj , bj) : j ∈ J} ⊆ A⊕B.
The analysis operator for {Λj : j ∈ J} is the operator

T ∗ : H
⊕

K → ℓ2(A⊕B),

defined by

T ∗(f, g) = {Λj(f, g)}j∈J
= {⟨f, φj⟩, ⟨g, ψj⟩}j∈J ,

for all (f, g) ∈ H
⊕

K.
Also the g-frame operator for {Λj : j ∈ J} is the operator

SΛ : H
⊕

K → H
⊕

K,

defined by

SΛ(f, g) = TT ∗(f, g)

=

∑
j∈J

⟨f, φj⟩φj ,
∑
j∈J

⟨g, ψj⟩ψj


= (Sφf, Sψg),

for all (f, g) ∈ H
⊕

K.

Now we state the following propositions for the case of super Hilbert
modules by different spaces and same C*-algebra.

Proposition 3.9. Let A be an unital C∗-algebras, {φj : j ∈ J} and
{ψj : j ∈ J} be sequences in Hilbert A-modules H and K respectively.
Then {φj : j ∈ J} and {ψj : j ∈ J} are frames in Hilbert A-modules H
and K respectively if and only if {(φj , ψj) : j ∈ J} is a frame in super
Hilbert C∗-module H

⊕
K.

Proposition 3.10. Let A be an unital C∗-algebras, {φj : j ∈ J} and
{ψj : j ∈ J} be sequences in Hilbert A-modules H and K respectively.
Then {φj : j ∈ J} and {ψj : j ∈ J} are frames in Hilbert A-modules H
and K respectively if and only if {Λj : j ∈ J} is a g-frame in super Hilbert
C∗-module H

⊕
K with respect to A2 where Λj(f, g) = (⟨f, φj⟩, ⟨g, ψj⟩)

for all (f, g) ∈ H
⊕

K.
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Proposition 3.11. Let A be an unital C∗-algebra, {φj : j ∈ J} and
{ψj : j ∈ J} be frames in Hilbert A-module H and K respectively and
{Λj : j ∈ J} be a g-frame in super Hilbert C∗-module H

⊕
K with respect

to A where Λj(f, g) = (⟨f, φj⟩, ⟨g, ψj⟩) for all (f, g) ∈ H
⊕

K. Then the
synthesis operator for {Λj : j ∈ J} is the operator

T : ℓ2(A2) → H
⊕

K,

defined by

T ({(aj , bj)}j∈J) =
∑
j∈J

Λ∗
j (aj , bj)

=

∑
j∈J

ajφj ,
∑
j∈J

bjψj

 ,

for all {(aj , bj) : j ∈ J} ⊆ A2. The analysis operator for {Λj : j ∈ J} is
the operator

T ∗ : H
⊕

K → ℓ2(A2),

defined by

T ∗(f, g) = {Λj(f, g)}j∈J
= {⟨f, φj⟩, ⟨g, ψj⟩}j∈J ,

for all (f, g) ∈ H
⊕

K. Also the g-frame operator for {Λj : j ∈ J} is the
operator

SΛ : H
⊕

K → H
⊕

K,
defined by

SΛ(f, g) = TT ∗(f, g)

=

∑
j∈J

⟨f, φj⟩φj ,
∑
j∈J

⟨g, ψj⟩ψj


= (Sφf, Sψg),

for all (f, g) ∈ H
⊕

K.

LetH andK be Hilbert C∗-modules on an unital C∗-algebra A. We say
that the frame pairs ({φj}, {ψj}) ⊂ H

⊕
K and ({µj}, {νj}) ⊂ H

⊕
K

are similar if there are bounded invertible operators T1 ∈ L(H) and
T2 ∈ L(K) such that T1φj = µj and T2ψj = νj for all j ∈ J . A
pair of frames {φj : j ∈ J} and {ψj : j ∈ J} is called disjoint if
{(φj , ψj) : j ∈ J} is a frame for super Hilbert module H

⊕
K. A pair of

parseval frames {φj : j ∈ J} and {ψj : j ∈ J} is called strongly disjoint
if {(φj , ψj) : j ∈ J} is a parseval frame for H

⊕
K, and a pair of general
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frames {φj : j ∈ J} and {ψj : j ∈ J} is called strongly disjoint if it is
similar to a strongly disjoint pair of parseval frames.

Han and Larson in [18] have proved that {φj : j ∈ J} is a parseval
frame in a Hilbert space H if and only if there are a Hilbert space K
and a parseval frame {ψj : j ∈ J} in K such that {(φj , ψj) : j ∈ J} is
an orthonormal basis for H

⊕
K. We extend this result for frames in

Hilbert C∗-modules.
The following proposition in Hilbert C∗-module setting may be proved

in much the same way as Proposition 1.1 in [18]. Also, the following
results are related to Theorem 4.1, Propositions 5.1 and 5.2 in reference
[10].

Proposition 3.12. Let H be Hilbert C∗-module on unital C∗-algebra A.
Suppose that {φj : j ∈ J} is a Parseval frame for H. Then there exist a
Hilbert C∗-module K ⊇ H and an orthonormal basis {ej : j ∈ J} for K
such that φj = Pej, where P is the orthogonal projection from K to H.

Proof. Let K = ℓ2(A) and let θ : H → K be defined by

θ(f) = {⟨f, φj⟩ : j ∈ J},

for all f ∈ H. Since {φj : j ∈ J} is a Parseval frame for Hilbert C*-
module H, we have

∥θ(f)∥2 =
∑
j∈J

|⟨f, φj⟩|2 = ∥f∥2.

Thus θ is well defined and is an isometry. So we can embed H into K
by identifying H with θ(H). Let P be the orthogonal projection from K
onto θ(H). Denote the standard orthonormal basis for K by {ej : j ∈ J}.
We claim that Pej = θ(φj). For any m ∈ J , we have

⟨θ(φm), P ej⟩ = ⟨Pθ(φm), ej⟩
= ⟨θ(φm), en⟩
= ⟨φm, φj⟩
= ⟨θ(φm), θ(φj)⟩.

Since the vectors θ(φj) span θ(H), it follows that Pej − θ(φj) ⊥ θ(H).
But ran(P ) = θ(H). Hence Pej − θ(φj) = 0, as required. □

Corollary 3.13. A sequence {φj : j ∈ J} is a parseval frame for Hilbert
C∗-module H if and only if there exist a Hilbert C∗-module M and a
parseval frame {ψj : j ∈ J} for M such that {(φj , ψj) : j ∈ J} is an
orthonormal basis for H

⊕
M.

Proof. By Proposition 3.12 there is a Hilbert C*-module K ⊇ H and an
orthonormal basis {ej : j ∈ J} of K such that φj = Pej , where P is the
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projection from K onto H. Let M = (I −P )K and ψj = (I −P )ej , j ∈
J . □

Since every orthonormal basis is Parseval frame, the pair of {φj : j ∈
J} and {ψj : j ∈ J} in Corollary 3.13 is strongly disjoint.

Proposition 3.14. The extension of a tight frame to an orthonormal
basis described in the statement of Corollary 3.13 is unique up to unitary
equivalence. That is if N is another Hilbert C∗-module and {ϕj : j ∈ J}
is a tight frame for N such that {(φj , ψj) : j ∈ J} is an orthonormal
basis for H

⊕
N , then there is an unitary transformation U mapping M

onto N such that Uψj = ϕj for all j ∈ J . In particular, dimM = dimN .

Proof. The proof is similar to Proposition 1.4. in [18] for Hilbert space.
□

If {φj : j ∈ J} is a parseval frame, we will call any normalized tight
frame {ψj : j ∈ J} such that {(φj , ψj) : j ∈ J} is an orthonormal basis
for the direct sum space, as in Proposition 3.14, a strong complementary
frame (or strong complement ) to {φj : j ∈ J}. The above result says
that every parseval frame has a strong complement which is unique up
to unitary equivalence.
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