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Coincidence Point Results for Different Types of

H+
b -contractions on mb-Metric Spaces

Sushanta Kumar Mohanta1∗ and Shilpa Patra2

Abstract. In this paper, we give some properties of mb-metric
topology and prove Cantor’s intersection theorem in mb-metric
spaces. Moreover, we introduce some new classes ofH+

b -contractions
for a pair of multi-valued and single-valued mappings and discuss
their coincidence points. Some examples are provided to justify the
validity of our main results.

1. Introduction

It is well known that the convergence of sequences and the continu-
ity of functions are two important concepts in real or complex analysis.
Our main task in metric spaces is to introduce an abstract formulation
of the notion of distance between two points of an arbitrary nonempty
set. It is interesting to note that most of the central concepts of real or
complex analysis can be generalized in metric spaces. Several authors
successfully extended the notion of metric spaces in different directions
such as G-metric space [22, 23, 25], cone metric space [15, 24], b-metric
space [6, 9], C∗-algebra valued metric space [19, 20]. In 1994, Matthews
[21] introduced the concept of a partial metric while studying denota-
tional semantics of data flow networks and proved the well-known Ba-
nach contraction theorem in this setting. This framework is useful to
model several complex problems in the theory of computation and have
opened new avenues for application in different fields of mathematics and
applied sciences. Thereafter, a lot of articles have been dedicated to the
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improvement of fixed point theory in various spaces (see [4, 11, 13, 16–
18, 27, 28] and references therein). In 2012, Haghi et al.[12] proved that
some fixed point results on partial metric spaces are fake generalizations.
Moreover, they showed in [14] that some fixed point generalizations are
not real generalizations. In this study, we are interested to work with
mb-metric as it is a more general setting than partial metric and utilize
the same to extend and improve some relevant results of the existing
literature.

Recently, Asadi et al. [5] extended the notion of partial metric spaces
to m-metric spaces and proved that every partial metric is an m-metric
but not every m-metric is a partial metric. Taking into account both of
m-metric and b-metric on a nonempty set, Şahin et al. [29] introduced
the notion of mb-metric to extend both m-metric and b-metric. They
showed that every m-metric and every b-metric on a nonempty set X
are mb-metrics, but the converse may not hold, in general. As a result,
it follows that the class of mb-metric spaces is strictly larger than that
of m-metric spaces (or b-metric spaces or partial metric spaces).

Let (X, d) be a metric space and CB(X) be the family of all nonempty
closed and bounded subsets of X. For E,F ∈ CB(X), define

H(E,F ) = max

{
sup
a∈E

d(a, F ), sup
b∈F

d(b, E)

}
,

where d(x,E) = inf {d(x, a) : a ∈ E}. It is known that H is a metric on
CB(X), called the Hausdorff metric induced by the metric d.

An element x in a nonempty set X is a fixed point of a multi-valued
mapping T : X −→ 2X if x ∈ Tx, where 2X is the set of all nonempty
subsets of X.

Definition 1.1. A multi-valued mapping T : X −→ CB(X) is called a
contraction if

H(Tx, Ty) ≤ kd(x, y),

for some k ∈ [0, 1) and for all x, y ∈ X.

In 1969, Nadler [26] initiated the study of fixed points for multi-valued
mappings using the Hausdorff metric and proved that every multi-valued
contraction on a complete metric space has a fixed point. Afterwards,
several authors successfully established some interesting fixed point re-
sults for multi-valued mappings with application in control theory, dif-
ferential equations and convex optimization (see [1, 3, 7, 8, 10]).

In this work, we shall establish some properties ofmb-metric and prove
Cantor’s intersection theorem in mb-metric spaces. We also introduce
different types of H+

b -contractions and discuss their coincidence points.
Our results extend several well known comparable results in the existing
literature.
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2. Basic Definitions and Results

We begin with some basic notations, definitions, and necessary results
in mb-metric spaces.

Definition 2.1 ([21]). A partial metric on a nonempty set X is a func-
tion p : X ×X → R+ such that for all x, y, z ∈ X:

(p1) p(x, x) = p(y, y) = p(x, y) ⇔ x = y,
(p2) p(x, x) ≤ p(x, y),
(p3) p(x, y) = p(y, x),
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set
and p is a partial metric on X.

Definition 2.2 ([9]). Let X be a nonempty set and s ≥ 1 be a given
real number. A function d : X ×X → R+ is said to be a b-metric on X
if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≤ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

Definition 2.3 ([5]). LetX be a nonempty set. A function µ : X×X →
R+ is called an m-metric if the following conditions are satisfied:

(m1) µ(x, x) = µ(y, y) = µ(x, y) ⇔ x = y,
(m2) mxy ≤ µ(x, y),
(m3) µ(x, y) = µ(y, x),
(m4) (µ(x, y)−mxy) ≤ (µ(x, z)−mxz) + (µ(z, y)−mzy),

where mxy := min {µ(x, x), µ(y, y)}. Then the pair (X,µ) is called an
m-metric space.

Definition 2.4 ([29]). Let X be a nonempty set. A function µb : X ×
X → R+ is called an mb-metric if the following conditions are satisfied:
for all x, y, z ∈ X,

(mb1) µb(x, x) = µb(y, y) = µb(x, y) ⇔ x = y,
(mb2) mbxy ≤ µb(x, y),
(mb3) µb(x, y) = µb(y, x),
(mb4) (µb(x, y)−mbxy) ≤ s [(µb(x, z)−mbxz) + (µb(z, y)−mbzy)],

where mbxy := min {µb(x, x), µb(y, y)}. Then the pair (X,µb) is called
an mb-metric space. The following notation is useful in the sequel:

Mbxy := max {µb(x, x), µb(y, y)} .

It is to be noted that every m-metric (or b-metric) on a nonempty set
X is also an mb-metric on X.
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Example 2.5 ([29]). Let X = [0,∞) and define a mapping by

µb(x, y) = min {xp, yp}+ |x− y|p,

where p > 1. Then µb is anmb-metric onX with the coefficient s = 2p−1.
But it is neither an m-metric nor a b-metric on X.

Proposition 2.6. Let (X,µb) be an mb-metric space and x, y, z ∈ X.
Then we have

1. 0 ≤ Mbxy +mbxy = µb(x, x) + µb(y, y);
2. 0 ≤ Mbxy −mbxy = |µb(x, x)− µb(y, y)|;
3. Mbxy −mbxy ≤ (Mbxz −mbxz) + (Mbzy −mbzy).

Remark 2.7 ([29]). Let (X,µb) be an mb-metric space with the coeffi-
cient s ≥ 1. Then the function defined by

bm(x, y) = µb(x, y)− 2mbxy +Mbxy,

is a b-metric on X with the same coefficient s.

3. Topology and Some Results

Let (X,µb) be an mb-metric space, x ∈ X and r > 0. The open ball
centered at x ∈ X with radius r > 0 is denoted by

Bµb
(x, r) = {y ∈ X : µb(x, y) < mbxy + r} .

We now visualise the open balls in the following example.

Example 3.1. Let X := [0, 1] and µb(x, y) = min
{
x2, y2

}
+ |x− y|2 on

X. Then µb is an mb-metric on X with the coefficient s = 2. In this
case for r > 0, we have

Bµb
(x0, r) = {x ∈ X : µb(x0, x) < mbx0x + r}

=
{
x ∈ X :| x− x0 |2< r

}
=

{
x ∈ X :| x− x0 |<

√
r
}

=
(
x0 −

√
r, x0 +

√
r
)
∩X.

Definition 3.2 ([29]). A subset U of an mb-metric space (X,µb) is
called open if and only if for all x ∈ U , there exists r > 0 such that
Bµb

(x, r) ⊆ U .

It can be shown that the family of all open subsets of X is a topology
on X, say τmb

. The complements of the elements of τmb
in X are called

closed sets. Even though every partial metric p is an mb-metric on a
nonempty set X and every partial metric p generates a T0 topology on
X, the topology τmb

may not be a T0 topology. The following example
supports this fact.



COINCIDENCE POINT RESULTS FOR DIFFERENT TYPES OF ... 5

Example 3.3 ([29]). Let X = [0, 1] and µb(x, y) = min {x, y}, then µb

is an mb-metric on X with coefficient s = 1. In this case for every r > 0,
we get

Bµb
(x, r) = {y ∈ X : µb(x, y) < mbxy + r}

= {y ∈ X : 0 < r}
= X,

for all x ∈ X. Therefore, τmb
= {∅, X} is not a T0 topology.

Remark 3.4. Let (X,µb) be an mb-metric space, (xn) be a sequence in
X and x ∈ X. Then (xn) converges to x with respect to(w.r.t.) τmb

if

lim
n→∞

(µb(xn, x)−mbxnx) = 0.

Suppose that lim
n→∞

(µb(xn, x)−mbxnx) = 0. We shall show that xn →
x w.r.t. τmb

. Let U ∈ τmb
and x ∈ U . Then there exists ϵ > 0 such

that x ∈ Bµb
(x, ϵ) ⊆ U . Since lim

n→∞
(µb(xn, x)−mbxnx) = 0, there exists

n0 ∈ N such that µb(xn, x) − mbxnx < ϵ for all n ≥ n0. This ensures
that xn ∈ Bµb

(x, ϵ) for all n ≥ n0 and hence xn ∈ U for all n ≥ n0.
Therefore, (xn) converges to x w.r.t. τmb

on X.

In view of the above remark, we propose the following definition of
convergence of a sequence and mb-Cauchy sequence in mb-metric spaces
instead of that introduced by Şahin et al. [29].

Definition 3.5. Let (X,µb) be an mb-metric space. Then:

1. A sequence (xn) in an mb-metric space (X,µb) converges to a
point x ∈ X if lim

n→∞
(µb(xn, x)−mbxnx) = 0.

2. A sequence (xn) in an mb-metric space (X,µb) is called an
mb-Cauchy sequence if lim

n,m→∞
(µb(xn, xm)−mbxnxm) = 0 and

lim
n,m→∞

(Mbxnxm −mbxnxm) = 0.

3. An mb-metric space (X,µb) is said to be complete if every mb-
Cauchy sequence (xn) in X converges to a point x ∈ X such
that

lim
n→∞

(µb(xn, x)−mbxnx) = 0, lim
n→∞

(Mbxnx −mbxnx) = 0.

Lemma 3.6. Let (X,µb) be an mb-metric space. Then:

(a) (xn) is an mb-Cauchy sequence in (X,µb) if and only if it is a
Cauchy sequence in the b-metric space (X, bm).

(b) An mb-metric space (X,µb) is complete if and only if the b-
metric space (X, bm) is complete. Furthermore,

lim
n→∞

bm(xn, x) = 0
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⇔
{
lim
n→∞

(µb(xn, x)−mbxnx) = 0, lim
n→∞

(Mbxnx −mbxnx) = 0
}
.

Proof. (a) Suppose that (xn) is an mb-Cauchy sequence in (X,µb).
Then,

lim
n,k→∞

(µb(xn, xk)−mbxnxk
) = 0, lim

n,k→∞
(Mbxnxk

−mbxnxk
) = 0.

Therefore,

lim
n,k→∞

(µb(xn, xk)− 2mbxnxk
+Mbxnxk

) = 0.

This gives that,

lim
n,k→∞

bm(xn, xk) = 0,

that is, (xn) is a Cauchy sequence in the b-metric space (X, bm).
Conversely, suppose that (xn) is a Cauchy sequence in the

b-metric space (X, bm). So,

lim
n,k→∞

bm(xn, xk) = 0.

i.e., lim
n,k→∞

(µb(xn, xk)−2mbxnxk
+Mbxnxk

) = 0. Since µb(xn, xk)−
mbxnxk

≥ 0 and Mbxnxk
−mbxnxk

≥ 0, it follows that

lim
n,k→∞

(µb(xn, xk)−mbxnxk
) = 0, lim

n,k→∞
(Mbxnxk

−mbxnxk
) = 0.

This proves that (xn) is an mb-Cauchy sequence in (X,µb).
(b) Let (X,µb) be complete and (xn) be a Cauchy sequence in

(X, bm). Then (xn) is an mb-Cauchy sequence in (X,µb). So
there exists x ∈ X such that

lim
n→∞

(µb(xn, x)−mbxnx) = 0, lim
n→∞

(Mbxnx −mbxnx) = 0.

Therefore, lim
n→∞

(µb(xn, x)− 2mbxnx +Mbxnx) = 0. This im-

plies that

lim
n→∞

bm(xn, x) = 0.

Thus the b-metric space (X, bm) is complete.
Conversely, let (X, bm) be a complete b-metric space and (xn)

be an mb-Cauchy sequence in (X,µb). Then (xn) is a Cauchy
sequence in (X, bm). Since (X, bm) is complete, there exists
x ∈ X such that

lim
n→∞

bm(xn, x) = lim
n→∞

(µb(xn, x)− 2mbxnx +Mbxnx)

= 0.
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Since µb(xn, x)−mbxnx ≥ 0 and Mbxnx −mbxnx ≥ 0, it follows
that

lim
n→∞

(µb(xn, x)−mbxnx) = 0, lim
n→∞

(Mbxnx −mbxnx) = 0.

This ensures that the mb-Cauchy sequence (xn) in (X,µb) con-
verges to x. So (X,µb) is complete.

□

Definition 3.7. Let (X,µb) be an mb-metric space and A ⊆ X. The
closure of A, denoted by A or cl(A) is the intersection of all closed
subsets of X which contains A. Clearly, cl(A) is always a closed set.
Moreover, A is closed if and only if A = A.

Theorem 3.8. Let (X,µb) be an mb-metric space, τmb
be the topology

defined above and A be any nonempty subset of X. Then,

(i) A is closed if and only if for any sequence (xn) in A which
converges to x, we have x ∈ A;

(ii) for any x ∈ A and for any ϵ > 0, we have Bµb
(x, ϵ) ∩A ̸= ∅.

Proof. (i) Suppose that A is a closed subset of X. Let (xn) be a
sequence in A such that xn → x as n → ∞. We shall show that
x ∈ A. If possible, suppose that x ̸∈ A. So x ∈ X \A and X \A
is open. Then there exists ϵ > 0 such that Bµb

(x, ϵ) ⊆ X \ A.
Therefore, Bµb

(x, ϵ)∩A = ∅. Since xn → x as n → ∞, we have
lim
n→∞

(µb(xn, x) −mbxnx) = 0. So for ϵ > 0, there exists n0 ∈ N
such that µb(xn, x) − mbxnx < ϵ, for all n ≥ n0. Therefore,
xn ∈ Bµb

(x, ϵ), for all n ≥ n0. Hence xn ∈ Bµb
(x, ϵ) ∩A, for all

n ≥ n0, which leads to a contradiction that Bµb
(x, ϵ) ∩ A = ∅.

So, x ∈ A.
Conversely, assume that the condition holds i.e., for any se-

quence (xn) in A which converges to x, we have x ∈ A. Let us
prove that A is closed. In fact, we have to show that X \ A is
open. So for any x ∈ X \A, we need to prove that there exists
ϵ > 0 such that Bµb

(x, ϵ) ⊆ X \ A i.e., Bµb
(x, ϵ) ∩ A = ∅. If

possible, suppose that for any ϵ > 0, we have Bµb
(x, ϵ)∩A ̸= ∅.

So for any n ≥ 1, choose xn ∈ Bµb
(x, 1

n) ∩ A. Then xn ∈ A for

all n ≥ 1 and µb(xn, x) −mbxnx < 1
n for all n ≥ 1. Therefore,

lim
n→∞

(µb(xn, x)−mbxnx) = 0 i.e., xn → x as n → ∞ in (X,µb).

Hence, by assumption x ∈ A, which is a contradiction. So for
any x ∈ X \ A, there exists ϵ > 0 such that Bµb

(x, ϵ) ⊆ X \ A
i.e., X \A is open and hence A is closed in X.
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(ii) It follows from definition that A is the smallest closed subset
which contains A. Set

A∗ = {x ∈ X : for any ϵ > 0, ∃a ∈ A such that µb(x, a) < mbxa + ϵ} .
Obviously, A ⊆ A∗. Next we prove that A∗ is closed. Let

(xn) be a sequence in A∗ such that xn → x as n → ∞. We
have to prove that x ∈ A∗. Since xn → x as n → ∞, we have
lim
n→∞

(µb(xn, x)−mbxnx) = 0.

Let ϵ > 0 be given. Then there exists n0 ∈ N such that
µb(xn, x)−mbxnx < ϵ

2s , for all n ≥ n0. As xn ∈ A∗, there exists
an ∈ A such that µb(xn, an) < mbxnan + ϵ

2s . Hence,

µb(x, an)−mbxan ≤ s(µb(x, xn)−mbxxn) + s(µb(xn, an)−mbxnan)

< s[
ϵ

2s
+

ϵ

2s
]

= ϵ, for all n ≥ n0.

In particular, µb(x, an0)−mbxan0
< ϵ, which implies that x ∈ A∗.

Therefore, by part (i), it follows that A∗ is closed and contains
A. The definition of A assures that A ⊆ A∗, which implies the
conclusion of (ii).

□

Theorem 3.9. Let (X,µb) be an mb-metric space and A ⊆ X. Then
x ∈ A iff every open set U containing x intersects A.

Proof. We shall show that x ̸∈ A if and only if there exists an open set
U containing x which does not intersect A.

If x ̸∈ A, then the set U = X \ A is an open set containing x that
does not intersect A, as desired.

Conversely, if there exists an open set U containing x which does not
intersect A, then X \U is a closed set containing A. By definition of A,
it must be the case that A ⊆ X \ U . Therefore, x cannot be in A. □

Definition 3.10. Let (X,µb) be an mb-metric space and A ⊆ X. The
diameter of A, denoted by diam(A), is defined by

diam(A) = sup {µb(x, y) : x, y ∈ A} .
Clearly, 0 ≤ diam(A) ≤ ∞.

It follows from the above definition that if A ⊆ B, then diam(A) ≤
diam(B). Hence, it is worth mentioning that diam(A) ≤ diam(A).

We now prove Cantor’s intersection theorem in mb-metric spaces.

Theorem 3.11. Let (X,µb) be a complete mb-metric space and let
(An) be a descending sequence of nonempty closed subsets of X with



COINCIDENCE POINT RESULTS FOR DIFFERENT TYPES OF ... 9

diam(An) → 0 as n → ∞. Then the intersection A =

∞∩
n=1

An consists

of exactly one point.

Proof. Let (X,µb) be a completemb-metric space and (An) be a descend-
ing sequence of nonempty closed sets with diam(An) → 0 as n → ∞.
As each An is nonempty, we choose a point xn ∈ An, for each n ∈ N.
We shall show that (xn) is mb-Cauchy in (X,µb). For m,n ∈ N with
m > n, we have Am ⊆ An which gives that xm, xn ∈ An. Therefore,

µb(xn, xm)−mbxnxm ≤ µb(xn, xm)

≤ diam(An) → 0 as n → ∞,

i.e., lim
n,m→∞

(µb(xn, xm)−mbxnxm) = 0.

Moreover,

0 ≤ µb(xn, xn)

≤ diam(An) → 0 as n → ∞,

i.e., lim
n→∞

µb(xn, xn) = 0. This gives that

lim
n,m→∞

(Mbxnxm −mbxnxm) = lim
n,m→∞

|µb(xn, xn)− µb(xm, xm)|

= 0.

Therefore, (xn) is an mb-Cauchy sequence in (X,µb). Then by hypoth-
esis, (xn) converges to a point x ∈ X such that

lim
n→∞

(µb(xn, x)−mbxnx) = 0, lim
n→∞

(Mbxnx −mbxnx) = 0.

We prove that x ∈
∞∩
n=1

An. Let U ∈ τµ and x ∈ U . Then there exists

ϵ > 0 such that Bµb
(x, ϵ) ⊆ U . As lim

n→∞
(µb(xn, x) − mbxnx) = 0, there

exists n0 ∈ N such that µb(xn, x)−mbxnx < ϵ, for all n ≥ n0. Therefore,
xn ∈ Bµb

(x, ϵ) ⊆ U , for all n ≥ n0. Again, xm ∈ An, for all m ≥ n as
xm ∈ Am ⊆ An, for all m ≥ n. So, U ∩ An ̸= ∅, for all n ∈ N. This

proves that x ∈ An = An, ∀n, An being closed. Hence x ∈
∞∩
n=1

An.

Now, let y ∈
∞∩
n=1

An with y ̸= x. Then for each n ∈ N, we have

x, y ∈ An. Therefore,

0 ≤ µb(x, y)

≤ diam(An) → 0 as n → ∞
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which gives that µb(x, y) = 0. Similarly,

0 ≤ µb(x, x) ≤ diam(An), 0 ≤ µb(y, y) ≤ diam(An)

imply that µb(x, x) = 0 and µb(y, y) = 0. Therefore, µb(x, x) = µb(y, y) =
µb(x, y) and so, x = y, a contradiction. This proves that A contains ex-
actly one point. □
Lemma 3.12 ([29]). Let (X,µb) be an mb-metric space, A ⊆ X, x ∈ X
and µb(x,A) = inf {µb(x, a) : a ∈ A}. If µb(x,A) = 0 then x ∈ A.

4. Coincidence Point Results

In this section, we prove some coincidence point results for a pair of
multi-valued and single-valued mappings in mb-metric spaces.

Definition 4.1. A subset A of an mb-metric space (X,µb) is called
bounded if there exist x ∈ X and r > 0 such that a ∈ Bµb

(x, r), i.e.,
µb(a, x) < mbax + r, for all a ∈ A.

Let CBµb
(X) denote the family of all nonempty, bounded and closed

subsets in anmb-metric space (X,µb). For every P,Q ∈ CBµb
(X), define

H+
b (P,Q) =

1

2
[δb(P,Q) + δb(Q,P )],

where

δb(P,Q) = sup {µb(a,Q) : a ∈ P} , µb(a,Q) = inf {µb(a, b) : b ∈ Q} .

Proposition 4.2. For any P,Q,R ∈ CBµb
(X) and for any x, y ∈ X,

the following are true

(a) H+
b (P, P ) = δb(P, P );

(b) H+
b (P,Q) = H+

b (Q,P );

(c) H+
b (P,Q) = 0 ⇒ P = Q;

(d)
(
µb(x, P )− sup

a∈P
mbxa

)
≤ s

[
(µb(x, y)−mbxy) +

(
µb(y, P )− inf

a∈P
mbya

)]
.

Proof. (a) and (b) are immediate consequences of the definition of
H+

b .
(c) We first prove that δb(P,Q) = 0 ⇒ P ⊆ Q. Suppose that

δb(P,Q) = 0. Then

δb(P,Q) = sup {µb(a,Q) : a ∈ P} = 0

⇒ µb(a,Q) = 0, ∀a ∈ P

⇒ a ∈ Q = Q, ∀a ∈ P

⇒ P ⊆ Q.

Now, H+
b (P,Q) = 0 ⇒ δb(P,Q) = 0 and δb(Q,P ) = 0 ⇒ P ⊆

Q and Q ⊆ P ⇒ P = Q.
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(d) We have

µb(x, P )− sup
a∈P

mbxa

= inf
a∈P

µb(x, a) + inf
a∈P

(−mbxa)

≤ inf
a∈P

[µb(x, a)−mbxa]

≤ µb(x, a)−mbxa, ∀a ∈ P

≤ s [µb(x, y)−mbxy + µb(y, a)−mbya] , ∀a ∈ P

≤ s

[
µb(x, y)−mbxy + µb(y, a)− inf

a∈P
mbya

]
, ∀a ∈ P.

This implies that

µb(x, P )− sup
a∈P

mbxa ≤ s

[
(µb(x, y)−mbxy) +

(
µb(y, P )− inf

a∈P
mbya

)]
.

□
Remark 4.3. In general, H+

b (P, P ) ̸= 0 for P ∈ CBµb
(X). It can be

verified through the following example.

Example 4.4. Let X := [0, 1] and µb(x, y) = |x − y|2 + min
{
x2, y2

}
on X. Then µb is an mb-metric on X with the coefficient s = 2. Let
P =

[
0, 13

]
∈ CBµb

(X). Then,

H+
b (P, P ) = δb(P, P )

= sup
α∈[0, 13 ]

µb

(
α,

[
0,

1

3

])
.

Now,

µb

(
α,

[
0,

1

3

])
= inf

{
µb(α, x) : x ∈

[
0,

1

3

]}
= inf

{
| α− x |2 +min

{
α2, x2

}
: x ∈

[
0,

1

3

]}
= inf

{
g(x) : x ∈

[
0,

1

3

]}
,

where g(x) =| α− x |2 +min
{
α2, x2

}
. We note that g is monotonic de-

creasing on [0, α2 ] and monotonic increasing on [α2 ,
1
3 ]. Further note that

g(0) = α2, g(α2 ) =
α2

2 , g(13) =
(
1
3 − α

)2
+α2. So, inf

{
g(x) : x ∈

[
0, 13

]}
=

α2

2 . Therefore,

H+
b (P, P ) = sup

α∈[0, 13 ]
µb

(
α,

[
0,

1

3

])
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= sup
α∈[0, 13 ]

α2

2

=
1

18
̸= 0.

Definition 4.5. Let (X,µb) be an mb-metric space and T : X →
CBµb

(X) and f : X → X be two mappings. If y = fx ∈ Tx for
some x in X, then x is called a coincidence point of T and f and y is
called a point of coincidence of T and f .

Definition 4.6. Let (X,µb) be an mb-metric space with the coefficient
s ≥ 1. Then a multi-valued mapping T : X → CBµb

(X) and a single-
valued mapping f : X → X are called Banach type H+

b -contraction if
the following conditions hold:

(C1) there exists k ∈ [0, 1
s2
) such that

H+
b (Tx, Ty) ≤ kµb(fx, fy), ∀x, y ∈ X,

(C2) for every x ∈ X and ϵ > 0, there exist fy ∈ Tx, fz ∈ Ty such
that

µb(fz, fz) ≤ µb(fy, fz) ≤ H+
b (Tx, Ty) + ϵ.

Definition 4.7. Let (X,µb) be an mb-metric space with the coefficient
s ≥ 1. Then a multi-valued mapping T : X → CBµb

(X) and a single-
valued mapping f : X → X are called Kannan type H+

b -contraction if
the conditions (C2) and the following hold:

(K1) there exists k ∈ [0, 1
(s+1)2

) such that

H+
b (Tx, Ty) ≤ k[µb(fx, Tx) + µb(fy, Ty)], ∀x, y ∈ X.

Definition 4.8. Let (X,µb) be an mb-metric space with the coefficient
s ≥ 1. Then a multi-valued mapping T : X → CBµb

(X) and a single-
valued mapping f : X → X are called Fisher type H+

b -contraction if the
conditions (C2) and the following hold:

(F1) there exists k ≥ 0 satisfying (s2 + 2s)
√
k < 1 such that

H+
b (Tx, Ty) ≤ k[µb(fx, Ty) + µb(fy, Tx)], ∀x, y ∈ X.

Theorem 4.9. Let (X,µb) be an mb-metric space with the coefficient
s ≥ 1 and the mappings T : X → CBµb

(X) and f : X → X be Banach
type H+

b -contraction with the constant k ∈ [0, 1
s2
). If f(X) is a complete

mb-metric subspace of X, then f and T have a point of coincidence
u(say) in f(X) with µb(u, u) = 0.
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Proof. Let ϵ > 0 be given and take x0 ∈ X to be arbitrary. By condition
(C2), there exist fx1 ∈ Tx0, fx2 ∈ Tx1 such that

µb(fx2, fx2) ≤ µb(fx1, fx2) ≤ H+
b (Tx0, Tx1) + ϵ.

At this step, we could choose ϵ depending on x0 and x1. In general, by
condition (C2), there exist fxn ∈ Txn−1, fxn+1 ∈ Txn such that

(4.1) µb(fxn+1, fxn+1) ≤ µb(fxn, fxn+1) ≤ H+
b (Txn−1, Txn) + ϵ,

for all n ∈ N. At each step, we could choose ϵ depending on xn−1 and xn.
Observe that if H+

b (Txn−1, Txn) = 0 for some n, then Txn−1 = Txn and

the proof is complete. Therefore, we assume that H+
b (Txn−1, Txn) > 0

for all n ∈ N.
We set ϵ =

(
1√
k
− 1

)
H+

b (Txn−1, Txn) > 0. Then by using condi-

tions (4.1) and (C1), we obtain that

µb(fxn, fxn+1) ≤ H+
b (Txn−1, Txn) +

(
1√
k
− 1

)
H+

b (Txn−1, Txn)

=
1√
k
H+

b (Txn−1, Txn)

≤ 1√
k
kµb(fxn−1, fxn)

=
√
kµb(fxn−1, fxn),

for all n ∈ N. Thus, we have

(4.2) µb(fxn, fxn+1) ≤ rµb(fxn−1, fxn),

where r =
√
k < 1

s .
By repeated use of condition (4.2), we get

0 ≤ µb(fxn, fxn+1)(4.3)

≤ rnµb(fx0, fx1).

Taking limit as n → ∞ in the above ineqality, we obtain

lim
n→∞

µb(fxn, fxn+1) = 0.

Let µ∗
b(fxn, fxm) = µb(fxn, fxm)−mbfxnfxm .

For m,n ∈ N with m > n, by using conditions (4.3) and (mb4) we
have

µ∗
b(fxn, fxm) ≤ s [µ∗

b(fxn, fxn+1) + µ∗
b(fxn+1, fxm)]

≤ sµ∗
b(fxn, fxn+1)

+ s2 [µ∗
b(fxn+1, fxn+2) + µ∗

b(fxn+2, fxm)]
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...

≤ sµ∗
b(fxn, fxn+1) + s2µ∗

b(fxn+1, fxn+2) + · · ·
+ sm−n−1µ∗

b(fxm−2, fxm−1)

+ sm−n−1µ∗
b(fxm−1, fxm)

≤ sµb(fxn, fxn+1) + s2µb(fxn+1, fxn+2) + · · ·
+ sm−n−1µb(fxm−2, fxm−1)

+ sm−nµb(fxm−1, fxm)

≤
(
srn + s2rn+1 + · · ·+ sm−nrm−1

)
µb(fx0, fx1)

= srn
[
1 + sr + (sr)2 + · · ·+ (sr)m−n−1

]
µb(fx0, fx1)

≤ srn

1− sr
µb(fx0, fx1).

Since r < 1, it follows that

lim
n,m→∞

(µb(fxn, fxm)−mbfxnfxm) = 0.

On the other hand, we have

0 ≤ µb(fxn+1, fxn+1)

≤ µb(fxn, fxn+1)

≤ rnµb(fx0, fx1).

Taking limit as n → ∞ in the above ineqality, we obtain

lim
n→∞

µb(fxn, fxn) = 0.

As 0 ≤ Mbfxnfxm − mbfxnfxm = |µb(fxn, fxn)− µb(fxm, fxm)|, it
follows that

lim
n,m→∞

(Mbfxnfxm −mbfxnfxm) = 0.

Thus, (fxn) is an mb-Cauchy sequence in f(X). Since f(X) is mb-
complete, there exists u ∈ f(X) such that fxn → u = ft for some
t ∈ X.

So it must be the case that

lim
n→∞

(µb(fxn, u)−mbfxnu) = 0, lim
n→∞

(Mbfxnu −mbfxnu) = 0.

As lim
n→∞

mbfxnu = 0, it follows that lim
n→∞

µb(fxn, u) = 0.

Moreover, Mbfxnu − mbfxnu = |µb(fxn, fxn)− µb(u, u)| implies that
µb(u, u) = 0. Since

1

2
{δb(Txn, T t) + δb(Tt, Txn)} = H+

b (Txn, T t)
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≤ kµb(fxn, ft),

it follows that

lim inf
n→∞

{δb(Txn, T t) + δb(Tt, Txn)} = 0.

Since

lim inf
n→∞

δb(Txn, T t) + lim inf
n→∞

δb(Tt, Txn)

≤ lim inf
n→∞

{δb(Txn, T t) + δb(Tt, Txn)} ,

we have

lim inf
n→∞

δb(Txn, T t) + lim inf
n→∞

δb(Tt, Txn) = 0.

This implies that

lim inf
n→∞

δb(Txn, T t) = 0.

By using part (d) of Proposition 4.2, we have

µb(ft, T t)− sup
x∈Tt

mbftx ≤ s

[ (
µb(ft, fxn+1)−mbftfxn+1

)
+

(
µb(fxn+1, T t)− inf

x∈Tt
mbfxn+1x

)]
≤ s

(
µb(ft, fxn+1)−mbftfxn+1

)
+ sµb(fxn+1, T t)

≤ s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ sδb(Txn, T t).

Since mbftx = 0, it follows that

µb(ft, T t) ≤ s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ sδb(Txn, T t).

As lim
n→∞

(µb(fxn+1, ft)−mbfxn+1ft) = 0, we get

µb(ft, T t) ≤ lim inf
n→∞

[
s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ sδb(Txn, T t)

]
= lim

n→∞
s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ lim inf

n→∞
sδb(Txn, T t)

= 0.

This gives that µb(ft, T t) = 0 and hence u = ft ∈ Tt, Tt being a closed
subset of X. This shows that u is a point of coincidence of f and T in
f(X) with µb(u, u) = 0. □

Corollary 4.10. Let (X,µb) be a complete mb-metric space with the
coefficient s ≥ 1. Suppose that T : X → CBµb

(X) satisfies the following
conditions:
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(C1)́ there exists k ∈ [0, 1
s2
) such that

H+
b (Tx, Ty) ≤ kµb(x, y), ∀x, y ∈ X,

(C2)́ for every x ∈ X and ϵ > 0, there exist y ∈ Tx, z ∈ Ty such that

µb(z, z) ≤ µb(y, z) ≤ H+
b (Tx, Ty) + ϵ.

Then T has a fixed point u(say) in X with µb(u, u) = 0.

Proof. The proof follows from Theorem 4.9 by taking f = I, the identity
map on X. □

Theorem 4.11. Let (X,µb) be an mb-metric space with the coefficient
s ≥ 1 and the mappings T : X → CBµb

(X) and f : X → X be Kannan
type H+

b -contraction with the constant k ∈ [0, 1
(s+1)2

). If f(X) is a com-

plete mb-metric subspace of X, then f and T have a point of coincidence
u(say) in f(X) with µb(u, u) = 0.

Proof. Let ϵ > 0 be given and take x0 ∈ X to be arbitrary. As in the
proof of Theorem 4.9, we can construct a sequence (xn) in X such that
fxn+1 ∈ Txn and

(4.4) µb(fxn+1, fxn+1) ≤ µb(fxn, fxn+1) ≤ H+
b (Txn−1, Txn) + ϵ,

for all n ∈ N. At each step, we could choose ϵ depending on xn−1 and xn.
Observe that if H+

b (Txn−1, Txn) = 0 for some n, then Txn−1 = Txn and

the proof is complete. Therefore, we assume that H+
b (Txn−1, Txn) > 0

for all n ∈ N.

We set ϵ =
(

1√
k
− 1

)
H+

b (Txn−1, Txn) > 0. Then by using conditions

(4.4) and (K1), we get

µb(fxn, fxn+1) ≤ H+
b (Txn−1, Txn) +

(
1√
k
− 1

)
H+

b (Txn−1, Txn)

=
1√
k
H+

b (Txn−1, Txn)

≤ 1√
k
k [µb(fxn−1, Txn−1) + µb(fxn, Txn)]

≤
√
k [µb(fxn−1, fxn) + µb(fxn, fxn+1)] ,

for all n ∈ N. Thus, we have

µb(fxn, fxn+1) ≤
√
k

1−
√
k
µb(fxn−1, fxn)(4.5)

= rµb(fxn−1, fxn),
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where r =
√
k

1−
√
k
< 1

s , since k ∈
[
0, 1

(s+1)2

)
.

By repeated use of Condition (4.5), we get

0 ≤ µb(fxn, fxn+1)

≤ rnµb(fx0, fx1).

Taking limit as n → ∞ in the above ineqality, we obtain

lim
n→∞

µb(fxn, fxn+1) = 0.

Proceeding similarly to that of Theorem 4.9, it follows that

lim
n,m→∞

(µb(fxn, fxm)−mbfxnfxm) = 0.

On the other hand, we have

0 ≤ µb(fxn+1, fxn+1)

≤ µb(fxn, fxn+1)

≤ rnµb(fx0, fx1).

Taking limit as n → ∞ in the above ineqality, we obtain

lim
n→∞

µb(fxn, fxn) = 0.

As Mbfxnfxm −mbfxnfxm = |µb(fxn, fxn)− µb(fxm, fxm)|, we have

lim
n,m→∞

(Mbfxnfxm −mbfxnfxm) = 0.

Thus, (fxn) is an mb-Cauchy sequence in f(X). Since f(X) is mb-
complete, there exists u ∈ f(X) such that fxn → u = ft for some
t ∈ X. So it must be the case that

lim
n→∞

(µb(fxn, u)−mbfxnu) = 0, lim
n→∞

(Mbfxnu −mbfxnu) = 0.

As lim
n→∞

mbfxnu = 0, it follows that lim
n→∞

µb(fxn, u) = 0.

Moreover, Mbfxnu − mbfxnu = |µb(fxn, fxn)− µb(u, u)| implies that
µb(u, u) = 0.

Since

1

2
{δb(Txn, T t) + δb(Tt, Txn)} = H+

b (Txn, T t)

≤ k[µb(fxn, Txn) + µb(ft, T t)]

≤ k[µb(fxn, fxn+1) + µb(ft, T t)],

it follows that

lim inf
n→∞

{δb(Txn, T t) + δb(Tt, Txn)} ≤ 2kµb(ft, T t).
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Since

lim inf
n→∞

δb(Txn, T t) ≤ lim inf
n→∞

δb(Txn, T t) + lim inf
n→∞

δb(Tt, Txn)

≤ lim inf
n→∞

{δb(Txn, T t) + δb(Tt, Txn)} ,

≤ 2kµb(ft, T t),

we have

lim inf
n→∞

δb(Txn, T t) ≤ 2kµb(ft, T t).

By using part (d) of Proposition 4.2, we have

µb(ft, T t)− sup
x∈Tt

mbftx ≤ s

[ (
µb(ft, fxn+1)−mbftfxn+1

)
+

(
µb(fxn+1, T t)− inf

x∈Tt
mbfxn+1x

)]
≤ s

(
µb(ft, fxn+1)−mbftfxn+1

)
+ sµb(fxn+1, T t)

≤ s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ sδb(Txn, T t).

Since mbftx = 0, it follows that

µb(ft, T t) ≤ s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ sδb(Txn, T t).

As lim
n→∞

(µb(fxn+1, ft)−mbfxn+1ft) = 0, we get

µb(ft, T t) ≤ lim inf
n→∞

[
s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ sδb(Txn, T t)

]
= lim

n→∞
s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ lim inf

n→∞
sδb(Txn, T t)

≤ 2ksµb(ft, T t).

Therefore,

µb(ft, T t) ≤ 2ksµb(ft, T t).

If µb(ft, T t) > 0, then we have 1 ≤ 2ks, which is a contradiction as

k ∈
[
0, 1

(s+1)2

)
implies that ks < s

s+1 .
1

s+1 < 1
s+1 ≤ 1

2 . So, µb(ft, T t) = 0.

Thus, by Lemma 3.12, u = ft ∈ Tt = Tt. This shows that u is a point
of coincidence of f and T in f(X) with µb(u, u) = 0. □
Corollary 4.12. Let (X,µb) be a complete mb-metric space with the co-
efficient s ≥ 1. Suppose that T : X → CBµb

(X) satisfies the conditions

(C2)́ and the following:

(K1)́ there exists k ∈ [0, 1
(s+1)2

) such that

H+
b (Tx, Ty) ≤ k[µb(x, Tx) + µb(y, Ty)], ∀x, y ∈ X.

Then T has a fixed point u(say) in X with µb(u, u) = 0.
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Proof. The proof follows from Theorem 4.11 by taking f = I. □
Theorem 4.13. Let (X,µb) be an mb-metric space with the coefficient
s ≥ 1 and the mappings T : X → CBµb

(X) and f : X → X be Fisher

type H+
b -contraction with the constant k ≥ 0 satisfying (s2+2s)

√
k < 1.

If f(X) is a complete mb-metric subspace of X, then f and T have a
point of coincidence u(say) in f(X) with µb(u, u) = 0.

Proof. Let ϵ > 0 be given and take x0 ∈ X to be arbitrary. As in the
proof of Theorem 4.9, we can construct a sequence (xn) in X such that
fxn+1 ∈ Txn and

(4.6) µb(fxn+1, fxn+1) ≤ µb(fxn, fxn+1) ≤ H+
b (Txn−1, Txn) + ϵ,

for all n ∈ N. At each step, we could choose ϵ depending on xn−1 and xn.
Observe that if H+

b (Txn−1, Txn) = 0 for some n, then Txn−1 = Txn and

the proof is complete. Therefore, we assume that H+
b (Txn−1, Txn) > 0

for all n ∈ N.
We set ϵ =

(
1√
k
− 1

)
H+

b (Txn−1, Txn) > 0. Then by using conditions

(4.6) and (F1), we get

µb(fxn, fxn+1) ≤ H+
b (Txn−1, Txn) +

(
1√
k
− 1

)
H+

b (Txn−1, Txn)

(4.7)

=
1√
k
H+

b (Txn−1, Txn)

≤ 1√
k
k[µb(fxn−1, Txn) + µb(fxn, Txn−1)]

≤
√
k[µb(fxn−1, fxn+1) + µb(fxn, fxn)]

≤
√
k
[
s(µb(fxn−1, fxn)−mbfxn−1fxn)

+ s(µb(fxn, fxn+1)−mbfxnfxn+1)

+mbfxn−1fxn+1 + µb(fxn, fxn)
]

≤ r[s(µb(fxn−1, fxn) + µb(fxn, fxn+1)) +An],

where r =
√
k and

An = µb(fxn, fxn)− smbfxn−1fxn − smbfxnfxn+1 +mbfxn−1fxn+1 .

Moreover, we have

0 ≤ µb(fxn+1, fxn+1)(4.8)

≤ µb(fxn, fxn+1).

Now, we consider the following two cases:
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Case-I: If µb(fxn, fxn) ≤ µb(fxn−1, fxn−1) or

µb(fxn, fxn) ≤ µb(fxn+1, fxn+1),

then

An = µb(fxn, fxn)− smbfxn−1fxn − smbfxnfxn+1 +mbfxn−1fxn+1(4.9)

≤ mbfxn−1fxn+1

≤ µb(fxn+1, fxn+1).

Combining conditions (4.7), (4.8) and (4.9), we obtain

µb(fxn, fxn+1) ≤ r
[
sµb(fxn−1, fxn) + sµb(fxn, fxn+1)

+ µb(fxn+1, fxn+1)
]

≤ r
[
sµb(fxn−1, fxn) + sµb(fxn, fxn+1)

+ µb(fxn, fxn+1)
]
.

This gives that

(4.10) µb(fxn, fxn+1) ≤
rs

1− rs− r
µb(fxn−1, fxn),

where 0 ≤ r1 =
rs

1−rs−r < 1
s , since 0 ≤ (s2 + 2s)

√
k < 1.

Case-II: µb(fxn, fxn) ≥ µb(fxn−1, fxn−1) or

µb(fxn, fxn) ≥ µb(fxn+1, fxn+1).

If µb(fxn, fxn) ≥ µb(fxn−1, fxn−1), then

mbfxn−1fxn = µb(fxn−1, fxn−1).

Therefore,

An = µb(fxn, fxn)− smbfxn−1fxn − smbfxnfxn+1 +mbfxn−1fxn+1

= µb(fxn, fxn)− sµb(fxn−1, fxn−1)− smbfxnfxn+1

+mbfxn−1fxn+1

≤ µb(fxn, fxn)− sµb(fxn−1, fxn−1)− smbfxnfxn+1

+ µb(fxn−1, fxn−1)

≤ µb(fxn, fxn).

If µb(fxn, fxn) ≥ µb(fxn+1, fxn+1), then

mbfxnfxn+1 = µb(fxn+1, fxn+1).

Therefore,

An = µb(fxn, fxn)− smbfxn−1fxn − smbfxnfxn+1 +mbfxn−1fxn+1



COINCIDENCE POINT RESULTS FOR DIFFERENT TYPES OF ... 21

= µb(fxn, fxn)− smbfxn−1fxn − sµb(fxn+1, fxn+1)

+mbfxn−1fxn+1

≤ µb(fxn, fxn)− smbfxn−1fxn − sµb(fxn+1, fxn+1)

+ µb(fxn+1, fxn+1)

≤ µb(fxn, fxn).

Thus, in this case

An = µb(fxn, fxn)− smbfxn−1fxn − smbfxnfxn+1 +mbfxn−1fxn+1

(4.11)

≤ µb(fxn, fxn).

Combining conditions (4.7), (4.8) and (4.11), we obtain

µb(fxn, fxn+1) ≤ r[sµb(fxn−1, fxn) + sµb(fxn, fxn+1) + µb(fxn, fxn)]

≤ r[sµb(fxn−1, fxn) + sµb(fxn, fxn+1) + µb(fxn−1, fxn)].

This gives that

(4.12) µb(fxn, fxn+1) ≤
rs+ r

1− rs
µb(fxn−1, fxn),

where 0 ≤ r2 =
rs+r
1−rs < 1

s , since 0 ≤ (s2 + 2s)
√
k < 1.

Let α = max {r1, r2}. Then 0 ≤ α < 1
s and we get from conditions

(4.10) and (4.12) that

(4.13) µb(fxn, fxn+1) ≤ αµb(fxn−1, fxn).

By repeated use of Condition (4.13), we get

0 ≤ µb(fxn, fxn+1)

≤ αnµb(fx0, fx1),

for all n ∈ N.
Taking limit as n → ∞ in the above ineqality, we obtain

lim
n→∞

µb(fxn, fxn+1) = 0.

Proceeding similarly to that of Theorem 4.9, it follows that

lim
n,m→∞

(µb(fxn, fxm)−mbfxnfxm) = 0.

Moreover, it follows from Condition (4.8) that

(4.14) lim
n→∞

µb(fxn, fxn) = 0.

By an argument similar to that used in Theorem 4.11, we can prove
that

lim
n,m→∞

(Mbfxnfxm −mbfxnfxm) = 0.
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Thus, (fxn) is an mb-Cauchy sequence in f(X). Since f(X) is mb-
complete, there exists u ∈ f(X) such that fxn → u = ft for some
t ∈ X.

So it must be the case that

lim
n→∞

(µb(fxn, u)−mbfxnu) = 0, lim
n→∞

(Mbfxnu −mbfxnu) = 0.

As lim
n→∞

mbfxnu = 0, it follows that lim
n→∞

µb(fxn, u) = 0.

Moreover, Mbfxnu − mbfxnu = |µb(fxn, fxn)− µb(u, u)| implies that
µb(u, u) = 0.

We obtain by using conditions (4.14), (F1) and part (d) of Proposition
4.2 that

1

2
{δb(Txn, T t) + δb(Tt, Txn)} = H+

b (Txn, T t)

≤ k[µb(fxn, T t) + µb(ft, Txn)]

≤ k[µb(fxn, T t) + µb(ft, fxn+1)]

≤ k
[
s(µb(fxn, ft)−mbfxnft)

+ s(µb(ft, T t)− inf
x∈Tt

mbftx)

+ sup
x∈Tt

mbfxnx + µb(ft, fxn+1)
]

≤ k
[
s(µb(fxn, ft) + µb(ft, T t))

+ sup
x∈Tt

mbfxnx + µb(ft, fxn+1)
]

≤ k
[
s(µb(fxn, ft) + µb(ft, T t))

+ µb(fxn, fxn) + µb(ft, fxn+1)
]
.

This implies that

lim inf
n→∞

{δb(Txn, T t) + δb(Tt, Txn)} ≤ 2ksµb(ft, T t).

Since

lim inf
n→∞

δb(Txn, T t) ≤ lim inf
n→∞

δb(Txn, T t) + lim inf
n→∞

δb(Tt, Txn)

≤ lim inf
n→∞

{δb(Txn, T t) + δb(Tt, Txn)} ,

≤ 2ksµb(ft, T t),

we have

lim inf
n→∞

δb(Txn, T t) ≤ 2ksµb(ft, T t).
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Again, by using part (d) of Proposition 4.2, we have

µb(ft, T t)− sup
x∈Tt

mbftx ≤ s
[
(µb(ft, fxn+1)−mbftfxn+1)

+ (µb(fxn+1, T t)− inf
x∈Tt

mbfxn+1x)
]

≤ s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ sµb(fxn+1, T t)

≤ s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ sδb(Txn, T t).

Since mbftx = 0, it follows that

µb(ft, T t) ≤ s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ sδb(Txn, T t).

As lim
n→∞

(µb(fxn+1, ft)−mbfxn+1ft) = 0, we get

µb(ft, T t) ≤ lim inf
n→∞

[
s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ sδb(Txn, T t)

]
= lim

n→∞
s
(
µb(ft, fxn+1)−mbftfxn+1

)
+ lim inf

n→∞
sδb(Txn, T t)

≤ 2ks2µb(ft, T t).

Therefore,
µb(ft, T t) ≤ 2ks2µb(ft, T t).

If µb(ft, T t) > 0, then we have 1 ≤ 2ks2, which is a contradiction since

0 ≤ (s2 + 2s)
√
k < 1 implies that 2ks2 = 2s

√
k.
√
ks < 2s

√
k < 1. So,

µb(ft, T t) = 0.
Thus, by Lemma 3.12, u = ft ∈ Tt = Tt. This shows that u is a

point of coincidence of f and T in f(X). □
Corollary 4.14. Let (X,µb) be a complete mb-metric space with the co-
efficient s ≥ 1. Suppose that T : X → CBµb

(X) satisfies the conditions

(C2)́ and the following:

(F1)́ there exists k ≥ 0 satisfying (s2 + 2s)
√
k < 1 such that

H+
b (Tx, Ty) ≤ k[µb(x, Ty) + µb(y, Tx)], ∀x, y ∈ X.

Then T has a fixed point u(say) in X with µb(u, u) = 0.

Proof. The proof follows from Theorem 4.13 by taking f = I. □
Remark 4.15. As a particular case of this study, we can obtain various
important fixed point results for multi-valued and single-valued map-
pings in m-metric and b-metric spaces.

The following examples support our main results.

Example 4.16. Let X = {0, 1, 5} and µb(x, y) = |x−y|2+min
{
x2, y2

}
on X. Then (X,µb) is a complete mb-metric space with the coefficient
s = 3

2 . Let T : X → CBµb
(X) be defined by T0 = T1 = {0} , T5 =
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{0, 1} and f : X → X be defined by f0 = 1, f1 = 0, f5 = 5. Then
f(X)(= X) is a complete mb-metric space. It is easy to verify that each
Tx is a closed and bounded subset of X. We now verify condition (C1)
and consider the following possible cases:

Case-I: x, y ∈ {0, 1}.
In this case,H+

b (Tx, Ty) = H+
b ({0} , {0}) = µb(0, 0) = 0 ≤ 1

25µb(fx, fy).
Case-II: x ∈ {0, 1} , y = 5.
Then,

H+
b (Tx, Ty) = H+

b ({0} , {0, 1})

=
1

2
[δb({0} , {0, 1}) + δb({0, 1} , {0})]

=
1

2
[0 + 1]

=
1

2
.

If x = 0, y = 5, then µb(fx, fy) = µb(1, 5) = 17 and so

H+
b (Tx, Ty) =

1

2

=
1

34
µb(fx, fy)

<
1

25
µb(fx, fy).

If x = 1, y = 5, then µb(fx, fy) = µb(0, 5) = 25 and so

H+
b (Tx, Ty) =

1

2

=
1

50
µb(fx, fy)

<
1

25
µb(fx, fy).

Case-III: x = y = 5.
Then,

H+
b (Tx, Ty) = δb(T5, T5)

= sup {µb(z, T5) : z ∈ T5}
= max {µb(0, T5), µb(1, T5)}
= 1

=
1

25
µb(fx, fy).

Thus, we have

H+
b (Tx, Ty) ≤ kµb(fx, fy),
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for all x, y ∈ X with k = 1
25 ∈ [0, 1

s2
).

We now verify condition (C2).
For x ∈ X, ϵ > 0, there exist fy = f1 ∈ Tx, fz = f1 ∈ Ty such that

µb(fz, fz) = µb(fy, fz)

= 0

< H+
b (Tx, Ty) + ϵ.

Therefore, all the conditions of Theorem 4.9 are fulfilled and 0 is a
point of coincidence of f and T in f(X) with µb(0, 0) = 0.

Example 4.17. Let X =
{

1
3n : n ∈ N

}
∪{0, 1} and µb(x, y) = |x−y|2+

min
{
x2, y2

}
on X. Then (X,µb) is a complete mb-metric space with

the coefficient s = 2. Let T : X → CBµb
(X) be defined by

Tx =


{
0, 1

3n+3

}
, x = 1

3n , n ∈ N ∪ {0} ,

{0} , x = 0,

and fx = x
3 for all x ∈ X. Then f(X) = X \{1} is a complete mb-metric

subspace of (X,µb) and each Tx is a closed and bounded subset of X.
We now verify condition (K1) and consider the following possible cases:

Case-I: x = 1
3n , n ∈ N ∪ {0} , y = 0.

Then, fx = 1
3n+1 , fy = 0, Tx =

{
0, 1

3n+3

}
, T y = {0} and

H+
b (Tx, Ty) = H+

b

({
0,

1

3n+3

}
, {0}

)
=

1

2

[
δb

({
0,

1

3n+3

}
, {0}

)
+ δb

(
{0} ,

{
0,

1

3n+3

})]
=

1

2

[
1

32n+6
+ 0

]
=

1

2
· 1

32n+6
.

Moreover,

µb(fx, Tx) = µb

(
1

3n+1
,

{
0,

1

3n+3

})
= min

{
1

32(n+1)
,

∣∣∣∣ 1

3n+1
− 1

3n+3

∣∣∣∣2 + 1

32(n+3)

}

= min

{
1

32(n+1)
,

65

32(n+1).34

}
=

65

32(n+1).34
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=
65

32n+6
,

and µb(fy, Ty) = µb(0, {0}) = 0.
Therefore,

H+
b (Tx, Ty) =

1

2
.

1

32n+6

=
1

130
[µb(fx, Tx) + µb(fy, Ty)].

Case-II: x = y = 1
3n , n ∈ N ∪ {0}.

Then, fx = fy = 1
3n+1 , Tx = Ty =

{
0, 1

3n+3

}
and

H+
b (Tx, Ty) = H+

b

({
0,

1

3n+3

}
,

{
0,

1

3n+3

})
= δb

({
0,

1

3n+3

}
,

{
0,

1

3n+3

})
=

1

32n+6
,

µb(fx, Tx) = µb(fy, Ty)

= µb

(
1

3n+1
,

{
0,

1

3n+3

})
=

65

32n+6
.

Thus,

H+
b (Tx, Ty) =

1

32n+6

=
1

130
[µb(fx, Tx) + µb(fy, Ty)].

If x = y = 0, then

H+
b (Tx, Ty) = H+

b ({0} , {0})
= 0

=
1

130
[µb(fx, Tx) + µb(fy, Ty)].

Case-III: x = 1
3n , y = 1

3m ,m, n ∈ N ∪ {0} ,m > n.

Then, fx = 1
3n+1 , fy = 1

3m+1 , Tx =
{
0, 1

3n+3

}
, T y =

{
0, 1

3m+3

}
and

δb(Tx, Ty) = δb

({
0,

1

3n+3

}
,

{
0,

1

3m+3

})
= sup

{
µb

(
t,

{
0,

1

3m+3

})
: t ∈

{
0,

1

3n+3

}}
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= max

{
µb

(
0,

{
0,

1

3m+3

})
, µb

(
1

3n+3
,

{
0,

1

3m+3

})}
= max

{
0, µb

(
1

3n+3
,

{
0,

1

3m+3

})}
= µb

(
1

3n+3
,

{
0,

1

3m+3

})
= min

{
1

32n+6
,

∣∣∣∣ 1

3n+3
− 1

3m+3

∣∣∣∣2 + 1

32m+6

}

=

∣∣∣∣ 1

3n+3
− 1

3m+3

∣∣∣∣2 + 1

32m+6
,

since

∣∣∣∣ 1

3n+3
− 1

3m+3

∣∣∣∣2 + 1

32m+6
=

1

32n+6

∣∣∣∣1− 1

3m−n

∣∣∣∣2 + 1

32m+6

(4.15)

=
1

32n+6

[(
1− 1

3m−n

)2

+
1

32(m−n)

]

=
1

32n+6

[
(1− p)2 + p2

]
, where p =

1

3m−n
< 1

<
1

32n+6
[1− 2p+ 2p]

=
1

32n+6
.

Furthermore,

δb(Ty, Tx) = δb

({
0,

1

3m+3

}
,

{
0,

1

3n+3

})
= sup

{
µb

(
t,

{
0,

1

3n+3

})
: t ∈

{
0,

1

3m+3

}}
= max

{
µb

(
0,

{
0,

1

3n+3

})
, µb

(
1

3m+3
,

{
0,

1

3n+3

})}
= max

{
0,

1

32m+6

}
=

1

32m+6
,

since µb

(
1

3m+3 ,
{
0, 1

3n+3

})
= min

{
1

32m+6 ,
∣∣ 1
3n+3 − 1

3m+3

∣∣2 + 1
32m+6

}
= 1

32m+6 .

µb(fx, Tx) = µb

(
1

3n+1
,

{
0,

1

3n+3

})
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=
65

32n+6
,

µb(fy, Ty) = µb

(
1

3m+1
,

{
0,

1

3m+3

})
=

65

32m+6
.

By using condition (4.15), we get

H+
b (Tx, Ty) =

1

2
[δb(Tx, Ty) + δb(Ty, Tx)]

=
1

2

[∣∣∣∣ 1

3n+3
− 1

3m+3

∣∣∣∣2 + 2

32m+6

]

<
1

2

[
1

32n+6
+

1

32m+6

]
=

1

130
[µb(fx, Tx) + µb(fy, Ty)].

Thus, we have

H+
b (Tx, Ty) ≤ k[µb(fx, Tx) + µb(fy, Ty)],

for all x, y ∈ X with k = 1
130 ∈

[
0, 1

(s+1)2

)
.

We now verify condition (C2).
For x = 1

3n , n ∈ N ∪ {0} , ϵ > 0, there exist fy = f0 ∈ Tx, fz = f0 ∈
Ty such that

µb(fz, fz) = µb(fy, fz)

= 0

< H+
b (Tx, Ty) + ϵ.

The case x = 0 can be treated similarly. Thus, all the hypotheses of
Theorem 4.11 hold true and 0 is a point of coincidence of f and T in
f(X) with µb(0, 0) = 0.

Example 4.18. Let X = {0, 1, 7} and µb(x, y) = |x−y|2+min
{
x2, y2

}
on X. Then (X,µb) is a complete mb-metric space with the coefficient
s = 3

2 . Let T : X → CBµb
(X) be defined by T0 = T1 = {0} , T7 =

{0, 1} and f : X → X be defined by f0 = f1 = 0, f7 = 7. Then f(X) is
a complete mb-metric subspace of (X,µb) and each Tx is a closed and
bounded subset of X. By an argument similar to that used in Example
4.16, we can show that condition (C2) holds and

H+
b (Tx, Ty) ≤ k[µb(fx, Ty) + µb(fy, Tx)],
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for all x, y ∈ X with k = 1
74 ∈

[
0, 1

(s2+2s)2

)
.

Thus, we have all the conditions of Theorem 4.13. We find that 0, 1
are coincidence points and 0 is a point of coincidence of f and T in f(X)
with µb(0, 0) = 0.
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