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Two Equal Range Operators on Hilbert C∗-modules

Ali Reza Janfada1 and Javad Farokhi-Ostad2,∗

Abstract. In this paper, number of properties, involving invert-
ibility, existence of Moore-Penrose inverse and etc for modular op-
erators with the same ranges on Hilbert C∗-modules are presented.
Natural decompositions of operators with closed range enable us to
find some relations of the product of operators with Moore-Penrose
inverses under the condition that they have the same ranges in
Hilbert C∗-modules. The triple reverse order law and the mixed
reverse order law in the special cases are also given. Moreover, the
range property and Moore-Penrose inverse are illustrated.

1. Introduction and Preliminaries

Let X ,Y be two Hilbert A-modules and T : X → Y be an operator.
The general inverse of T is an operator S : Y → X such that TST = T
and STS = S. A category of generalized inversions is called Moore-
Penrose inverse, precisely described in Definition 1.2, and denoted by †.
Xu and Sheng [22] showed that a bounded adjointable operator between
two Hilbert A-modules admits a bounded Moore-Penrose inverse if and
only if it has closed range. Investigation of the closedness of range of an
operator and Moore-Penrose inverse are important in operator theory.
Although, in general there is no relation between (TS)† with T † and
S† except in some especial cases. If the equivalence (TS)† = S†T † is
satisfied, we say the reverse order law holds. This problem, which is
expressed as “when the reverse order law hold?” was first studied by
Bouldin and Izumino for bounded operators between Hilbert spaces,
see [1, 2, 7]. If the relationship (TSU)† = U †S†T †, is established we say
that the triple reverse order law holds. If T (SU)†V = TU †S†V we call it
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mixed reverse order law. Recently, many authors such as Sharifi [18] and
Mohammadzadeh Karizaki [10, 12, 13] studied Moore -Penrose inverse
of product of the operators with closed range in Hilbert C∗-modules and
discussed about various cases of these laws.

Furthermore, there is no relation between (STT ∗)† and T †, (T ∗)† and
S† except in some especial cases. In this paper, by using some block op-
erator matrix techniques, we obtain some relation between (STT ∗)† with
T †, (T ∗)† and S† when ran(T∗) = ran(STT∗) and ran(T) = ran(TT∗S∗).

This paper is organized as follows. In the remainder of this section,
some preliminaries are given, which are used in the following sections.
Section 2 describes the triple reverse order law and the mixed reverse
order law in the special cases and so discusses about the range property
and Moore-Penrose inverse and invertibility of some modular operators.

Throughout the paper A is a C*-algebra (not necessarily unital). A
(right) pre-Hilbert module over a C∗-algebra A is a complex linear space
X , which is an algebraic right A-module equipped with an A-valued
inner product ⟨., .⟩ : X × X → A satisfying,

(i) ⟨x, x⟩ ≥ 0, and ⟨x, x⟩ = 0 iff x = 0,
(ii) ⟨x, y + λz⟩ = ⟨x, y⟩+ λ⟨x, z⟩,
(iii) ⟨x, ya⟩ = ⟨x, y⟩a,
(iv) ⟨y, x⟩ = ⟨x, y⟩∗,

for all x, y, z ∈ X , λ ∈ C, a ∈ A. A pre-Hilbert A-module X is called
a Hilbert A-module if it is complete with respect to the norm ∥x∥ =

∥⟨x, x⟩∥
1
2 . Left Hilbert A-modules are defined in a similar way. For

example, every C∗-algebra A is a left Hilbert A-module with respect to
the inner product ⟨x, y⟩ = x∗y, and every inner product space is a left
Hilbert C-module.

Suppose that X and Y are Hilbert A-modules. Then L(X ,Y) is the
set of all maps T : X → Y for which there is a map T ∗ : Y → X such
that ⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x ∈ X , y ∈ Y. It is known that any
element T of L(X ,Y) must be a bounded linear operator, which is also
A-linear in the sense that T (xa) = (Tx)a for all x ∈ X and a ∈ A [9,
Page 8]. We use the notations L(X ) in place of L(X ,X ), and ker(·) and
ran(·) for the kernel and the range of operators, respectively.

Suppose that X is a Hilbert A-module and Y is a closed submodule
of X . We say that Y is orthogonally complemented if X = Y ⊕ Y⊥,
where Y⊥ := {y ∈ X : ⟨x, y⟩ = 0 for all x ∈ Y} denotes the orthogonal
complement of Y in X . The reader is referred to [9] for more details.

Recall that a closed submodule in a Hilbert module is not necessar-
ily orthogonally complemented; however, Lance [9] proved that certain
submodules are orthogonally complemented as follows.
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Theorem 1.1 ([9, Theorem 3.2]). Let X , Y be Hilbert A-modules and
T ∈ L(X ,Y) have closed range. Then

(i) ker(T) is orthogonally complemented in X , with complement
ran(T∗).

(ii) ran(T) is orthogonally complemented in Y, with complement
ker(T∗).

(iii) The map T ∗ ∈ L(Y,X ) has closed range.

Definition 1.2. Let T ∈ L(X ,Y). The Moore-Penrose inverse T † of T
is an element in L(Y,X ) which satisfies:

(a) T T †T = T ,
(b) T † T T † = T †,
(c) (T T †)∗ = T T †,
(d) (T † T )∗ = T †T .

Motivated by these conditions T † is unique and T †T and T T † are
orthogonal projections, in the sense that they are selfadjoint idempotent
operators. Clearly, T is Moore-Penrose invertible if and only if T ∗ is
Moore-Penrose invertible, and in this case (T ∗)† = (T †)∗. The following
theorem is known.

Theorem 1.3 ([22, Theorem 2.2]). Suppose that T ∈ L(X ,Y). Then
the Moore-Penrose inverse T † of T exists if and only if T has closed
range.

By Definition 1.2, we have

ran(T) = ran(TT†),
ker(T) = ker(T†T),

ran(T†) = ran(T†T) = ran(T∗),
ker(T†) = ker(TT†) = ker(T∗),

and by Theorem 1.1, we have

X = ker(T)⊕ ran(T†) = ker(T†T)⊕ ran(T†T),

Y = ker(T†)⊕ ran(T) = ker(TT†)⊕ ran(TT†).

A matrix form of a bounded adjointable operator T ∈ L(X ,Y) can be
induced by some natural decompositions of Hilbert C∗-modules. Indeed,
if M and N are closed orthogonally complemented submodules of X and
Y, respectively, and X = M⊕M⊥, Y = N ⊕N⊥, then T can be written
as the following 2× 2 matrix

T =

[
T1 T2

T3 T4

]
(1.1)

where, T1 ∈ L(M,N ), T2 ∈ L(M⊥,N ), T3 ∈ L(M,N⊥) and T4 ∈
L(M⊥,N⊥). Note that PM denotes the projection corresponding to
M.
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In fact T1 is the restriction of PNTPM onM , or briefly T1 = PNTPM,
and semilarly,

T2 = PNT (1−PM), T3 = (1−PN )TPM, T4 = (1−PN )T (1−PM).

The interested reader, can be referred for more details to [13].
Recall that if T ∈ L(X ,Y) has closed range, then TT † = Pran(T) and

T †T = Pran(T∗).

Lemma 1.4 ([13, Corollary 1.2]). Suppose that T ∈ L(X ,Y) has closed
range. Then T has the following matrix decomposition with respect to the
orthogonal decompositions of closed submodules X = ran(T∗) ⊕ ker(T)
and Y = ran(T)⊕ ker(T∗):

T =

[
T1 0
0 0

]
:

[
ran(T∗)
ker ker(T)

]
7→

[
ran(T)
ker(T∗)

]
,

where T1 is invertible. Moreover

T † =

[
T−1
1 0
0 0

]
:

[
ran(T)
ker(T∗)

]
7→

[
ran(T∗)
ker(T)

]
.

Definition 1.5 ([17, Definition 2.1]). Let X be a Hilbert A-modules.
An operator T ∈ L(X ) is called EP if ran(T) and ran(T∗) have the same
closure.

Obviously, by this definition we have TT † = T †T , whenever T † exists.
For further information, the interested reader is referred to [5], [6] and
the references therein. Some characterizations and related results of EP
operator can be found in [8, 11]

2. Main Results

In this section, we obtain valuable results about invertibility of oper-
ators, for which, we use the matrix form of operators and special tech-
niques. In the next discussion we shall use the following result.

Lemma 2.1 ([14, Corollary 2.4]). Suppose that T ∈ L(X ,Y) has closed
range. Then (TT ∗)† = (T ∗)†T †.

In the following theorem, we state the triple reverse order law for
especial operators.

Theorem 2.2. Suppose X , Y, Z are Hilbert A-modules, the opera-
tors S ∈ L(X ,Y), T ∈ L(Y,Z) have closed ranges and (ker(T∗T))⊥ =
ran(S). Then

(T ∗TS)† = S†T †(T ∗)†.

Proof. By Theorem 3.2 in [12] and previous Lemma, the desired result
follows. □
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Theorem 2.3. Suppose that T ∈ L(X ,Y) and S ∈ L(Y,X ) have closed
ranges and ran(T∗) = ran(STT∗) and ran(T) = ran(TT∗S∗). Then

(i) The restriction of TT ∗S∗STT ∗ on ran(T) is invertible,
(ii) STT † = T †TSTT †,

Moreover, if T †TS = T †TSTT † then
(iii) (STT ∗)(STT ∗)† = STT †S†,
(iv) ST has a closed range and (ST )†ST = T †S†ST .

Proof. (i) The operator T has the following matrix form with re-
spect to the orthogonal sum of submodules:

T =

[
T1 0
0 0

]
:

[
ran(T∗)
ker(T)

]
→

[
ran(T)
ker(T∗)

]
,

where T1 is invertible. Also S has the form[
S1 S2

S3 S4

]
:

[
ran(T)
ker(T∗)

]
→

[
ran(T∗)
ker(T)

]
.

Since ran(T) = ran(TT∗S∗), then TT † = (TT ∗S∗)(TT ∗S∗)†.
According to calculation the Moore-Penrose inverse of display
of the matrix forms of operators as in [19] and [3], we have[

T1 0
0 0

] [
T−1
1 0
0 0

]
=

[
T1 0
0 0

] [
T ∗
1 0
0 0

] [
S∗
1 S∗

3

S∗
2 S∗

4

]
×

([
T1 0
0 0

] [
T ∗
1 0
0 0

] [
S∗
1 S∗

3

S∗
2 S∗

4

])†

=

[
T1T

∗
1 S

∗
1 T1T

∗
1 S

∗
3

0 0

]([
T1T

∗
1 S

∗
1 T1T

∗
1 S

∗
3

0 0

])†

=

[
T1T

∗
1 S

∗
1 T1T

∗
1 S

∗
3

0 0

]
×
[
S1T1T

∗
1D

† 0
S3T1T

∗
1D

† 0

]
=

[
DD† 0
0 0

]
,

where, D = T1T
∗
1S

∗
1S1T1T

∗
1 + T1T

∗
1S

∗
3S3T1T

∗
1 . Therefore,

DD† = 1ran(T).

Since D is self-adjoint, then D†D = 1ran(T). Therefore, D is

invertible and D† = D−1 on ran(T).
On the other hand, since ran(T∗) = ran(STT∗), we have

(T ∗)(T ∗)† = (STT ∗)(STT ∗)†. Using the same matrix form as
above for operators T and S in the equation, we have[

T ∗
1 0
0 0

] [
(T ∗

1 )
−1 0

0 0

]
=

[
S1 S2

S3 S4

] [
T1 0
0 0

] [
T ∗
1 0
0 0

]
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×
([

S1 S2

S3 S4

] [
T1 0
0 0

] [
T ∗
1 0
0 0

])†

=

[
S1T1T

∗
1 0

S3T1T
∗
1 0

]([
S1T1T

∗
1 0

S3T1T
∗
1 0

])†

=

[
S1T1T

∗
1 0

S3T1T
∗
1 0

] [
D†T1T

∗
1 S

∗
1 D†T1T

∗
1 S

∗
3

0 0

]
=

[
S1T1T

∗
1D

†T1T
∗
1 S

∗
1 S1T1T

∗
1D

†T1T
∗
1 S

∗
3

S3T1T
∗
1D

†T1T
∗
1 S

∗
1 S3T1T

∗
1D

†T1T
∗
1 S

∗
3

]
.

Therefore,

S1T1T
∗
1D

†T1T
∗
1 S

∗
1 = 1ran(T),(2.1)

S3T1T
∗
1D

†T1T
∗
1 S

∗
3 = 0.(2.2)

Hence, the matrix representation of the operator TT ∗S∗STT ∗

is:

TT ∗S∗STT ∗ =

[
T1 0
0 0

] [
T ∗
1 0
0 0

] [
S∗
1 S∗

3

S∗
2 S∗

4

] [
S1 S2

S3 S4

]
×

[
T1 0
0 0

] [
T ∗
1 0
0 0

]
.

Since the operator D = T1T
∗
1 (S

∗
1S1 + S∗

3S3)T1T
∗
1 is invertible

on ran(T) and Pran(T) = TT †, according to what we discussed
above, (i) followes.

(ii) D is an invertible and positive operator, because

D = T1T
∗
1 S

∗
1(T1T

∗
1 S

∗
1)

∗ + T1T
∗
1 S

∗
3(T1T

∗
1S

∗
3)

∗.

Now by equation (2.2) we have

S3T1T
∗
1D

−1T1T
∗
1S

∗
3 = S3

(
T1T

∗
1D

−1T1T
∗
1

) 1
2
(
T1T

∗
1D

−1T1T
∗
1

) 1
2 S∗

3

=
(
S3(T1T

∗
1D

−1T1T
∗
1 )

1
2

)(
S3

(
T1T

∗
1D

−1T1T
∗
1

) 1
2

)∗

= 0.

Invertibility of T1T
∗
1D

−1T1T
∗
1 , implies that S3 = 0. We know

that, S3 =
(
1− Pran(T∗)

)
SPran(T) = 0 or equivalently S3 =

(1− T †T )STT † = 0 which implies that STT † = T †TSTT †.

(iii) Using T †TS = T †TSTT †, we have Pran(T∗)S = Pran(T∗)SPran(T)

or equivalently S2 = Pran(T∗)S(1−Pran(T)) = 0. From the proof
of (ii) we have S3 = 0. Since, ran(S) is closed, we get that
both ran(S1) and ran(S4) are closed [4]. Therefore, obviously
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S† =

[
S†
1 0

0 S†
4

]
is the Moore-Penrose of S =

[
S1 0
0 S4

]
.

On the other hand,

STT ∗ =

[
S1 0
0 S4

] [
T1T

∗
1 0

0 0

]
=

[
S1T1T

∗
1 0

0 0

]
,

and we have

(a)

[
S1T1T

∗
1 0

0 0

] [
(T ∗

1 )
−1T−1

1 S†
1 0

0 0

] [
S1T1T

∗
1 0

0 0

]
=

[
S1T1T

∗
1 0

0 0

]
(b)

[
(T ∗

1 )
−1T−1

1 S†
1 0

0 0

] [
S1T1T

∗
1 0

0 0

] [
(T ∗

1 )
−1T−1

1 S†
1 0

0 0

]
=

[
(T ∗

1 )
−1T−1

1 S†
1 0

0 0

]
(c)

[
S1T1T

∗
1 0

0 0

] [
(T ∗

1 )
−1T−1

1 S†
1 0

0 0

]
=

[
S1S

†
1 0

0 0

]
.

Therefore, condition (iii) in [19, Theorem 2.1] holds. By (iii)⇒(i)
of [19, Theorem 2.1], STT † = T †TSTT †.

(iv) The operators ST and T †S† have the following matrix repre-
sentations

ST =

[
S1 0
0 S4

] [
T1 0
0 0

]
(2.3)

=

[
S1T1 0
0 0

]
,

T †S† =

[
T−1
1 0
0 0

][
S†
1 0

0 S†
4

]
(2.4)

=

[
T−1
1 S†

1 0
0 0

]
.

Since we have

STT †S†ST =

[
(S1T1)T

−1
1 S†

1(S1T1) 0
0 0

]
=

[
S1T1 0
0 0

]
,
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T †S†STT †S† =

[
T−1S†

1 0
0 0

] [
S1T1 0
0 0

] [
T−1S†

1 0
0 0

]
=

[
T−1
1 S†

1 0
0 0

]

and also

(STT †S†)∗ =

[
S1T1 0
0 0

] [
T−1S†

1 0
0 0

]
=

[
S1S

†
1 0

0 0

]
,

then we conclude T †S† satisfies conditions (a), (b), (d) of Defi-
nition 1.2. Hence ST has closed range and Theorem 2.2 in [19]
implies that (ST )†ST = T †S†ST .

□

Throughout this work, we use the matrix techniques which is simpler
than functional analysis methods to machine language. Although the
direct proof could be presented.

Remark 2.4. Direct proof of (i): Let A = TT ∗S∗STT ∗TT †|ran(T). For

any x ∈ ran(T) withAx = 0, we have TT †x = x. Hence, TT ∗S∗STT ∗x =
0, which gives STT ∗x = 0. It followes from ran(T) = ran(TT∗S∗) that
ker(T∗) = ker(STT∗). So, T ∗x = 0, and thus T †x = 0. Therefore,
x = TT †x = 0, which implies that A is injective. Secondly, by assump-
tions, ran(TT∗S∗) = ran(T), which is closed. Hence,

ran(A) = ran(TT∗S∗(TT∗S∗)∗)

= ran(TT∗S∗)

= ran(T).

This shows that A is surjective.
For a direct proof of (ii) note that,

ran(STT†) = ran(STT∗)

= ran(T∗)

= ran(T†T).

Item (iii) can, also, be derived directly. By assumption, we have:
T †TS = T †TSTT † = STT †. This together with (TT ∗)(TT ∗)† = TT †

and ran(T∗) = ran(STT∗) ⊆ ran(S) yields

STT ∗(T ∗)†T †S† = STT ∗(TT ∗)†S†
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= STT †S†

= T †TSS†

= T †T

= STT ∗(STT ∗)†.

Now, by matrix form of EP operator in [17, Lemma 3.6] we have the
following corollary.

Corollary 2.5. Let T, S ∈ L(X ) be such that T and S are Moore-
Penrose invertible, and T is an EP operator. Suppose that ran(T∗) =
ran(STT∗) and ran(T) = ran(TT∗S). Then

(i) TT ∗S∗(TT ∗S∗)∗ is invertible,
(ii) ST †T = TT †ST †T ,

Moreover, if T †TS = T †TSTT † then
(iii) (STT ∗)(STT ∗)† = STT ∗(T ∗)†T †S†,
(iv) ST has a closed range and (ST )†ST = T †S†ST .

Theorem 2.6. Let X be a Hilbert A-module, T ∈ L(X ) has closed
range. If ran(T)⊕ ran(T∗) = X , then T †T + TT ∗ is an invertible oper-
ator.

Proof. Since ran(T) ⊕ ran(T∗) = X , we have TT † + T †T = 1, hence
T †T = 1 − TT †. Let C := 1 − TT † + TT ∗ is K := 1 − TT † + (TT ∗)†,
sine

KC = (1− TT † + (TT ∗)†)(1− TT † + TT ∗)

= 1− TT † + TT ∗ − TT † + TT †TT † − TT †TT ∗

+ (TT ∗)† − (TT ∗)†TT † + (TT ∗)†TT ∗

= 1− TT † + (TT ∗)† − (TT ∗)†TT † + (TT ∗)†TT ∗

= 1− TT † + (T †)∗T † − (T †)∗T †TT † + (T †)∗T †TT ∗

= 1− TT † + (T †)∗T † − (T †)∗T † + (T †)∗T †TT ∗

= 1− TT † + (T †)∗T ∗

= 1− TT † + (TT †)∗

= 1,

and

CK = (1− TT † + TT ∗)(1− TT † + (TT ∗)†)

= 1− TT † + (TT ∗)† − TT †(1− TT † + (TT ∗)†)

+ TT ∗(1− TT † + (TT ∗)†)
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= 1− TT † + (TT ∗)† − TT † + TT † − TT †(TT ∗)†

+ TT ∗ − TT ∗TT † + TT ∗(TT ∗)†

= 1− TT † + (T ∗)†T † − TT †(T ∗)†T †

+ TT ∗ − TT ∗ + TT ∗(T ∗)†T †

= 1− TT † + (T ∗)†T † − TT †(T ∗)†T † + TT ∗(T ∗)†T †

= 1− TT † + (T ∗)†T † − TT †(T ∗)†T † + TT †

= 1 + (T ∗)†T † − TT †(T ∗)†T †

= 1 + (T ∗)†T † − (T ∗)†T †

= 1.

Then 1− TT † + TT ∗ = T †T + TT ∗ is an invertible operator. □

Consider the C∗-algebra A as a Hilbert A-module. For each a ∈ A,
the operator Ta : A → A with x 7→ ax is an element of L(A). Note that
T ∗
a = Ta∗ and Ta is Moore-Penrose invertible if and only if a is Moore-

Penrose invertible and in this case (Ta)
† = Ta† (adapted from[10–13]).

In addition, since every C∗-algebra admits an approximate identity [15],
one can easily see Ta = Tb if and only if a = b. In the following, we ex-
plain how to apply the results obtained in this paper. Many researchers,
including Feng, Xu, and Vosugh [21] and Niazi Moghani [16] have pro-
vided similar applications in their works as solutions of equations of
operation.

3. Conclusion

In last decades, solving matrix equations was interesting for to math-
ematicians, and with the expansion of mathematical structures, mathe-
maticians were keen on generalizing matrix equations in new structures
regardless of application. This process is common in the development of
mathematical science. In this regard, the results of this field of mathe-
matics can be used to generalize the methods of solving matrix equations
to the context of operators. This can be seen in the research of many
mathematicians. See [16, 20, 21] for example. Since the matrix space is
finite dimensional, so if we extend these equations to the space of oper-
ators, then also it will be able to solve equations in infinite dimensional
cases. It may be assumed that the applied equations have a matrix
representation, and the generalization of equations to higher spaces is
studied merely for the abstract mathematical discussion. Therefore, in
order to show that this suspicion is false, we present here an example of
functional equations appeared in physics. The Kadomtsev-Petviashvili
operator equation vxt =

1
4

(
vxxx + 6v2x

)
x
+ 3

4vyy +
3
2 (vyvx − vxvy) as an
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example, which is different from the finite case (as mentioned in [20]).
The interested reader, for more detail and informations can be referred
to [20, 21].

Similar to the matrix form, here too many of the solutions are found
using general inverses, and in particular the Moore-Penrose inverse.
Specifically, with the help of the results obtained in Theorem 2.3 and
Corollary 2.5 and by using some block matrix technique some of that
operator equations can be solved.

Acknowledgement: The authors are grateful to the referee for
his/her careful reading and his/her useful comments.
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