Subspace-diskcyclic sequences of linear operators

Mohammad Reza Azimi

ABSTRACT. A sequence \(\{T_n\}_{n=1}^{\infty} \) of bounded linear operators on a separable infinite dimensional Hilbert space \(H \) is called subspace-diskcyclic with respect to the closed subspace \(M \subseteq H \), if there exists a vector \(x \in H \) such that the disk-scaled orbit \(\{\alpha T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, |\alpha| \leq 1\} \cap M \) is dense in \(M \). The goal of this paper is the studying of subspace-diskcyclic sequence of operators like as the well known results in a single operator case. In the first section of this paper, we study some conditions that imply the diskcyclicity of \(\{T_n\}_{n=1}^{\infty} \). In the second section, we survey some conditions and subspace-diskcyclicity criterion (analogue the results obtained by some authors in \([6,10,11]\)) which are sufficient for the sequence \(\{T_n\}_{n=1}^{\infty} \) to be subspace-diskcyclic(subspace-hypercyclic).

1. Introduction and Preliminaries

Let \(X \) and \(Y \) be separable Banach spaces. The set of all bounded linear operators from \(X \) to \(Y \) is denoted by \(\mathcal{L}(X,Y) \). A sequence of operators \(\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(X,Y) \) is called hypercyclic if there exists a vector \(x \in X \) such that the set \(\{T_n x : n \in \mathbb{N}\} \) is dense in \(Y \). Such a vector is called hypercyclic vector for the sequence of operators \(\{T_n\}_{n=1}^{\infty} \). We say that an operator \(T : X \rightarrow X \) is hypercyclic if the sequence of its iterations \(\{T^n\}_{n=1}^{\infty} \) is hypercyclic. Over the last two decades hypercyclic operators have been widely studied. A good survey of hypercyclic operators is the recent book [3]. Furthermore, some survey articles such as [4, 5, 12] and [11] are important references in this subject. The hypercyclicity of sequence of linear operators and its relevant criteria have been studied in [4, 5, 11] and [6]. In [11], B. F. Madore and R. A. Martinez-Avendano introduced the concept of subspace-hypercyclicity for a bounded linear operator \(T \) defined on Hilbert space \(H \) and they

2010 Mathematics Subject Classification. Primary: 47A16; Secondary: 37B99.
Key words and phrases. Sequences of operators, Diskcyclic vectors, Subspace-diskcyclicity, Subspace-hypercyclicity.
Received: 18 September 2016, Accepted: 21 November 2016.
proved a Kitai-like criterion that implies subspace-hypercyclicity. They have also posed some questions which one of them was answered by H. Rezaei in [13]. He showed that $p(T)$ has a relatively dense range for every polynomial p. Moreover R.R. Jiménez-Munguía et al. [8] have answered some questions raised by H. Rezaei. The subspace-diskcyclicity of an operator $T \in \mathcal{L}(\mathcal{H})$ have been studied in [1, 2] in details. All these motivated us to study diskcyclicity and subspace-diskcyclicity of sequences of linear operators.

Let \mathcal{H} be a separable infinite dimensional Hilbert space over the field of complex numbers \mathbb{C} and let M be a closed subspace of \mathcal{H}. A sequence of operators $\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(\mathcal{H})$ is called subspace-diskcyclic if there exists a vector $x \in X$ such that the intersection of disk scaled orbit of $\{T_n\}_{n=1}^{\infty}$ and M,

$$\{ \alpha T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, |\alpha| \leq 1 \} \cap M,$$

is dense in M. Such a vector is called subspace-diskcyclic vector for the sequence of operators $\{T_n\}_{n=1}^{\infty}$ with respect to M. The set of all subspace-diskcyclic vectors for $\{T_n\}_{n=1}^{\infty}$ is denoted by $\text{DC}(\{T_n\}_{n=1}^{\infty}, M)$. In particular we say that an operator $T : X \to X$ is subspace-diskcyclic for some $M \subseteq \mathcal{H}$ if the sequence $\{T^n\}_{n=1}^{\infty}$ is subspace-diskcyclic for M, see [13]. For an operator T, the notion of subspace-diskcyclicity has been characterized in [1, 2]. Although the notion of subspace-diskcyclicity can be defined between different separable Banach spaces, nevertheless we prefer to deal with the Hilbert space. Note that if the operator T is hypercyclic then the underlying Banach space X should be separable. In [3] it is shown that an operator $T : X \to X$ is hypercyclic if and only if it is topologically transitive i.e., for any pair U, V of nonempty open subsets of X there exists $n \in \mathbb{N}$ such that $T_n(U) \cap V \neq \emptyset$. In the first section of this paper, we define the notion of the disk topologically transitivity for the sequences of operators $\{T_n\}_{n=1}^{\infty}$ and then we show that this is a necessary and sufficient condition for $\{T_n\}_{n=1}^{\infty}$ to be diskcyclic. Many criteria for hypercyclicity of $\{T_n\}_{n=1}^{\infty}$ have been studied in [1, 3, 6, 10, 11].

In section 3 we introduce the concept of subspace-disk topologically transitivity for the $\{T_n\}_{n=1}^{\infty}$ and then it shall be shown that $\{T_n\}_{n=1}^{\infty}$ is subspace-diskcyclic if and only if it is subspace-disk topologically transitive. In addition some necessary and sufficient conditions, criterion and other properties concerning the subspace-diskcyclicity of sequences of linear operators $\{T_n\}_{n=1}^{\infty}$ are studied.

2. Diskcyclic sequences of linear operators

In this section we first define the concept of disk topologically transitivity and then we show that a sequence of operators $\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(X, Y)$
is diskcyclic if and only if it is disk topologically transitive. Other equivalent conditions of this concept are also studied.

Definition 2.1. A sequence of operators \(\{T_n\}_{n=1}^\infty \subseteq \mathcal{L}(X, Y) \) is called disk topologically transitive if for any pair \(U, V \) of nonempty open subsets of \(X \) and \(Y \) respectively, there are \(n \in \mathbb{N} \) and \(\alpha \in \mathbb{C}, 0 < |\alpha| \leq 1 \) such that

\[
T_n(\alpha U) \cap V \neq \emptyset.
\]

Lemma 2.2. Let \(\{T_n\}_{n=1}^\infty \subseteq \mathcal{L}(X, Y) \). Then

\[
DC(\{T_n\}_{n=1}^\infty) = \bigcap_{k=1}^\infty \bigcup_{n=1}^\infty \bigcup_{\alpha \in \mathbb{C}, |\alpha| \geq 1} T_n^{-1}(\alpha V_k),
\]

where \(\{V_k\} \) is a countable open basis for \(Y \).

Proof. Note that \(x \in DC(\{T_n\}_{n=1}^\infty) \) if and only if for each \(k \in \mathbb{N} \), there exist \(n \in \mathbb{N} \) and \(\alpha \in \mathbb{C}, |\alpha| \leq 1 \) such that \(\alpha T_n x \in V_k \) or \(x \in T_n^{-1}(1/2 V_k) \). This occurs if and only if \(x \in \bigcap_{k=1}^\infty \bigcup_{n=1}^\infty \bigcup_{\alpha \in \mathbb{C}, |\alpha| \geq 1} T_n^{-1}(\alpha V_k) \). Hence the set of all diskcyclic vectors for \(\{T_n\}_{n=1}^\infty \) is a \(G_\delta \) set. \(\square \)

Lemma 2.3. A sequence of operators \(\{T_n\}_{n=1}^\infty \subseteq \mathcal{L}(X, Y) \) is diskcyclic if and only if it is disk topologically transitive.

Proof. Choose open subsets \(U \subseteq X \) and \(V \subseteq Y \) arbitrarily. It is easy to check that if a sequence \(\{T_n\}_{n=1}^\infty \) is diskcyclic then \(DC(\{T_n\}_{n=1}^\infty) \) is dense in \(X \). Therefore we have

\[
U \cap DC(\{T_n\}_{n=1}^\infty) \neq \emptyset.
\]

Pick \(x \in U \cap DC(\{T_n\}_{n=1}^\infty) \). Then the set \(\{\alpha T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, |\alpha| \leq 1\} \) is dense in \(Y \) and so it must \(\{\alpha T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, |\alpha| \leq 1\} \cap V \neq \emptyset \). Thus, \(\alpha T_n x \in V \) for some \(n \in \mathbb{N} \) and \(\alpha \in \mathbb{C}, |\alpha| \leq 1 \). Eventually \(T_n(\alpha U) \cap V \neq \emptyset \).

Conversely suppose that the sequence \(\{T_n\}_{n=1}^\infty \) is disk topologically transitive. By Bair’s category theorem and Lemma 2.2, \(DC(\{T_n\}_{n=1}^\infty) \) is dense in \(X \) if and only if every open set

\[
W_k = \bigcup_{n=1}^\infty \bigcup_{\alpha \in \mathbb{C}, |\alpha| \geq 1} T_n^{-1}(\alpha V_k),
\]

is dense in \(X \). Indeed, for every nonempty open subset \(U \) of \(X \), there are \(n \in \mathbb{N} \) and \(\alpha \in \mathbb{C}, |\alpha| \geq 1 \) such that \(U \cap T_n^{-1}(\alpha V_k) \neq \emptyset \), equivalently \(T_n(1/\alpha U) \cap V_k \neq \emptyset \). This completes the proof. \(\square \)

Proposition 2.4. Let \(\{T_n\}_{n=1}^\infty \subseteq \mathcal{L}(X, Y) \) be a sequences of operators. The following conditions are equivalent:

(i) The sequence \(\{T_n\}_{n=1}^\infty \) is disk topologically transitive;
For each nonempty open subset U of X there are $\alpha \in \mathbb{C}, 0 < |\alpha| \leq 1$ such that $\bigcup_{n=1}^{\infty} \bigcup_{|\alpha| \leq 1} T_n(\alpha U)$ is dense in Y;

(iii) For each nonempty open subset V of Y there are $\alpha \in \mathbb{C}, |\alpha| \geq 1$ such that $\bigcup_{n=1}^{\infty} \bigcup_{|\alpha| \geq 1} T_n^{-1}(\alpha V)$ is dense in X;

(iv) For each $x \in X, y \in Y$ and $\epsilon > 0$ there exist $n \in \mathbb{N}$, $\alpha \in \mathbb{C}, 0 < |\alpha| \leq 1$ and $u \in X$ such that $\|u - x\| < \epsilon$ and $\|\alpha T_n u - y\| < \epsilon$.

\textbf{Proof.} (i) Let U be an arbitrary nonempty open subset of X. By (i) there exist $n \in \mathbb{N}$ and $\alpha \in \mathbb{C}, 0 < |\alpha| \leq 1$ such that $T_n(\alpha U) \cap V \neq \emptyset$. So $T_n^{-1}(\frac{1}{\alpha} V) \cap U \neq \emptyset$ which implies that $\bigcup_{n=1}^{\infty} \bigcup_{|\alpha| \geq 1} T_n^{-1}(\alpha V)$ is dense in X, since U was chosen arbitrary.

(iii) \Rightarrow \ (i) We have $\bigcup_{n=1}^{\infty} \bigcup_{|\alpha| \geq 1} T_n^{-1}(\alpha V) \cap U \neq \emptyset$ for every nonempty open subset U of X. Therefore, $U \cap T_n^{-1}(\alpha V) \neq \emptyset$ or $T_n(\frac{1}{\alpha} U) \cap V \neq \emptyset$ for some $n \in \mathbb{N}$ and $\alpha \in \mathbb{C}, |\alpha| \geq 1$ and the sequence $\{T_n\}_{n=1}^{\infty}$ is disk topologically transitive.

By Definition 2.4 it can be easily verified that the statements (i) and (iv) are equivalent.

\[\blacksquare \]

\textbf{Lemma 2.5.} Let $\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(X, Y)$ and $c_n \geq 0$ for $n = 1, 2, \ldots$. If $\{c_n T_n\}_{n=1}^{\infty}$ is diskcyclic then the sequence $\{k_n T_n\}_{n=1}^{\infty}$ is diskcyclic for all $\{k_n\}_{n=1}^{\infty}$ with $k_n \geq c_n$ ($n = 1, 2, \ldots$).

\textbf{Proof.} Without loss of generality we may assume that $k_n > 0$ for each $n \in \mathbb{N}$. Let x be a diskcyclic vector for $\{c_n T_n\}_{n=1}^{\infty}$. To establish the result, it is enough to show that

$$\{\alpha c_n T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, |\alpha| \leq 1\} \subseteq \{\alpha k_n T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, |\alpha| \leq 1\}.$$

Take $y \in \{\alpha c_n T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, |\alpha| \leq 1\}$. Then there exist $n \in \mathbb{N}$ and $\alpha \in \mathbb{C}, |\alpha| \leq 1$ such that $y = \alpha c_n T_n x$. One may write $y = \alpha \frac{k_n}{c_n} k_n T_n x = \alpha' k_n T_n x$ where $\alpha \in \mathbb{C}, |\alpha'| \leq 1$. This follows that $y \in \{\alpha k_n T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, |\alpha| \leq 1\}$.

\[\blacksquare \]
3. Subspace-diskcyclic sequences of linear operators

From now on \(\mathcal{H} \) denotes a separable infinite dimensional Hilbert space over the field of complex numbers \(\mathbb{C} \).

Definition 3.1. Let \(M \) be a nontrivial closed subspace of \(\mathcal{H} \). A sequence \(\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(\mathcal{H}) \) is called **subspace-diskcyclic** sequence of linear operators for \(M \) if there exists \(x \in \mathcal{H} \) such that the set
\[
\{\alpha T_n x : n \in \mathbb{N}, \ \alpha \in \mathbb{C}, 0 < |\alpha| \leq 1\} \cap M,
\]
is dense in \(M \). We call \(x \) a **subspace-diskcyclic** vector for \(\{T_n\}_{n=1}^{\infty} \). The set of all subspace-diskcyclic vectors for \(\{T_n\}_{n=1}^{\infty} \) in a subspace \(M \) is denoted by \(DC(\{T_n\}_{n=1}^{\infty}, M) \). In a single case see [1].

Example 3.2. One may consider that the subspace-diskcyclicity does not imply diskcyclicity in general. Let \(\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(\mathcal{H}) \) be a diskcyclic sequence with the diskcyclic vector \(x \) and let \(I \) be the identity operator on \(\mathcal{H} \). Then the sequence \(\{T_n \oplus I : \mathcal{H} \oplus \mathcal{H} \to \mathcal{H} \oplus \mathcal{H}\}_{n=1}^{\infty} \) is subspace-diskcyclic for the subspace \(M = \mathcal{H} \oplus \{0\} \) with the subspace-diskcyclic vector \(x \oplus 0 \), while \(\{T_n \oplus I\}_{n=1}^{\infty} \) is not diskcyclic.

Theorem 3.3. Let \(\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(\mathcal{H}) \) and let \(M \) be a nontrivial subspace of \(\mathcal{H} \). Then
\[
DC(\{T_n\}_{n=1}^{\infty}, M) = \bigcap_{k=1}^{\infty} \bigcup_{|\alpha| \geq 1} \bigcup_{n=1}^{\infty} T_n^{-1}(\alpha B_k),
\]
where \(\{B_k\}_{k=1}^{\infty} \) is a countable open basis for the relatively topology of \(M \) as a subspace of \(\mathcal{H} \).

Proof. Note that \(x \in DC(\{T_n\}_{n=1}^{\infty}, M) \) if and only if \(\{\alpha T_n x : n \in \mathbb{N}, \ \alpha \in \mathbb{C}, 0 < |\alpha| \leq 1\} \cap M \) is dense in \(M \). Equivalently, for each \(k \), there are \(n \in \mathbb{N}, \ \alpha \in \mathbb{C}, 0 < |\alpha| \leq 1 \) such that \(\alpha T_n x \in B_k \). But the last is equivalent to that \(x \in T_n^{-1}(\frac{1}{\alpha} B_k) \) for each \(k \), and hence
\[
x \in \bigcap_{k=1}^{\infty} \bigcup_{|\alpha| \geq 1} \bigcup_{n=1}^{\infty} T_n^{-1}(\alpha B_k).
\]

\(\square \)

Definition 3.4. Let \(\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(\mathcal{H}) \) and let \(M \) be a nontrivial subspace of \(\mathcal{H} \). We say that a sequence of linear operators \(\{T_n\}_{n=1}^{\infty} \) is **subspace-disk topologically transitive** with respect to \(M \) if for all nonempty sets \(U \subseteq M \) and \(V \subseteq M \), both relatively open, there exist \(n \in \mathbb{N} \) and \(\alpha \in \mathbb{C}, |\alpha| \geq 1 \) such that \(T_n^{-1}(\alpha U) \cap V \) contains a relatively open nonempty subset of \(M \).
Theorem 3.5. Let \(\{T_n\}_{n=1}^\infty \subseteq \mathcal{L}(\mathcal{H}) \) be a sequence of linear operators and let \(M \) be a nontrivial subspace of \(\mathcal{H} \). Then the followings are equivalent:

(i) The sequence of linear operators \(\{T_n\}_{n=1}^\infty \) is subspace-disk topologically transitive with respect to \(M \);

(ii) for all nonempty sets \(U \subseteq M \) and \(V \subseteq M \), both relatively open, there exist \(n \in \mathbb{N} \) and \(\alpha \in \mathbb{C} \), \(|\alpha| \geq 1 \) such that \(T_n^{-1}(\alpha U) \cap V \neq \emptyset \) and \(T_nM \subseteq M \);

(iii) for all nonempty sets \(U \subseteq M \) and \(V \subseteq M \), both relatively open, there exist \(n \in \mathbb{N} \) and \(\alpha \in \mathbb{C} \), \(|\alpha| \geq 1 \) such that \(T_n^{-1}(\alpha U) \cap V \) is nonempty open subset of \(M \).

Proof. \((i) \Rightarrow (ii)\) : Let \(U \subseteq M \) and \(V \subseteq M \) be nonempty open subsets and let \(W \) be the nonempty open subset of \(T_n^{-1}(\alpha U) \cap V \) for some \(n \in \mathbb{N} \) and \(\alpha \in \mathbb{C} \), \(|\alpha| \geq 1 \). Then \(\frac{1}{\alpha}T_nW \subseteq M \). Take \(x \in M \) and \(x_0 \in W \). Since \(W \) is open subset we may claim that \(x_0 + rx \in W \) for sufficiently small \(r > 0 \). Hence

\[
\frac{1}{\alpha}T_n(x_0) + \frac{1}{\alpha}T_n(rx) = \frac{1}{\alpha}T_n(x_0 + rx) \in M.
\]

Since \(\frac{1}{\alpha}T_n(x_0) \in M \), it is easily inferred that \(T_n(x) \in M \) and the proof is complete.

The implication \((iii) \Rightarrow (i)\) is obvious. \((ii) \Rightarrow (iii)\) is also obvious, since the sequence of operators \(\{T_n|_M\}_{n=1}^\infty \) is still continuous. \(\square \)

Corollary 3.6. Let \(\{T_n\}_{n=1}^\infty \subseteq \mathcal{L}(\mathcal{H}) \) be a sequence of linear operators and let \(M \) be a nontrivial subspace of \(\mathcal{H} \). Assume that \(\{T_n\}_{n=1}^\infty \) is subspace-disk topologically transitive with respect to \(M \). Then \(DC(\{T_n\}_{n=1}^\infty, M) \) is a dense subset of \(M \).

Proof. Let \(\{B_i\} \) be a countable open basis for the relative topology of \(M \) as a subspace of \(\mathcal{H} \). By Theorem 3.3, for each \(i, j \), there exist \(n_{i,j} \in \mathbb{N} \) and \(\alpha_{i,j} \in \mathbb{C} \) with \(|\alpha_{i,j}| \geq 1 \) such that the set \(T_{n_{i,j}}^{-1}(\alpha_{i,j}B_i) \cap B_j \) is a nonempty open subset of \(M \). Hence the set

\[
A_i = \bigcup_j T_{n_{i,j}}^{-1}(\alpha_{i,j}B_i) \cap B_j,
\]

is a nonempty, open and dense set in \(M \). By Bair’s category theorem

\[
\bigcap_i A_i = \bigcap_i \bigcup_j T_{n_{i,j}}^{-1}(\alpha_{i,j}B_i) \cap B_j,
\]

remains still dense set in \(M \). But by Theorem 3.3, we know that

\[
DC(\{T_n\}_{n=1}^\infty, M) = \bigcap_i \bigcup_n \bigcup_{|\alpha| \geq 1} T^{-1}(\alpha B_i),
\]

and the result is obtained. \(\square \)
Corollary 3.7. If \(\{T_n\}_{n=1}^{\infty} \) is subspace-disk topologically transitive for a subspace \(M \), then \(\{T_n\}_{n=1}^{\infty} \) is diskcyclic for \(M \).

Proof. This is an immediate consequence of Theorem 3.5. \(\square \)

Theorem 3.8. Let \(\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(\mathcal{H}) \) be a sequence of linear operators and let \(M \) be a nontrivial subspace of \(\mathcal{H} \). Assume that there exist \(X \) and \(Y \), dense subsets of \(M \) and an increasing sequence of positive integers \(\{n_k\}_{k=1}^{\infty} \) such that

(i) \(T_{n_k}x \to 0 \) for all \(x \in X \);

(ii) for any \(y \in Y \), there exists a sequence \(\{x_k\} \) in \(M \) such that \(x_k \to 0 \) and \(T_{n_k}x_k \to y \);

(iii) \(T_{n_k}M \subseteq M \) for each \(k \in \mathbb{N} \).

Then \(\{T_n\}_{n=1}^{\infty} \) is subspace-topologically transitive with respect to \(M \) and hence \(\{T_n\}_{n=1}^{\infty} \) is subspace-hypercyclic for \(M \).

Proof. The sketch of the proof is well-known and we follow it same as used in [11]. Let \(U \subseteq M \) and \(V \subseteq M \) be nonempty open subsets. By Theorem 3.3 we should only show that there exists \(k \in \mathbb{N} \) such that \(T_{n_k}^{-1}(U) \cap V \) is nonempty. Since \(X \) and \(Y \) are dense in \(M \), there exists \(u \in U \cap Y \) and \(v \in V \cap X \). Moreover, one may catch \(\delta > 0 \) such that the \(M \)-ball centered at \(u \) of radius \(\delta \), denoted by \(B_M(u, \delta) \), is contained in \(U \) and \(B_M(v, \delta) \subseteq V \). Now by (ii), we can choose \(k \) large enough such that there exists \(x_k \in M \) with

\[
\|T_{n_k}v\| < \frac{\delta}{2}, \quad \|x_k\| < \delta, \quad \|T_{n_k}x_k - u\| < \frac{\delta}{2}
\]

We know that \(v + x_k \in M \) and

\[
\|v + x_k - v\| = \|x_k\| < \delta,
\]

which follows that

\[
v + x_k \in B_M(v, \delta) \subseteq V.
\]

In addition, \(T_{n_k} \) leaves \(M \) invariant, so \(T_{n_k}(v + x_k) \in M \) and

\[
\|T_{n_k}(v + x_k) - u\| \leq \|T_{n_k}v\| + \|T_{n_k}x_k - u\| < \frac{\delta}{2} + \frac{\delta}{2} = \delta.
\]

It follows that

\[
T_{n_k}(v + x_k) \in B_M(u, \delta) \subseteq U.
\]

Eventually, the above arguments imply that

\[
v + x_k \in T_{n_k}^{-1}(U) \cap V,
\]

and the result is followed. \(\square \)
Theorem 3.9. Let \(\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(\mathcal{H}) \) be a sequence of linear operators and let \(M \) be a nontrivial subspace of \(\mathcal{H} \). Assume that there exist \(X \) and \(Y \), dense subsets of \(M \) and an increasing sequence of positive integers \(\{n_k\}_{k=1}^{\infty} \) such that

(i) \(\alpha T_{n_k} x \to 0 \) for all \(x \in X \);
(ii) for any \(y \in Y \), there exist a sequence \(\{x_k\} \) in \(M \) and \(\alpha \in \mathbb{C}, |\alpha| \leq 1 \) such that \(x_k \to 0 \) and \(\alpha T_{n_k} x_k \to y \);
(iii) \(T_{n_k} M \subseteq M \) for each \(k \in \mathbb{N} \).

Then \(\{T_n\}_{n=1}^{\infty} \) is subspace-disk topologically transitive with respect to \(M \) and hence \(\{T_n\}_{n=1}^{\infty} \) is subspace-diskcyclic for \(M \).

Proof. Let \(U \) and \(V \) be nonempty relatively open subsets of \(M \). By Theorem 3.5, it is enough to prove that there exist \(k \in \mathbb{N} \) and \(\alpha \in \mathbb{C}, |\alpha| \geq 1 \) such that \(T_{n_k}^{-1}(\alpha U) \cap V \) is nonempty. For each \(\epsilon > 0 \), choose \(k \) large enough such that there exist \(x_k \in M \) and \(\alpha \in \mathbb{C}, 0 < |\alpha| \leq 1 \) where

\[
\|T_{n_k} x\| < \frac{\epsilon}{2}, \quad \|x_k\| < \epsilon, \quad \|\alpha T_{n_k} x_k - y\| < \frac{\epsilon}{2},
\]

hold for every \(x \in X \) and \(y \in Y \). As mentioned in the proof of the previous theorem, \(\alpha u \in U \cap Y \), \(v \in V \cap X \) and \(\delta > 0 \) are easily found on which

\[
B_M(\alpha u, \delta) \subseteq U, \quad B_M(v, \delta) \subseteq V.
\]

Hence the above inequalities can be rewritten as follows

\[
\|T_{n_k} v\| < \frac{\delta}{2|\alpha|}, \quad \|x_k\| < \delta, \quad \|\alpha T_{n_k} x_k - \alpha u\| < \frac{\delta}{2}.
\]

But \(v + x_k \in B_M(v, \delta) \subseteq V \) and \(T_{n_k}(v + x_k) \in M \), since \(T_{n_k} \) leaves \(M \) invariant. Moreover

\[
\|\alpha T_{n_k} (v + x_k) - \alpha u\| \leq \|\alpha T_{n_k} v\| + \|\alpha T_{n_k} x_k - \alpha u\|
\]

\[
< \frac{\delta}{2} + \frac{\delta}{2} = \delta,
\]

which follows that

\[
\alpha T_{n_k} (v + x_k) \in B_M(\alpha u, \delta) \subseteq U.
\]

Therefore \(T_{n_k}^{-1}(\frac{1}{\alpha} U) \cap V \neq \emptyset \) and the proof is completed. \(\square \)

Theorem 3.10. Let \(\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(\mathcal{H}) \) be a subspace-diskcyclic (subspace-hypercyclic) sequence of mutually commuting linear operators for a nontrivial subspace \(M \) of \(\mathcal{H} \). Suppose that \(N \supseteq M \) is an invariant subspace sequence for \(\{T_n\}_{n=1}^{\infty} \) i.e., \(T_n N \subseteq N \) for each \(n \in \mathbb{N} \). Then there exists \(k \in \mathbb{N} \) such that \(\{T_n|_N : N \to N\}_{n=1}^{\infty} \) is a subspace-diskcyclic (subspace-hypercyclic) for \(T_k M \).
Proof. Suppose that
\[\{\alpha T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, 0 < |\alpha| \leq 1 \} \cap M, \]
is dense in M for a subspace-diskcyclic vector x. Take $\alpha T_k x$ in the above intersection for some $k \in \mathbb{N}$ and $\alpha \in \mathbb{C}$ with $|\alpha| \leq 1$. It follows that $T_k x \in M$. Hence $T_n T_k x \in N$ for each $n \in \mathbb{N}$, since N is invariant subspace for $\{T_n\}_{n=1}^{\infty}$. Now note that
\[\{\alpha T_n(T_k x) : n \in \mathbb{N}, \alpha \in \mathbb{C}, 0 < |\alpha| \leq 1 \} \cap T_k M \]
\[= T_k(\{\alpha T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, 0 < |\alpha| \leq 1 \}) \cap T_k M \]
\[\supseteq T_k(\{\alpha T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, 0 < |\alpha| \leq 1 \} \cap M). \]
Consequently $\{T_n|_N : N \to N\}_{n=1}^{\infty}$ is a subspace-diskcyclic for $T_k M$. □

Theorem 3.11. Let $\mathcal{H} = M \oplus N$ and P be the projection onto M along N. Let $T_n N \subseteq N$ for each $n \in \mathbb{N}$. If $\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(\mathcal{H})$ is subspace-diskcyclic for some $L \subseteq M$, then $\{PT_n|_M\}_{n=1}^{\infty}$ is subspace-diskcyclic for L.

Proof. Suppose that $\{T_n\}_{n=1}^{\infty}$ is subspace-diskcyclic for $L \subseteq M$ with diskcyclic vector $x \in L$. Then
\[\{\alpha T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, 0 < |\alpha| \leq 1 \} \cap L \]
\[\subseteq P(\{\alpha T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, 0 < |\alpha| \leq 1 \}) \cap L. \]
But we have $PT_n P = PT_n$, since every T_n leaves N invariant. This implies that
\[P(\{\alpha T_n x : n \in \mathbb{N}, \alpha \in \mathbb{C}, 0 < |\alpha| \leq 1 \}) \]
\[= \{\alpha PT_n|_M x : n \in \mathbb{N}, \alpha \in \mathbb{C}, 0 < |\alpha| \leq 1 \}. \]
Therefore, $\{\alpha PT_n|_M x : n \in \mathbb{N}, \alpha \in \mathbb{C}, 0 < |\alpha| \leq 1 \}$ is dense in L. □

Corollary 3.12. Let P be an orthogonal projection onto a reducible subspace M for $\{T_n\}_{n=1}^{\infty} \subseteq \mathcal{L}(\mathcal{H})$. If $\{T_n\}_{n=1}^{\infty}$ is subspace-diskcyclic (subspace-hypercyclic) for some $L \subseteq M$, then $\{T_n|_M\}_{n=1}^{\infty}$ is subspace-diskcyclic (subspace-hypercyclic) for L.

Proof. By following the proof of Theorem 3.11 and using the fact that $PT_n = T_n P$, the desired result is established. □

References

