Document Type : Research Paper

**Authors**

Department of Mathematics, Faculty of Science and Arts, Duzce University, Duzce, Turkey

**Abstract**

In this paper, we establish some Trapezoid and Midpoint type inequalities for generalized fractional integrals by utilizing the functions whose second derivatives are bounded . We also give some new inequalities for $k$-Riemann-Liouville fractional integrals as special cases of our main results. We also obtain some Hermite-Hadamard type inequalities by using the condition $f^{\prime }(a+b-x)\geq f^{\prime }(x)$ for all $x\in \left[ a,\frac{a+b}{2}\right] $ instead of convexity.

**Keywords**

[1] M.U. Awan, M.A. Noor, T.S. Du and K.I. Noor, *New refinements of fractional Hermite-Hadamard inequality*, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 113(1), (2019), pp. 21-29.

[2] H. Budak, M.Z. Sarikaya and M.K. Yildiz, *Hermite-Hadamard type inequalities for F-convex function involving fractional integrals*, Filomat, 32(16),(2018), pp. 5509-5518.

[3] H. Budak, *On refinements of Hermite-Hadamard type inequalities for Riemann-Liouville fractional integral operators*, Int. J. Optim. Control. Theor. Appl. IJOCTA, 9(1), (2019), pp. 41-48.

[4] H. Budak, *On Fejer type inequalities for convex mappings utilizing fractional integrals of a function with respect to another function*, Results Math., 74(1), (2019), 29.

[5] H. Budak, H. Kara, M.Z. Sarikaya and M.E. Kiris, *New extensions of the Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals*, Miskolc Math. Notes, 21(2), 2020.

[6] H. Budak, F. Ertugral and M.Z. Sarikaya, *New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals*, An. Univ. Craiova Ser. Mat. Inform., 2020.

[7] F.X. Chen, *Extensions of the Hermite-Hadamard inequality for convex functions via fractional integrals,* J. Math. Inequal, (2016), 10(1), pp. 75-81.

[8] F.X. Chen, *On the generalization of some Hermite-Hadamard Inequalities for functions with convex absolute values of the second derivatives via fractional integrals*, Ukrainian Math. J., 12(70), (2019), pp. 1953-1965.

[9] S.S. Dragomir and C.E.M. Pearce, *Selected topics on Hermite--Hadamard inequalities and applications*, RGMIA Monographs, Victoria University, 2000. Online: https://rgmia.org/papers/monographs/Master.pdf.

[10] S.S. Dragomir, *Some inequalities of Hermite-Hadamard type for symmetrized convex functions and Riemann-Liouville fractional integrals*, RGMIA Res. Rep. Coll., 20 (2017).

[11] S.S. Dragomir, P. Cerone and A. Sofo, *Some remarks on the midpoint rule in numerical integration*, Stud. Univ. Babe¸s-Bolyai Math., XLV(1), (2000), pp. 63-74.

[12] S.S. Dragomir, P. Cerone and A. Sofo, *Some remarks on the trapezoid rule in numerical integration*, Indian J. Pure Appl. Math., 31(5), (2000), pp. 475-494.

[13] A. Gozpinar, E. Set and S.S. Dragomir, *Some generalized Hermite-Hadamard type inequalities involving fractional integral operator for functions whose second derivatives in absolute value are s-convex*, Acta Math. Univ. Comenian., 88(1), (2019), pp. 87-100.

[14] S.R. Hwang and K.L. Tseng, *New Hermite-Hadamard-type inequalities for fractional integrals and their applications*, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, 112(4), (2018), pp. 1211-1223.

[15] M. Jleli and B. Samet, *On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function*, J. Nonlinear Sci. Appl., 9(3), (2016), pp. 1252-1260.

[16] M.A. Khan, A. Iqbal, M. Suleman and Y.-M. Chu, *Hermite-Hadamard type inequalities for fractional integrals via Green's function*, J. Inequal. Appl., 2018 (2018), Article ID 161.

[17] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, *Theory and Applications of Fractional Differential Equations*, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.

[18] K. Liu, J. Wang and D. O'Regan, *On the Hermite--Hadamard type inequality for $psi$-Riemann-Liouville fractional integrals via convex functions*, J. Inequal. Appl., 2019 (2019), Article ID 27.

[19] S. Miller and B. Ross, *An introduction to the Fractional Calculus and Fractional Differential Equations*, John Wiley & Sons, USA, 1993.

[20] P.O. Mohammed and M.Z. Sarikaya, *Hermite-Hadamard type inequalities for F-convex function involving fractional integrals*, J. Inequal. Appl., 2018 (2018), Article ID 359.

[21] S. Mubeen and G.M. Habibullah, *$k$ -Fractional integrals and application*, Int. J. Contemp. Math. Sciences, 7(2), (2012), pp. 89-94.

[22] N. Minculete and F-C. Mitroi, *Fejer-type inequalities*, Aust. J. Math. Anal. Appl., 9(1), (2012), Art. 12.

[23] J.E. Pecaric, F. Proschan and Y.L. Tong, *Convex functions, partial orderings and statistical applications*, Academic Press, Boston, 1992.

[24] S. Qaisar, M. Iqbal, S. Hussain, S. Butt and M.A. Meraj, *New inequalities on Hermite-Hadamard utilizing fractional integrals*, Kragujevac J. Math., 42(1), (2018), pp. 15-27.

[25] K. Qiu and J.R. Wang, *A fractional integral identity and its application to fractional Hermite-Hadamard type inequalities*, Journal of Interdisciplinary Mathematics, 21(1), (2018), pp. 1-16.

[26] M.Z. Sarikaya and N. Aktan, *On the generalization some integral inequalities and their applications*, Math. Comput. Model., 54 (2011), pp. 2175-2182.

[27] M.Z. Sarikaya and H. Yildirim, *On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals*, Miskolc Math. Notes, 17(2), (2016), pp. 1049-1059.

[28] M.Z. Sarikaya and F. Ertugral, *On the generalized Hermite-Hadamard inequalities*, Annals of the University of Craiova-Mathematics and Computer Science Series, 47(1), (2020), pp. 193–213.

[29] M.Z. Sarikaya, *On Fejer type inequalities via fractional integrals*, J. Interdisciplinary Math., 21(1), (2018), pp. 143-155.

[30] M.Z. Sarikaya, E. Set, H. Yaldiz and N., Basak, *Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities*, Math. Comput. Model., 57 (2013), pp. 2403-2407.

[31] E. Set, A. Akdemir and B. Celik, *On generalization of Fejer type inequalities via fractional integral operator*, Filomat, 32(16), (2018), pp. 5537-5547.

[32] T. Tunc, S. Sonmezoglu and M.Z. Sarikaya, *On integral inequalities of Hermite-Hadamard type via Green function and applications*, Appl. Appl. Math., 14(1), (2019), pp. 452-462.