Document Type : Research Paper

Authors

Faculty of Mathematics Science and Statistics, University of Birjand, Birjand 9717851367, Birjand, Iran.

Abstract

For a discrete semigroup $ S $ and a left multiplier operator  $T$ on  $S$, there is a new induced semigroup $S_{T}$, related to $S$ and $T$. In this paper, we show that if $T$ is multiplier and bijective,  then the second module cohomology groups $\mathcal{H}_{\ell^1(E)}^{2}(\ell^1(S), \ell^{\infty}(S))$ and $\mathcal{H}_{\ell^1(E_{T})}^{2}(\ell^1({S_{T}}), \ell^{\infty}(S_{T}))$ are equal, where $E$ and  $E_{T}$ are subsemigroups of idempotent elements in $S$ and $S_{T}$,   respectively.  Finally, we show thet, for every odd $n\in\mathbb{N}$,  $\mathcal{H}_{\ell^1(E_{T})}^{2}(\ell^1(S_{T}),\ell^1(S_{T})^{(n)})$ is a Banach space, when $S$ is a commutative inverse semigroup.

Keywords

[1] M. Amini, Module amenability fore semigroup algebra, Semigroup Forum., 69 (2004), pp. 243-254.
[2] M. Amini and D.E. Bagha, Weak module amenability fore semigroup algebra, Semigroup Forum., 71 (2005), pp. 18-26.
[3] F.T. Birtel, Banach algebra of multiplier, Duke Math. J, 28 (1961), pp. 203-211.
[4] J. Laali, The multipliers related products in Banach algebras, Quaestion Mathematicae., 37 (2014), pp. 1-17.
[5] R. Larsen, An introduction to the theory of multipliers, Springer-verlag, New York., (1971).
[6] E. Nasrabadi, First and second module cohomology groups for non commutative semigroup algebras, Sahand Commun. Math. Anal., 17 (2020), pp. 39-47.
[7] E. Nasrabadi and A. Pourabbas, Module cohomology group of inverse semigroup algebra, Bulletin of Iranian Mathematical Society., 37 (2011), pp. 157-169.
[8] E. Nasrabadi and A. Pourabbas, Second module cohomology group of inverse semigroup algebra, Semigroup Fourm., 81 (2010), pp. 269-278.
[9] A.L. Paterson, Amenability, American Mathematical Society, (1988).
[10] M.H. Sattari and H. Shafieasl, Symmetric module and Connes amenability, Sahand Commun. Math. Anal., 5 (2017), pp. 49-59.