SOME PROPERTIES AND RESULTS FOR CERTAIN SUBCLASSES OF STARLIKE AND CONVEX FUNCTIONS

MOHAMMAD TAATI¹, SIROUS MORADI²*, AND SHAHRAM NAJAFZADEH³

Abstract. In the present paper, we introduce and investigate some properties of two subclasses $\Lambda_n(\lambda, \beta)$ and $\Lambda^*_n(\lambda, \beta)$; meromorphic and starlike functions of order β. In particular, several inclusion relations, coefficient estimates, distortion theorems and covering theorems are proven here for each of these function classes.

1. Introduction

Let A_n denotes the class of functions of the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k, \quad (n \in \mathbb{N}),$$

which are analytic on the open unit disk

$$\mathbb{U} = \{z : |z| < 1\},$$

and suppose $A_1 = A$.

For $0 \leq \beta < 1$, we denote by $S^*(\beta)$ and $K(\beta)$ the subclasses of A consisting of functions which are starlike of order β and convex of order β in \mathbb{U}, respectively, that is,

$$S^*(\beta) = \left\{ f \in A \cap S^* : \Re \left(\frac{zf'(z)}{f(z)} \right) > \beta, \quad z \in \mathbb{U} \right\},$$

$$K(\beta) = \left\{ f \in A \cap K : \Re \left(1 + \frac{zf'(z)}{f(z)} \right) > \beta, \quad z \in \mathbb{U} \right\},$$

2010 Mathematics Subject Classification. 30C45, 30C80.
Key words and phrases. Analytic functions, Starlike functions, Convex functions, Coefficient estimates.
Received: 04 September 2016, Accepted: 06 February 2017.
* Corresponding author.
where \mathcal{S}^* and \mathcal{K} denote the starlike and convex functions, respectively. We set
\[\mathcal{S}^* = \mathcal{S}^*(0), \quad \mathcal{K} = \mathcal{K}(0), \quad \mathcal{S}^*_n(\beta) = \mathcal{S}^*(\beta) \cap \mathcal{A}_n. \]
We say that $f(z) \in \mathcal{H}_n(\alpha, \beta)$ if only if $f(z)$ satisfies the following condition
\[\Re \left(\frac{\alpha z^2 f''(z)}{f(z)} + \frac{zf'(z)}{f(z)} \right) > \alpha \beta \left(\beta + \frac{n}{2} - 1 \right) + \beta - \frac{n \alpha}{2}, \]
\[(z \in \mathbb{U}, \alpha \geq 0, 0 \leq \beta < 1, f \in \mathcal{A}_n). \]
Obviously,
\[\mathcal{H}_n(0, \beta) = \mathcal{S}^*(\beta) \quad (0 \leq \beta < 1). \]
In 1983 Li and Owa \[72\] proved the following theorem.

Theorem 1.1. Suppose that $\alpha \geq 0$ and $f \in \mathcal{A}$. If
\[\Re \left(\frac{\alpha z^2 f''(z)}{f(z)} + \frac{zf'(z)}{f(z)} \right) > -\frac{\alpha}{2} \quad (z \in \mathbb{U}), \]
then $f \in \mathcal{S}^*$.

Moreover, in 2012 Ravichandran et al \[11\] gave the following modification of Theorem 1.1.

Theorem 1.2. Let $\alpha \geq 0$ and $0 \leq \beta < 1$. Then
\[\mathcal{H}_n(\alpha, \beta) \subset \mathcal{S}^*(\beta). \]

Recently Liu et al \[7\] investigated several other properties and characteristics of functions belonging to the subclasses $\mathcal{H}_n(\alpha, \beta)$. For more information about starlike functions, we refer the reader to \[10\]-\[4\] and the references therein.

In this paper, we introduce a new subclass of analytic starlike function and investigate some properties and results for certain classes.

2. Preliminaries

Let \mathcal{P}_n denotes the class of functions $p(z)$ given by
\[p(z) = 1 + \sum_{k=n}^{\infty} p_k z^k, \quad (z \in \mathbb{U}), \tag{2.1} \]
which are analytic in \mathbb{U} and let $\mathcal{P}_1 = \mathcal{P}$. For the proof of our main results in this paper, we need the following useful lemma, and we refer the reader to \[3\].

Lemma 2.1. If the function $p \in \mathcal{P}_n$ in given by (2.1) and satisfies the $\Re(p(z)) > 0$, then $|p_k| \leq 2$ ($k \leq n$).
Lemma 2.2. If the function $f \in A_n$ given by \((1.1) \), then

$$\frac{zf'(z)}{f(z)} \in P_n.$$

Let $0 \leq \lambda$, $0 \leq \beta < 1$ and $A_n(\lambda, \beta)$ denotes the class of functions $p(z) \in P_n$ satisfies the condition

$$\Re \left(\frac{\lambda z^2 p''(z)}{p(z)} + \frac{zp'(z)}{p(z)} \right) > \lambda \beta \left(\beta + \frac{n}{2} - 1 \right) + \beta - \frac{n\lambda}{2}. \tag{2.3}$$

Finally, let $A_n^+(\lambda, \beta)$ denotes the subset of $A_n(\lambda, \beta)$ such that all functions $p \in A_n(\lambda, \beta)$ have the following form:

$$p(z) = 1 - \sum_{k=n}^{\infty} p_k z^k, \quad (p_k \geq 0; k \geq n).$$

Theorem 2.3. Let $0 \leq \lambda < \frac{1}{2}$, $0 \leq \beta < 1$ and $p \in A_n(\lambda, \beta)$. Then

$$zp(z) \in H_n \left(\frac{\lambda}{1 - 2\lambda}, \beta \right).$$

Proof. Let $p(z) \in A_n(\lambda, \beta)$, then

$$\Re \left(\frac{\lambda z^2 p''(z)}{p(z)} + \frac{zp'(z)}{p(z)} \right) > \lambda \beta \left(\beta + \frac{n}{2} - 1 \right) + \beta - \frac{n\lambda}{2} \quad \text{and} \quad \beta - \frac{n\lambda}{2}.$$

Since $0 \leq \lambda < \frac{1}{2}$, then

$$\Re \left(\frac{\lambda z^2 p''(z)}{p(z)} + \frac{1}{1 - 2\lambda} \frac{zp'(z)}{p(z)} + 1 \right) > \frac{\lambda}{1 - 2\lambda} \beta \left(\beta + \frac{n}{2} - 1 \right) + \beta - \frac{n\lambda}{2} \frac{\lambda}{2}.$$

(2.3)

Obviously, $f(z) = zp(z) \in A_n$. Hence from (2.3)

$$\Re \left(\frac{\lambda z^2 f''(z)}{f(z)} + \frac{zf'(z)}{f(z)} \right) = \Re \left(\frac{\lambda z^2 p''(z)}{p(z)} + \frac{1}{1 - 2\lambda} \frac{zp'(z)}{p(z)} + 1 \right) \quad \text{and} \quad \beta - \frac{n\lambda}{2} \frac{\lambda}{2}.$$

that is,

$$f(z) \in H_n \left(\frac{\lambda}{1 - 2\lambda}, \beta \right),$$

and this completes the proof. \(\Box \)

Corollary 2.4. Let $0 \leq \lambda < \frac{1}{2}$, $0 \leq \beta < 1$ and $p(z) \in A_n(\lambda, \beta)$. Then $zp(z) \in S^*(\beta)$.
In order to derive our main results, we need the following lemmas.

Lemma 2.5 (7). Let \(f(z) \in A_n \) be given by (1.1). Then \(f(z) \in K \) if and only if
\[
\sum_{k=n+1}^{\infty} k^2|a_k| \leq 1.
\]

Lemma 2.6. Let \(0 \leq \lambda \) and \(\gamma < 0 \). Suppose also that the sequence \(\{A_k\}_{k=1}^{\infty} \) is defined by
\[
A_1 = -2\gamma, \quad \text{and} \quad A_{k+1} = \frac{-2\gamma}{(k+1)[\lambda k + 1]} \left(1 + \sum_{l=1}^{k} A_l \right), \quad k \geq 1.
\]
Then
\[
A_k = -2\gamma \prod_{j=1}^{k-1} \frac{j[\lambda(j-1) + 1] - 2\gamma}{(j+1)[\lambda j + 1]}, \quad (k \in \mathbb{N} - \{1\}).
\]

Proof. From (2.3), we have
\[
(k + 1)[\lambda k + 1]A_{k+1} = -2\gamma \left(1 + \sum_{l=1}^{k} A_l \right),
\]
and
\[
k[\lambda(k-1) + 1]A_k = -2\gamma \left(1 + \sum_{l=1}^{k-1} A_l \right).
\]
So we obtain that
\[
\frac{A_{k+1}}{A_k} = \frac{k[\lambda(k-1) + 1] - 2\gamma}{(k+1)[\lambda k + 1]}.
\]
Thus, for \(k \geq 2 \), we have
\[
A_k = \frac{A_k}{A_{k-1}} \cdot \frac{A_{k-1}}{A_{k-2}} \cdots \frac{A_2}{A_1} \cdot A_1 = -2\gamma \prod_{j=1}^{k-1} \frac{j[\lambda(j-1) + 1]}{(j+1)[\lambda j + 1]},
\]
and this completes the proof. \(\square \)

3. Properties of \(\Lambda_n(\lambda, \beta) \)

In this section, we give some properties of \(\Lambda_n(\lambda, \beta) \). At first we prove the following inclusion result.
Theorem 3.1. Let $0 \leq \lambda_2 < \lambda_1 < \frac{1}{2}$, $0 \leq \beta_1 < \beta_2 < 1$ and $1 \leq n_1 < n_2$. Then
\[
\Lambda_{n_2}(\lambda_2, \beta_2) \subset \Lambda_{n_1}(\lambda_1, \beta_1).
\]

Proof. Obviously,
\[
\Lambda_{n_2}(\lambda_2, \beta_2) \subset \Lambda_{n_1}(\lambda_2, \beta_2), \quad (1 \leq n_1 < n_2).
\]

Now we prove that
\[
\Lambda_{n_1}(\lambda_2, \beta_2) \subset \Lambda_{n_1}(\lambda_1, \beta_1).
\]

Let $p \in \Lambda_{n_1}(\lambda_2, \beta_2)$. Then
\[
\Re \left(\frac{zp'(z)}{p(z)} + \lambda_2 \frac{z^2p''(z)}{p(z)} \right) > \lambda_2 \beta_2 \left(\beta_2 + \frac{n_1}{2} - 1 \right) + \beta_2 - \frac{n_1 \lambda_2}{2}
\]
\[
> \lambda_2 \beta_1 \left(\beta_1 + \frac{n_1}{2} - 1 \right) + \beta_1 - \frac{n_1 \lambda_2}{2},
\]
which implies that $p(z) \in \Lambda_{n_1}(\lambda_2, \beta_2)$. By Corollary 2.4, we get $zp(z) \in S^*(\beta_1)$. That is
\[
\Re \left(1 + \frac{zp'(z)}{p(z)} \right) > \beta_1,
\]
or
\[
\Re \left(\frac{zp'(z)}{p(z)} - \beta_1 \right) > -1.
\]

Now, by setting $\lambda = \frac{\lambda_1}{\lambda_2}$, we have $\lambda > 1$. Therefore,
\[
\Re \left(\frac{zp'(z)}{p(z)} + \lambda \frac{z^2p''(z)}{p(z)} - \lambda_1 \beta_1 \left(\beta_1 + \frac{n_1}{2} - 1 \right) - \beta_1 + \frac{n_1 \lambda_1}{2} \right)
\]
\[
= \lambda \Re \left(\frac{zp'(z)}{p(z)} + \lambda_2 \frac{z^2p''(z)}{p(z)} - \lambda_2 \beta_1 \left(\beta_1 + \frac{n_1}{2} - 1 \right) - \beta_1 + \frac{n_1 \lambda_2}{2} \right)
\]
\[
+ (1 - \lambda) \Re \left(\frac{zp'(z)}{p(z)} - \beta_1 \right) > 0,
\]
and hence, $p(z) \in \Lambda_{n_1}(\lambda_1, \beta_1)$. \qed

Theorem 3.2. Let $0 \leq \lambda \leq \beta < \frac{1}{2}$ and $\gamma = \lambda \beta (\beta - \frac{1}{2}) + \beta - \lambda$. If $\gamma < 0$ and $p(z) \in \Lambda_1(\lambda, \beta)$, then
\[
|p_1| \leq -2\gamma,
\]
\[|p_k| \leq -2\gamma \prod_{j=1}^{k-1} \frac{j[\lambda(j - 1) + 1] - 2\gamma}{(j + 1)[\lambda j + 1]}, \quad (k \geq 2). \]

Moreover each of these inequalities is sharp, with the extremal function given by

\[p_0(z) = 1 - 2\gamma z - 2\gamma \sum_{k=2}^{\infty} \prod_{j=1}^{k-1} \frac{j[\lambda(j - 1) + 1] - 2\gamma}{(j + 1)[\lambda j + 1]} z^k. \]

Proof. Let

\[q(z) = \frac{zp'(z)}{p(z)} + \lambda \frac{z^2p''(z)}{p(z)} - \lambda \beta \left(\beta - \frac{1}{2} \right) - \beta + \frac{\lambda}{2}. \]

Then, from \(p \in \Lambda_1(\lambda, \beta) \), it is easy to see that \(p(z) \) is analytic in \(U \), \(q(0) = -\gamma > 0 \) and \(\Re[q(z)] > 0 \). Therefore,

\[h(z) = \frac{q(z)}{-\gamma} \in \mathcal{P}, \]

If we put

\[q(z) = q_0 + \sum_{k=1}^{\infty} q_k z^k, \quad (q_0 = -\gamma), \]

then by Lemma 2.1, we get

\[|q_k| \leq -2\gamma, \quad (k \in \mathbb{N}). \]

Also

\[q(z)p(z) = zp'(z) + \lambda z^2 p''(z) - \gamma p(z), \]

and so

\[\left(q_0 + \sum_{k=1}^{\infty} q_k z^k \right) \left(1 + \sum_{k=1}^{\infty} p_k z^k \right) = \lambda \sum_{k=1}^{\infty} k(k - 1)p_k z^k + \sum_{k=1}^{\infty} kp_k z^k - \gamma \left(1 + \sum_{k=1}^{\infty} p_k z^k \right). \]

Thus, noting that \(q_0 = -\gamma \), \(p_1 = q_1 \) and

\[p_{k+1} = \frac{1}{(k + 1)[\lambda k + 1]} \left(q_{k+1} + \sum_{t=1}^{k} p_t q_{k+1-t} \right). \]

Therefore

\[|p_1| \leq -2\gamma, \]
and
\[|p_{k+1}| \leq \frac{-2\gamma}{(k + 1)(\lambda k + 1)} \left(1 + \sum_{l=1}^{k} |p_l| \right), \quad (k \in \mathbb{N}). \]

Next, we define the sequence \(\{A_k\} \) as follows,
\[A_1 = -2\gamma, \]
\[A_{k+1} = \frac{-2\gamma}{(k + 1)(\lambda k + 1)} \left(1 + \sum_{l=1}^{k} |A_l| \right), \quad (k \in \mathbb{N}). \]

Hence, by the principle of mathematical induction,
\[|p_k| \leq A_k, \quad (k \in \mathbb{N}). \]

Now by using Lemma 2.6, we conclude that the conditions (2.5) hold.

Finally, in order to verify that the inequalities are sharp, we set
\[q_0(z) = -\gamma \frac{1 + z}{1 - z}, \quad (z \in \mathbb{U}). \]

Obviously, \(p_0 \in \mathcal{P} \). By using (3.3) and (3.4) and by some simple computations, we obtain that
\[q_0(z)p_0(z) = \lambda z^2 p''_0(z) + zp'_0(z) - \gamma p_0(z), \quad (z \in \mathbb{U}). \]

So, it follows that
\[p_0(z) \in \Lambda_1(\lambda, \beta), \]
which completes the proof. \(\square \)

Corollary 3.3. Let \(0 \leq \lambda \leq \beta < \frac{1}{2} \) and \(\gamma = \lambda \beta \left(\beta - \frac{1}{2} \right) + \beta - \frac{\lambda}{2} \). If \(p(z) \in \Lambda_1(\lambda, \beta) \), then
\[|p(z)| \leq 1 - 2\gamma \left(r + \sum_{k=2}^{r-1} \prod_{j=1}^{k-1} \frac{j[\lambda(j-1) + 1] - 2\gamma}{(j+1)[\lambda j + 1]} \right), \quad (|z| = r < 1, \)

and
\[|p'(z)| \leq -2\gamma \left(1 + \sum_{k=2}^{\infty} \prod_{j=1}^{k-1} \frac{j[\lambda(j-1) + 1] - 2\gamma}{(j+1)[\lambda j + 1]} \right), \quad (|z| = r < 1). \]

Moreover, each of those inequalities is sharp, with the extremal function given by (3.3).

Theorem 3.4. Let \(0 \leq \lambda \leq \beta < \frac{1}{2} \) and \(\gamma_n = \lambda \beta \left(\beta + \frac{n}{2} - 1 \right) + \beta - \frac{n\lambda}{2}. \) If \(p(z) \in \Lambda_n(\lambda, \beta) \) then
\[|p_k| \leq B_k(n), \]
(3.5)
where
\[
B_k(n) = \begin{cases}
\frac{-2\gamma_n}{k[\lambda(k-1)+1]}, & n \leq k < 2n; \\
\frac{-2\gamma_n}{k[\lambda(k-1)+1]} \left(1 + \sum_{i=n}^{k-1} B_i(n) \right), & k \geq 2n.
\end{cases}
\]

\[(3.6)\]

Proof. It is easy to see that \(\gamma_n < 0\) for all \(n\). If we set
\[
q(z) = \frac{zp'(z)}{p(z)} + \lambda \frac{z^2 p''(z)}{p(z)} - \gamma_n,
\]
then
\[
q(z) = -\gamma_n + n[\lambda(n-1)+1]p_n z^n + \cdots,
\]
is analytic in \(U\) and \(\Re[q(z)] > 0\) with \(q(0) = -\gamma_n > 0\). Hence,
\[
h(z) = \frac{q(z)}{\gamma_n} \in P_n.
\]
If
\[
q(z) = q_0 + \sum_{k=n}^{\infty} q_k z^k,
\]
then
\[
q(z)p(z) = zp'(z) + \lambda z^2 p''(z) - \gamma_n p(z),
\]
and so
\[
\left(q_0 + \sum_{k=n}^{\infty} q_k z^k \right) \left(1 + \sum_{k=n}^{\infty} p_k z^k \right) = \sum_{k=n}^{\infty} k p_k z^k + \sum_{k=n}^{\infty} \lambda k(k-1)p_k z^k
\]
\[
- \gamma_n \left(1 + \sum_{k=n}^{\infty} p_k z^k \right).
\]
Thus \(q_0 = -\gamma_n\),
\[
q_0 p_k + q_k = k[\lambda(k-1)+1]p_k - \gamma_n p_k, \quad (n \leq k < 2n),
\]
and
\[
q_0 p_k + q_k + \sum_{l=n}^{\infty} p_l q_{k+l} = k[\lambda(k-1)+1]p_k - \gamma_n p_k, \quad (k \geq 2n).
\]
Also, by Lemma 2.1
\[
|p_k| = \frac{|q_k|}{k[\lambda(k-1)+1]} \leq \frac{-2\gamma}{k[\lambda(k-1)+1]}, \quad (n \leq k < 2n),
\]
and

\[|p_k| = \frac{1}{k[\lambda(k-1) + 1]} \left[|q_k| + \sum_{l=n}^{k-n} |p_l||q_{k+l-n-l}| \right] \leq \frac{-2\gamma}{k[\lambda(k-1) + 1]} \left(1 + \sum_{l=n}^{k-n} |p_l| \right), \quad (k \geq 2n). \]

Next, by applying the method of the proof of Theorem 3.2, we have,

\[|p_k| \leq B_k(n), \quad (k \geq 2n), \]

which completes the proof. □

Corollary 3.5. Let \(0 \leq \lambda \leq \beta < \frac{1}{2} \) and the sequence \(\{B_k(n)\}_{k=1}^{\infty} \) be defined by (3.4). If \(p(z) \in \Lambda_n(\lambda, \beta) \), then

\[|p(z)| \leq 1 + \sum_{k=n}^{\infty} B_k(n)r^k, \quad (|z| = r < 1), \]

and

\[|p'(z)| \leq \sum_{k=n}^{\infty} B_k(n)r^{k-1}, \quad (|z| = r < 1). \]

A covering theorem for the class \(\Lambda_n(\lambda, \beta) \) is provided by the following result.

Theorem 3.6. Let \(0 \leq \lambda \leq \beta < \frac{1}{2} \). If \(p(z) \in \Lambda_n(\lambda, \beta) \), then the unit disk \(\mathbb{U} \) is mapped by onto a domain that contains the disk \(|w| < r_0 \), where

\[r_0 = \max \left\{ n^{-\frac{1}{n+1}}, \left(\frac{n|\lambda(n-1) + 1|}{n(n+1)|\lambda(n-1) + 1| - 2\lambda\beta(2\beta + n - 2) - \beta + n\lambda} \right)^{\frac{1}{n}} \right\}. \]

Proof. Let \(w_0 \) be any complex number such that

\[p(z) \neq w_0 \ (z \in \mathbb{U}). \]

Then \(w_0 \neq 0 \) and, by Theorem 1.2, the function

\[\frac{w_0zp(z)}{w_0 - zp(z)} = z + \frac{1}{w_0} z^2 + \cdots + \frac{1}{w_0^{n-1}} z^n + \left(p_n + \frac{1}{w_0^n} \right) z^{n+1} + \cdots, \]

is univalent with

\[\left| \frac{1}{w_0} \right| \leq 2, \quad \left| \frac{1}{w_0^{n-1}} \right| \leq n \text{ and } \left| p_n + \frac{1}{w_0^n} \right| \leq n + 1. \]

Therefore, according to Theorem 5.1, we find that

\[|w_0| \geq n^{-\frac{1}{n-1}}, \quad (n \in \mathbb{N} - \{1\}), \]
and

\[|w_0| \geq \left[\frac{n \lambda (n-1) + 1}{n(n+1)[\lambda (n-1) + 1] - 2 \gamma_n} \right]^{\frac{1}{n}}, \quad (n \in \mathbb{N}), \]

and this completes the proof. \(\square\)

Theorem 3.7. Let \(0 \leq \lambda \leq \beta < \frac{1}{2}\) and \(p(z) \in P_n\). If

\[
\sum_{k=n}^{\infty} [k(\lambda(k-1) + 1) - \gamma_n]|p_k| \leq -\gamma_n,
\]

then \(p(z) \in \Lambda_n(\lambda, \beta)\).

Proof. Suppose that

\[q(z) = \frac{zp'}{p(z)} + \lambda z^2p''(z) . \]

We prove that \(|q(z)| < -\gamma_n \quad (z \in \mathbb{U}) \).

Obviously,

\[
\sum_{k=n}^{\infty} [k(\lambda(k-1) + 1) - \gamma_n]|p_k| \geq -\gamma_n \sum_{k=n}^{\infty} |p_k|.
\]

Also, by using (4.1), we obtain that

\[
\sum_{k=n}^{\infty} |p_k| < 1,
\]
and so

\[|q(z)| = \left| \frac{\sum_{k=n}^{\infty} [k(\lambda(k-1) + 1)]p_k z^k}{1 + \sum_{k=n}^{\infty} p_k z^k} \right|. \]

\[\leq \frac{\sum_{k=n}^{\infty} [k(\lambda(k-1) + 1)] |p_k|}{1 - \sum_{k=n}^{\infty} |p_k|} \]

\[= \frac{\sum_{k=n}^{\infty} [k(\lambda(k-1) + 1) - \gamma_n] |p_k| - (\gamma_n) \sum_{k=n}^{\infty} |p_k|}{1 - \sum_{k=n}^{\infty} |p_k|} \]

\[\leq \frac{-\gamma_n - (\gamma_n) \sum_{k=n}^{\infty} |p_k|}{1 - \sum_{k=n}^{\infty} |p_k|} \]

\[= -\gamma_n. \]

Hence, \(\Re(-q(z)) \leq |q(z)| < -\gamma_n. \) Thus \(\Re(q(z)) > \gamma_n. \) That is, \(p(z) \in \Lambda_n(\lambda, \beta). \) \(\square \)

4. Properties of \(\Lambda_n^+(\lambda, \beta) \)

From Theorem 3.1 and the definition of \(\Lambda_n^+(\lambda, \beta), \) we have the following inclusion result.

Theorem 4.1. Let \(0 \leq \lambda_2 < \lambda_1 < \frac{1}{2}, \) \(0 \leq \beta_1 < \beta_2 < \frac{1}{2} \) and \(1 \leq n_1 \leq n_2. \) Then

\[\Lambda_{n_2}^+(\lambda_2, \beta_2) \subset \Lambda_{n_1}^+(\lambda_1, \beta_1). \]

In the following theorem we give a necessary and sufficient condition for an element belongs to \(\Lambda_n^+(\lambda, \beta). \)

Theorem 4.2. Let \(0 \leq \lambda < \beta < \frac{1}{2} \) and \(p(z) \in \mathcal{P}_n. \) Then \(p \in \Lambda_n^+(\lambda, \beta) \) if and only if

\[\sum_{k=n}^{\infty} [k(\lambda(k-1) + 1) - \gamma_n] p_k \leq -\gamma_n, \]
\[
\left(\gamma_n = \lambda \beta \left(\beta + \frac{n}{2} - 1 \right) + \beta - \frac{n\lambda}{2} \right).
\]

Proof. Let \(p(z) \in \mathcal{P}_n \). If \(p \) satisfies (4.1) then by Theorem 3.7, we conclude that \(p(z) \in \Lambda^+_n(\lambda, \beta) \).

Conversely, suppose that \(p \in \Lambda^+_n(\lambda, \beta) \). Then

\[
\Re \left(\frac{z p'(z)}{p(z)} + \lambda \frac{z^2 p''(z)}{p(z)} \right) = \Re \left(-\sum_{k=n}^{\infty} [k(\lambda(k-1) + 1)]p_k z^k \right) > \gamma_n,
\]

for \(z = re^{i\theta} \), \(0 \leq r < 1 \) and \(0 \leq \theta < 2\pi \). Hence

\[
-\gamma_n > \sum_{k=n}^{\infty} [k(\lambda(k-1) + 1)]p_k r^k \geq \sum_{k=n}^{\infty} 1 - \sum_{k=n}^{\infty} p_k r^k \frac{1}{1 + \sum_{k=n}^{\infty} p_k r^k},
\]

and so

\[
\sum_{k=n}^{\infty} [k(\lambda(k-1) + 1) - \gamma_n]p_k r^k < -\gamma_n.
\]

By letting \(r \to 1 \) in the above inequality, we get \(p \in \Lambda^+_n(\lambda, \beta) \) and this completes the proof. \(\square \)

Corollary 4.3. If \(p(z) \in \Lambda^+_n(\lambda, \beta) \), then

\[
p_k \leq \frac{-\gamma_n}{k(\lambda(k-1) + 1) - \gamma_n}, \quad \left(k \geq n, \ 0 \leq \lambda < \beta < \frac{1}{2} \right).
\]

Proof. This follows from Theorem 4.2, since in this case, the condition (4.1) is satisfied. \(\square \)

Theorem 4.4. Let \(0 \leq \lambda \leq \beta < 1 \), \(\gamma_n = \lambda \beta \left(\beta + \frac{n}{2} - 1 \right) + \beta - \frac{n\lambda}{2} \) and \(p(z) \in \Lambda^+_n(\lambda, \beta) \). Then

\[
1 + \frac{\gamma_n}{n(\lambda(n-1) + 1) - \gamma_n} r^n \leq |p(z)| \leq 1 - \frac{\gamma_n}{n(\lambda(n-1) + 1) - \gamma_n} r^n, \quad (|z| = r < 1)
\]

and

\[
\frac{n\gamma_n}{n(\lambda(n-1) + 1) n\gamma_n} r^{n-1} \leq |p'(z)| \leq -\frac{n\gamma_n}{n(\lambda(n-1) + 1) n\gamma_n} r^{n-1}, \quad (|z| = r < 1),
\]

\[
(4.2)
\]

and

\[
(4.3)
\]
Moreover, each of these inequalities is sharp, with the extremal function given by
\begin{equation}
 p_n(z) = 1 + \frac{\gamma_n}{n(\lambda(n-1) + 1) - \gamma_n} z^n.
\end{equation}

Proof. By using Theorem 4.2, we get
\[
 \sum_{k=n}^{\infty} p_k \leq \frac{-\gamma_n}{n(\lambda(n-1) + 1) - \gamma_n}.
\]
Therefore, the distortion inequalities in (4.2) follow from
\[
 1 - r^n \sum_{k=n}^{\infty} p_k \leq |p(z)| \leq 1 + r^n \sum_{k=n}^{\infty} p_k, \quad (|z| = r < 1).
\]
Also, since
\[
 \sum_{k=n}^{\infty} k p_k \leq \frac{-n\gamma_n}{n(\lambda(n-1) + 1) - \gamma_n},
\]
then the distortion inequalities in (4.3) follow from
\[
 -r^n \sum_{k=n}^{\infty} k p_k \leq |p'(z)| \leq r^n \sum_{k=n}^{\infty} k p_k, \quad (|z| = r < 1).
\]
This completes the proof. \(\square\)

Corollary 4.5. Let \(0 \leq \lambda \leq \beta < \frac{1}{2}\) and \(p(z) \in \Lambda_n^{+}(\lambda, \beta)\). Then the unit disk \(U\) is mapped by \(p(z)\) onto a domain that contains the disk \(|w| < r_1\), where
\[
 r_1 = \frac{n(\lambda(n-1) + 1) - 2\gamma_n}{n(\lambda(n-1) + 1) - \gamma_n}.
\]
The result is sharp, with the extremal function \(p_n(z)\) given by (4.4).

Corollary 4.6. Let \(0 \leq \lambda \leq \beta < \frac{1}{2}\). Then \(\Lambda_1^{+}(\lambda, \beta) \subset \mathcal{K}\).

Proof. The proof follows from Theorem 4.2 and Lemma 2.3. \(\square\)

Corollary 4.7. Let \(0 \leq \lambda \leq \beta < \frac{1}{2}\) and \(\gamma_n = \lambda \beta \left(\beta + \frac{n}{2} - 1\right) + \beta - \frac{n\lambda}{2}\). Suppose that
\begin{equation}
 p_{n-1}(z) = 1, \quad p_k(z) = 1 - \frac{-\gamma_n}{k(\lambda(k-1) + 1) - \gamma_n} z^k, \quad (k \geq n).
\end{equation}
Then \(p(z) \in \Lambda_n^{+}(\lambda, \beta)\) if and only if \(p(z)\) can be expressed in the following form
\[
 p(z) = \sum_{k=n-1}^{\infty} \mu_k p_k(z), \quad \left(\mu_k \geq 0, \ k \geq n \text{ and } \sum_{k=n-1}^{\infty} \mu_k = 1\right).
\]
Proof. Suppose that
\[p(z) = \sum_{k=1}^{\infty} \mu_k p_k(z) = 1 - \sum_{k=n}^{\infty} \mu_k \frac{-\gamma_n}{k(\lambda(k-1) + 1 - \gamma_k)} z^k. \]

Then, by using Theorem 4.2, we can deduce that \(p(z) \in \Lambda^+_{\mu}(\lambda, \beta) \).

Conversely, suppose that \(p(z) \in \Lambda^+_{\mu}(\lambda, \beta) \). Then, from Corollary 4.3, we have
\[p_k \leq \frac{-\gamma_n}{k(\lambda(k-1) + 1) - \gamma_n}, \quad (k \geq n). \]

Now, if we set
\[\mu_k = \frac{k(\lambda(k-1) + 1) - \gamma_n}{-\gamma_n} p_k, \quad (k \geq n), \]
and
\[\mu_{n-1} = 1 - \sum_{k=1}^{\infty} \mu_k, \]
then
\[\sum_{k=n}^{\infty} \mu_k = 1, \quad \mu_k \geq 0, \quad (k \geq n), \]
and
\[p(z) = \sum_{k=n}^{\infty} \mu_k p_k(z). \]

\[\square \]

Corollary 4.8. Let \(0 \leq \lambda \leq \beta < \frac{1}{2} \). Then the extreme points of the class \(\Lambda^+_{\mu}(\lambda, \beta) \) are the functions \(p_k(z) \) given by (4.5).

Finally, by Lemma 2.3 and Theorem 4.2, we conclude the following inclusion relation.

Theorem 4.9. Let \(0 \leq \lambda \leq \beta < \frac{1}{2} \). Then \(\Lambda^+_{\mu}(\lambda, \beta) \subset \mathcal{K} \).

References

1 Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran.
E-mail address: m.taati@pnu.ac.ir

2 Department of Mathematics, Faculty of Science, Arak University, Arak 38156-8-8349, Iran.
E-mail address: s-moradi@arak.ac.ir & sirousmoradi@gmail.com

3 Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran.
E-mail address: najafzadeh1234@yahoo.ie