ON THE REDUCIBLE M-IDEALS IN BANACH SPACES

SAJAD KHORSHIDVANDPOUR1 AND ABDOLMOHAMMAD AMINPOUR2

Abstract. The object of the investigation is to study reducible M-ideals in Banach spaces. It is shown that if the number of M-ideals in a Banach space X is $n(< \infty)$, then the number of reducible M-ideals does not exceed of $\frac{(n-2)(n-3)}{2}$. Moreover, given a compact metric space X, we obtain a general form of a reducible M-ideal in the space $C(X)$ of continuous functions on X. The intersection of two M-ideals is not necessarily reducible. We construct a subset of the set of all M-ideals in a Banach space X such that the intersection of any pair of its elements is reducible. Also, some Banach spaces X and Y for which $K(X,Y)$ is not a reducible M-ideal in $L(X,Y)$, are presented. Finally, a weak version of reducible M-ideal called semi reducible M-ideal is introduced.

1. INTRODUCTION AND PRELIMINARIES

In the theory of Banach spaces, the concept of M-ideal, since its introduction by Alfsen and Effros [1], proves to be an important tool to study geometric and isometric properties of the spaces. The notion of an M-ideal generalizes the two sided ideals in a C^*-algebra; due to the geometric characterization of the ideals in these special algebras the M-ideals have been identified with the two sided ideals [12]. As it is quoted in [2], the fact that Y is an M-ideal in X has a strong impact on both Y and X, since there are a number of important properties shared by M-ideals, but not by arbitrary subspaces. For instance, M-ideals are Hahn-Banach smooth subspaces, i.e., every norm one linear functional on an M-ideal has a unique norm one extension to X. The study of the
phenomenon of unique Hahn-Banach extensions was initiated by Phelps in [10].

Here, we have some definitions and results which will be needed in the sequel.

Definition 1.1. A closed subspace J of a Banach space X is called M-ideal if there exist a linear projection $P : X^* \to J^\perp$ such that

$$\|f\| = \|Pf\| + \|f - Pf\|,$$

for all $f \in X^*$, where $J^\perp = \{f \in X^* : f(x) = 0$ for any $x \in J\}$ is the annihilator of J in X^*. Such a projection is called a L-projection and its range a L-summand.

In [1], Alfsen and Effros proved that a closed subspace J of a Banach space X is an M-ideal if and only if it satisfies in n-ball property ($n \in \mathbb{N}, n \geq 3$). We say that a subspace J of a Banach space X satisfies the n-ball property if given n open balls B_1, \ldots, B_n for which $B_1 \cap \ldots \cap B_n \neq \emptyset$, and $B_i \cap J \neq \emptyset, i = 1, \ldots, n$, it follows that $B_1 \cap \ldots \cap B_n \cap J \neq \emptyset$.

Finite intersection of M-ideals is also an M-ideal ([6, Proposition 1.11(b)]); but it need not be true for any family of M-ideals (see [9, P.78 and 81]). Uttersrud proved in [14] that in a G-space, the intersection of any family of M-ideals is an M-ideal. Recall that a real Banach space V is said to be a G-space if there exists a compact Hausdorff space X and a set

$$S = \{(x_\alpha, y_\alpha, \lambda_\alpha) \subseteq X \times X \times [-1,1],$$

such that V is isometric to the space

$$Z = \{f \in C(X) : f(x_\alpha) = \lambda_\alpha f(y_\alpha)$ for all $(x_\alpha, y_\alpha, \lambda_\alpha) \in S\}.$$

Uttersrud also proved V is a G-space if and only if the Alfsen-Effros topology on the extreme points of the dual ball is Hausdorff. In [11, Theorem 5.2], Roy gave a partial converse of Uttersrud’s theorem. In fact, she proved that if in a L^1-predual space V the intersection of any family of M-ideals is an M-ideal, then V is a G-space.

We should be repeatedly making use of the following result.

Proposition 1.2 ([11, p.39f.]). Let X be a Banach space, $J \subset Y \subset X$ and Y be an M-ideal in X. Then J is an M-ideal in Y if and only if it is an M-ideal in X.

Reducible M-ideals are a subclass of M-ideals which introduced by Alfsen [14]. A reducible M-ideal is defined as follow.
Definition 1.3. An M-ideal J in a Banach space X is reducible if there exist M-ideals J_1 and J_2, $J \neq J_1, J_2$, such that $J = J_1 \cap J_2$. An M-ideal is irreducible if it is not reducible.

Theorem 1.4 ([14]). A Banach space X is isometric to a L^1-predual space if every irreducible M-ideal $J \neq X$ is a hyperplane (i.e. $\text{codim}J = 1$).

We recall that a Banach space X whose dual X^* is isometric to $L^1(\mu)$ for some positive measure μ is called an L^1-predual.

Let us fix some more notation. Throughout this paper, X is a real Banach space. $L(X)$ and $K(X)$ denote the spaces of linear continuous and linear compact operators, respectively. We shall always regard X as a subspace of X^{**}. Any unexplained notion can be found in [11]. We hope our results be helpful in the study of the Banach space geometry.

Now we briefly describe the paper. First of all, we prove some elementary results on reducible M-ideals (Proposition 2.1). Then an upper bound for the number of reducible M-ideals in Banach spaces which have finitely many M-ideals is given (Proposition 2.2). To obtain a lower one, we use an interesting method called R-process. Given a compact metric space X, we characterize reducible M-ideals in the space of continuous functions $C(X)$ (Theorem 2.5). An interesting result asserts that the cardinal of the set of all M-ideals in an M-embedded space X which the second dual of every closed subspace of it, is an M-ideal in X^{**} is at least \aleph_0 (Theorem 2.13). In Theorem 2.15 we collect some Banach spaces X and Y such that $K(X,Y)$ is not a reducible M-ideal in $L(X,Y)$. Also, the concept of a semi reducible M-ideal is introduced and some results are given (Definition 2.16).

2. REDUCIBLE AND SEMI REDUCIBLE M-IDEALS

By $M-\text{ideal}(X)$ and $R-M-\text{ideal}(X)$ we mean the set of all M-ideals and reducible M-ideals in a Banach space X, respectively.

In the following, we give some elementary results on reducible M-ideals.

Proposition 2.1. Let X be a Banach space.

(i) If $K \subset J$, $K \in R-M-\text{ideal}(J)$ and $J \in M-\text{ideal}(X)$, then $K \in R-M-\text{ideal}(X)$.

(ii) If $K \subset J$, $K \in R-M-\text{ideal}(J)$ and $J \in R-M-\text{ideal}(X)$, then $K \in R-M-\text{ideal}(X)$.

(iii) If $J, K \in R-M-\text{ideal}(X)$, then $J \oplus K \in R-M-\text{ideal}(X)$, where \oplus denotes the direct sum.
(iv) Let $J_1, \ldots, J_n \in R - M - \text{ideal}(X)$. If there exists k, $1 \leq k \leq n$, such that $J_k \not\subset \bigcap_{i=1, i \neq k}^n J_i$ and $\bigcap_{i=1}^n J_i \not\subset J_k$, then $\bigcap_{i=1}^n J_i \in R - M - \text{ideal}(X)$.

(v) Suppose that X is a L^1-predual G-space and $\{J_i\}_{i \in I} \subseteq R - M - \text{ideal}(X)$. If there exists $k \in I$ such that $\bigcap_{i \in I, i \neq k} J_i \not\subset J_k$ and $J_k \not\subset \bigcap_{i \in I, i \neq k} J_i$, then $\bigcap_{i \in I, i \neq k} J_i \in R - M - \text{ideal}(X)$.

Proof. (i) Firstly, Proposition 1.2 implies that $K \in M - \text{ideal}(X)$. Now, since $K \in R - M - \text{ideal}(J)$, there exist $K_1, K_2 \in M - \text{ideal}(J)$ such that $K = K_1 \cap K_2$, $K \neq K_1, K_2$. Notice that $K_1, K_2 \in M - \text{ideal}(X)$, by Proposition 1.2. This finishes the proof of this part.

(ii) It follows from (i).

(iii) Let $J = J_1 \cap J_2$, $J_1, J_2 \neq J$ and $K = K_1 \cap K_2$, $K \neq K_1, K_2$ where $J_i, K_i \in M - \text{ideal}(X)$, $i = 1, 2$. It is routine to check that $J \oplus K \in M - \text{ideal}(X)$. On the other hand, $J \oplus K = (K_1 \oplus (J_1 \cap J_2)) \cap (K_2 \oplus (J_1 \cap J_2))$ and $J \oplus K \neq K_1 \oplus (J_1 \cap J_2)$, $K_2 \oplus (J_1 \cap J_2)$. (This follows from the fact that if L, M and N are subspaces such that $L \oplus M = L \oplus N$, then $M = N$).

(iv) It follows from [12] that $\bigcap_{i=1}^n J_i \in M - \text{ideal}(X)$. We have

$$\bigcap_{i=1}^n J_i = J_k \cap \left(\bigcap_{i=1}^n \bigcap_{i \neq k} J_i \right).$$

If $\bigcap_{i=1}^n J_i = J_k$, then $J_k \subset \bigcap_{i=1}^n J_i$ which contradicts with the assumption. Similarly, if $\bigcap_{i=1}^n J_i = \bigcap_{i \neq k} J_i$, again, we get a contradiction. This shows that $\bigcap_{i=1}^n J_i \neq J_k$, $\bigcap_{i \neq k} J_i$, as desired.

(v) Since X is a L^1-predual G-space, according to Theorem 10 of [12], $\bigcap_{i \in I} J_i \in M - \text{ideal}(X)$. The rest is similar to the proof of (iv).
The following result provides an upper bound for the number of reducible M-ideals in Banach spaces which have finitely many M-ideals. To observe a lower bound of the number of reducible M-ideals see Theorem 2.10 of this paper. Here, $|M - \text{ideal}(X)|$ denotes the number of M-ideals in X.

Proposition 2.2. Let $|M - \text{ideal}(X)| = n$.

(i) If $n = 2$, then X has no reducible M-ideal.

(ii) If $n \geq 3$, then $|R - M - \text{ideal}(X)| \leq \frac{(n-2)(n-3)}{2}$.

Proof.

(i) Suppose that $|M - \text{ideal}(X)| = 2$, i.e., X has no non-trivial M-ideal. Therefore, X has no reducible M-ideal.

(ii) Since X is not reducible in itself, hence the number of pairwise selections of M-ideals which may be reducible in X, is $\frac{(n-2)(n-3)}{2}$.

Corollary 2.3. If 0 is a reducible M-ideal in X, then $|M - \text{ideal}(X)| > 3$.

Corollary 2.4. Let $1 < p < \infty$. Then $|R - M - \text{ideal}(L(l_p))| = 0$.

Proof. According to [13], $|M - \text{ideal}(X)| = 3$. Then Proposition 2.2(ii) yields that $L(l_p)$ has no reducible M-ideal.

The following result determines the general form of a reducible M-ideal in the space $C(X)$ of all continuous functions on a compact metric space X.

Theorem 2.5. Let X be a compact metric space and $J \subset C(X)$ be an M-ideal. Then J is reducible if and only if there exist closed subsets F, Z and W of X such that $F = Z \cap W$, $F \neq Z, W$ and

$$J = J_F = K_Z \cap R_W,$$

where $J_F = \{x \in C(X) : x(s) = 0 \text{ for all } s \in F\}$, $K_Z, R_W \in M - \text{ideal}(C(X))$ and are defined as J_F.

Proof. Suppose that $J \subset C(X)$ is a reducible M-ideal. There exist $K, R \in M - \text{ideal}(C(X))$ so that $J \neq K, R$ and $J = K \cap R$. As X is compact, $C_0(X) = C(X)$ and so by applying Example 1.4(a) of [13], we obtain closed subsets F, Z and W of X such that $J = J_F, K = K_Z$ and $R = R_W$. Therefore, $J_F = K_Z \cap R_W$. Hence for every $f \in C(X)$ with
\(F \subseteq Z(f) \) we have \(Z \cap W \subseteq Z(f) \) and vice versa, where \(Z(f) \) denotes the zero set of \(f \). Now by compactness of \(X \) (and so completely regularity), one can deduce that \(F = Z \cap W \) ([13]). Moreover, \(F \neq Z, W \) follows from \(J \neq K, R \).

Conversely, let \(J = J_F = K_Z \cap R_W \), where \(F, Z \) and \(W \) are closed subsets of \(X \) such that \(F = Z \cap W \), \(F \neq Z, W \). We shall show that \(J_F \neq K_Z \). In exactly the same way, \(J_F \neq R_W \).

Let \(X \) be a compact metric space. We know from ([9]) that \(C(X) \) is an \(L^1 \)-predual space. Is there a closed subset \(D \) of \(X \) such that \(X \setminus D \) is not dense in \(X \) and \(J_D \) is irreducible in \(C(X) \)? If the answer is positive, then since \(X \setminus D \) is not dense in \(X \), Corollary 2.7 of [2] infers that \(J_D \) is not a \(VN \)-subspace. Now Corollary 3.7 of [2] implies that it is not a hyperplane. Hence we may give the following conjecture.

Conjecture 2.6. The converse of Theorem 1.4 does not hold.

It follows from the definition of a reducible \(M \)-ideal that the intersection of two \(M \)-ideals need not be reducible. But there is a subclass of \(M \)-ideals so-called maximal \(M \)-ideals which their finite intersections are reducible.

Definition 2.7. An nontrivial \(M \)-ideal \(J \) in \(X \) is called to be maximal \(M \)-ideal if when \(K \) is a nontrivial \(M \)-ideal in \(X \) containing \(J \), then \(K = J \).

Example 2.8. (i) Let \(1 < p < \infty \). Then \(K(l_p) \) is only maximal \(M \)-ideal in \(L(l_p) \). (See [13]).

(ii) \(X = C[0, 1] \) has no maximal \(M \)-ideal. To see this, suppose that \(J \in M - \text{ideal}(X) \). Then there exist a closed subset \(F \) of \([0, 1]\) such that \(J = J_F \), where \(J_F \) is as Theorem 4.1. Now, let \(E \subseteq F \) be a closed subset of \([0, 1]\). Then \(K = K_E \in M - \text{ideal}(X) \) (see Example 1.4(a) of [2]). Finally, an application of Urysohn’s lemma yields that \(J \subseteq K \).

It is evident from Definition 2.7 that a maximal \(M \)-ideal cannot be reducible; but the intersection of two maximal \(M \)-ideals is reducible.

Proposition 2.9. Let \(K \) and \(J \) be maximal \(M \)-ideals in \(X \). Then \(K \cap J \in R - \text{ideal}(X) \).
ON THE REDUCIBLE M-IDEALS IN BANACH SPACES

Proof. It follows from the definition of a maximal M-ideal.

The previous proposition motivates us to construct a process that produces a subset of M-ideals in X such that every element of it, is maximal. For this purpose, let $J \in M - \text{ideal}(X)$. If there exist a nontrivial M-ideal K in X which contain J, then remove J and repeat the process for other M-ideals in X. We call this R-process. The set of all M-ideals in X which remained from the R-process denoted by $M - \text{ideal}(X)$.

We now give some useful results on $M - \text{ideal}(X)$.

Theorem 2.10. (i) The elements of $M - \text{ideal}(X)$ are precisely maximal M-ideals in X.

(ii) Let $J_1, \ldots, J_n \in M - \text{ideal}(X)$. If there exist k, $1 \leq k \leq n$, such that $\bigcap_{i=1, i \neq k}^{n} J_i \not\subset J_k$, then $\bigcap_{i=1}^{n} J_i \in R - M - \text{ideal}(X)$.

(iii) Let X be a G-space and $\{J_i\}_{i \in I} \subseteq M - \text{ideal}(X)$. If there exist $k \in I$ such that $\bigcap_{i \in I, i \neq k} J_i \not\subset J_k$, then $\bigcap_{i \in I} J_i \in R - M - \text{ideal}(X)$.

Proof. (i) It is immediate from R-process.

(ii) Suppose $J_1, \ldots, J_n \in M - \text{ideal}(X)$. We have

$$\bigcap_{i=1}^{n} J_i = J_k \bigcap_{i=1, i \neq k}^{n} J_i.$$

Since $J_k \in M - \text{ideal}(X)$, $J_k \not\subset \bigcap_{i=1, i \neq k}^{n} J_i$. Using this and the assumption, we get the desired conclusion.

(iii) Let $\{J_i\}_{i \in I}$ be a family of M-ideals in X belong to $M - \text{ideal}(X)$. Theorem 10 of [13] yields that $\bigcap_{i \in I} J_i \in M - \text{ideal}(X)$.

The rest is similar to the proof of (ii).

As an interesting consequence we infer that

Corollary 2.11. Let X be such that every nontrivial $J \in M - \text{ideal}(X)$ be maximal and $|M - \text{ideal}(X)| = 4$. Then $|R - M - \text{ideal}(X)| = 1$.

In general, the number of pairwise intersections of elements of \(M - M\text{-ideal}(X) \) does not equal to the number of all reducible \(M \)-ideals in \(X \) (for example if \(J \) is an \(M \)-ideal removed during \(R \)-process, and \(K \in M - M\text{-ideal}(X) \) such that \(K \cap J \neq K \cap L \) for every \(L \in M - M\text{-ideal}(X) \), and \(K \cap J \in R - M\text{-ideal}(X) \), then \(K \cap J \) has not derived from taking intersections of elements of \(M - M\text{-ideal}(X) \).) but it provides a lower bound for \(\text{Card}(R - M\text{-ideal}(X)) \). Therefore, we reach to the following easy corollaries. Given a \(J \in M - M\text{-ideal}(X) \), we denote by \(M_J(X) \), the set of all \(M \)-ideals in \(X \) which contained in \(J \).

Corollary 2.12. \(R - M\text{-ideal}(X) = A \cup B \cup C \), where

\[
A = \{ J \cap K : J, K \in M - M\text{-ideal}(X) \},
\]
\[
B = \{ L \cap N : L, N \in M - M\text{-ideal}(X) \setminus M - M\text{-ideal}(X), N \notin M_L(X) \text{ and } L \notin M_N(X) \},
\]
\[
C = \{ J \cap L : J \in M - M\text{-ideal}(X), L \in M - M\text{-ideal}(X) \setminus M - M\text{-ideal}(X) \text{ and } L \notin M_J(X) \}.
\]

Corollary 2.13. \(\text{Card}(R - M\text{-ideal}(X)) \geq \text{Card}A \), where \(A \) is as Corollary 2.12.

Notice that if \(X \) has no maximal \(M \)-ideal or its maximal \(M \)-ideals set is singleton, then the previous corollary does not give useful information on \(\text{Card}(R - M\text{-ideal}(X)) \). For instance, \(C[0,1] \) has no maximal \(M \)-ideal (Example 2.12) whereas it has many reducible \(M \)-ideals (Theorem 2.13). Furthermore, if every \(M \)-ideal in \(X \) is maximal, then \(\text{Card}(R - M\text{-ideal}(X)) = \text{Card}A \).

We shall use the shorthand phrase “\(X \) is \(M \)-embedded” to indicate that \(X \) is an \(M \)-ideal in its bidual. See [2], for several examples of such spaces and their geometric properties.

Next we establish a result on the cardinal of reducible \(M \)-ideals in a special \(M \)-embedded Banach space.

Theorem 2.14. Let \(X \) be an \(M \)-embedded Banach space such that \(Y^{**} \in M - M\text{-ideal}(X^{**}) \), for every closed subspace \(Y \) of \(X \). Then

\[
\text{Card}(R - M - M\text{-ideal}(X)) \geq \aleph_0.
\]

Proof. Since \(X \) is an \(M \)-ideal in its bidual, every closed subspace \(Y \) of \(X \) is an \(M \)-ideal in \(Y^{**} \) ([3, Theorem 3.4(a)]). Therefore, one can find a sequence \(\{Y_n\}_{n \in \mathbb{N}} \) of closed subspaces of \(X \) such that \(Y_n \subseteq Y_{n+1} \) and any \(Y_i, i \in \mathbb{N} \), is an \(M \)-ideal in \(Y_i^{**} \) and a closed proper subspace of \(Y_{i+1} \). Therefore, there exists a closed subspace \(Z_i \) of \(X \) such that \(Z_i \cap Y_i = Y_{i-1} \). Without loss of generality, assume that \(Z_i \neq Y_{i-1} \). On the other hand,
by assumption, Z_i and Y_i are M-ideals in X^{**} and so by Proposition 1.2, Z_i and Y_i are also M-ideals in X. Therefore, $Y_{i-1} \in M$-ideal(X). Thus $Y_{i-1} \in R - M$-ideal(X). Hence the result. □

Let us mention some situations where $K(X, Y)$ is not a reducible M-ideal in $L(X, Y)$.

Theorem 2.15. Let

(i) $X = c_0$ and $Y = l_q$ for $1 \leq q < \infty$.
(ii) $X = c_0$ and $Y = L^1$.
(iii) $X = c_0$ and $Y = L^q$ for $1 < q < \infty$.
(iv) $X = l_\infty$ and $Y = l_q$ for $q < 2$.
(v) $X = l_p$ and $Y = l_q$ for $p > q$.
(vi) $X = l_p$ and $Y = L^1$ for $p > 2$.
(vii) $X = l_p$ and $Y = L^q$ for $p > q \vee 2$.
(viii) $X = L^p$ and $Y = l_q$ for $q < p \wedge 2$.
(ix) $X = C(E)$ and $Y = l_q$ when $C(E)^*$ is isomorphic to $l_1(E)$ or $q < 2$.
(x) $X = C(E)$ and $Y = L^1$ when $C(E)^*$ is isomorphic to $l_1(E)$.
(xi) $X = C(E)$ and $Y = L^q$ ($1 < q < \infty$) when $C(E)^*$ is isomorphic to $l_1(E)$.

Then in any of the above cases, $K(X, Y) \not\in R - M$-ideal$(L(X, Y))$.

Proof. It follows from [7] that $|M$-ideal$(L(X, Y))| = 2$ in any of (i)-(xi). Now by Proposition 2.2, $|R - M$-ideal$(L(X, Y))| = 0$. □

Since the finite intersection of M-ideals is an M-ideal, one may think that if an M-ideal J is as the intersection of two subspaces, then any of intersection factors must be M-ideal. This need not be true. This motivates us to introduce the notion of a semi reducible M-ideal.

Definition 2.16. An M-ideal J in a Banach space X is semi reducible if there exist an M-ideal K and a closed subspace F such that $K, F \neq J$ and $J = K \cap F$.

We denote by $S - R - M$-ideal(X) the set of all semi reducible M-ideals in X.

Example 2.17. Let $J, Z \in M$-ideal(X) and P be the corresponding L-projection from X^* onto J^\perp. Suppose in addition that Y is a closed subspace of X such that $J \cap Y \neq J$, $J \cap Y \subset Z \subset Y$ and $P(Y^\perp) \subset Y^\perp$. Then $Y \cap J \in S - R - M$-ideal(X). (See [7, Proposition 1.16]).
An argument similar to the one used to prove Proposition 2.1 gives the following.

Proposition 2.18. Let X be a Banach space.

(i) If $J \in S - R - M - \text{ideal}(K)$ and $K \in M - \text{ideal}(X)$, then $J \in S - R - M - \text{ideal}(X)$.

(ii) If $K \subset J$, $K \in S - R - M - \text{ideal}(J)$ and $J \in S - R - M - \text{ideal}(X)$, then $K \in S - R - M - \text{ideal}(X)$.

We conclude the section with the following question.

Question 2.19. Under which condition(s) a semi reducible M-ideal is reducible?

References

1 Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
E-mail address: skhorshidvandpour@gmail.com

2 Department of Mathematics, Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
E-mail address: aminpour@scu.ac.ir