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A Generalized Class of Univalent Harmonic Functions

Associated with a Multiplier Transformation

Deepali Khurana1, Raj Kumar2∗, Sarika Verma3 and Gangadharan
Murugusundaramoorthy4

Abstract. We define a new subclass of univalent harmonic map-
pings using multiplier transformation and investigate various prop-
erties like necessary and sufficient conditions, extreme points, star-
likeness, radius of convexity. We prove that the class is closed under
harmonic convolutions and convex combinations. Finally, we show
that this class is invariant under Bernandi-Libera-Livingston inte-
gral for harmonic functions.

1. Introduction and Preliminaries

In the open unit disk E = {z ∈ C : |z| < 1} a complex valued
harmonic function f = u + iv can be decomposed into two parts h, g
where h is called the analytic part and g is the co-analytic part of f and
thus f can be expressed as f = h + g. Let H be the class of complex
valued harmonic mappings f = h + g defined in E and normalized by
f(0) = fz(0)−1 = 0. Under the given normalization conditions h, g have
Taylor’s series representation as

h(z) = z +
∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k,

and consequently f = h+ g has the representation

(1.1) f(z) = z +

∞∑
k=2

akz
k +

∞∑
k=1

bkzk.
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In 1936, Lewy [6] proved that a necessary and sufficient condition for a
harmonic function f = h+g to be locally univalent and sense-preserving
in E is that its Jacobian Jf = |h′|2 − |g′|2 is positive in E. We denote
by SH the subclass of H consisting of all sense-preserving univalent
harmonic mappings f and S0

H is the subclass of SH whose members

satisfy additional condition fz(0) = 0, i.e. g′(0) = 0. Further SH denote
the subclass of H consisting of functions of the type fn = h+ gn, where

(1.2) h(z) = z −
∞∑
k=2

|ak|zk, gn(z) = (−1)n
∞∑
k=1

|bk|zk.

Clunie and Sheil-Small [2] introduced the class SH and some of its
subclasses and investigated their geometric properties. Since then many
subclasses of the class SH were defined and their various properties were
studied by the researchers e.g. see ([1, 4, 5, 9] and [10]) and references

therein. In 1994, Opoola [7] defined a subclass T β
n (α) of normalized

analytic functions that satisfy the condition ℜ
(
Dn(f(z)β)

βnzβ

)
> α,∀z ∈

E, n ∈ N0 = N ∪ {0}, 0 ≤ α < 1, β > 0, where

f(z)β = zβ +

∞∑
k=2

βakz
k+β−1

andDn is the Salagean differential operator. Using the modified Salagean
operator for harmonic functions, Khalifa Al-Shaqsi et.al. [1] studied a
class H(n, β, α), consisting of harmonic functions

f(z)β = h(z)β + g(z)β,

where
(1.3)

h(z)β = zβ +

∞∑
k=2

βakz
k+β−1, g(z)β =

∞∑
k=1

βbkz
k+β−1, |b1| < 1.

For more details about Salagean and modified Salagean operators re-
spectively, we refer to [8] and [4]. In this paper, using a multiplier trans-
formation I(n, λ), we define a generalized class Hβ(n, λ, α) (n ∈ N0,

β ≥ 1, 0 ≤ λ < 1,) of harmonic functions f(z)β = h(z)β + g(z)β that
satisfy the condition

(1.4) ℜ
(
I(n+ 1, λ)f(z)β

I(n, λ)f(z)β

)
≥ α, 0 ≤ α < 1.

Here I(n, λ) is the multiplier transformation defined as

I(n, λ)f(z)β = I(n, λ)h(z)β + (−1)nI(n, λ)g(z)β,
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where

I(n, λ)h(z)β = zβ +

∞∑
k=2

β

(
k + λ

1 + λ

)n

akz
β+k−1,

and

I(n, λ)g(z)β =
∞∑
k=1

β

(
k + λ

1 + λ

)n

bkz
β+k−1.

It is worth to mention here that the class Hβ(n, λ, α) is a more gen-
eralized class and it includes a variety of classes. For different choices of
parameters n, β, λ we obtain different well known subclasses of SH . For
example, H1(0, 0, α) = S∗

H(α) and H1(1, 0, α) = KH(α), where S∗
H(α)

andKH(α), introduced by Jahangiri [3], are well known subclasses of SH

consisting of harmonic starlike functions of order α and convex of order
α, respectively. Moreover, Hβ(n, 0, α) = H(n, β, α) is the class studied

by Khalifa et. al. [1]. We denote by Hβ(n, λ, α) the class consisting of

functions of the type fβ
n = hβ + gβn satisfying condition (1.4) where

h(z)β = zβ −
∞∑
k=2

β|ak|zk+β−1,(1.5)

gn(z)
β = (−1)n

∞∑
k=1

β|bk|zk+β−1.

In Section 2, we obtain sufficient condition for harmonic functions to be
in Hβ(n, λ, α) and then we prove that this condition is also necessary for

the functions in the class Hβ(n, λ, α). We also investigate various prop-
erties like starlikeness, radius of convexity, Bernandi-Libera-Livingston
integral, distortion bounds, convex combinations for the functions in the

class Hβ(n, λ, α).

2. Characterization Properties

Theorem 2.1. Let fβ = hβ + gβ, where hβ and gβ are given by (1.3).
If

∞∑
k=1

(
k + λ

1 + λ

)n(k − α+ λ(1− α)

1 + λ
β|ak|+

k + α+ λ(1 + α)

1 + λ
β|bk|

)(2.1)

≤ (1 + β)(1− α),

where a1 = 1, n ∈ N0, β ≥ 1, 0 ≤ λ < 1, 0 ≤ α < 1, then fβ is harmonic
univalent and sense-preserving in E and fβ ∈ Hβ(n, λ, α).



30 D. KHURANA, R. KUMAR, S. VERMA AND G.M.S. MOORTHY

Proof. First we shall prove that fβ is sense-preserving in E. Since z ∈ E
therefore,

|h′(z)β| ≥ β

(
|z|β−1 −

∞∑
k=2

(k + β − 1)|ak||z|k+β−2

)

> β

(
1−

∞∑
k=2

k − α+ λ(1− α)

(1 + λ)(1− α)

(
k + λ

1 + λ

)n

|ak|

)

> β

( ∞∑
k=1

(
k + λ

1 + λ

)n(k + α+ λ(1 + α)

(1 + λ)(1− α)

)
|bk|

)

>

∞∑
k=1

β(k + β − 1)|bk||z|k+β−2

> |g′(z)β|.

Thus fβ is sense-preserving in E. Next we will establish the univalence
of fβ. For z1 ̸= z2 ∈ E,∣∣∣∣f(z1)β − f(z2)

β

h(z1)β − h(z2)β

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z1)β − g(z2)

β

h(z1)β − h(z2)β

∣∣∣∣
> 1−

∣∣∣∣∣∣∣∣
∞∑
k=1

βbk

(
zk+β−1
1 − zk+β−1

2

)
zβ1 − zβ2 +

∞∑
k=2

βak

(
zk+β−1
1 − zk+β−1

2

)
∣∣∣∣∣∣∣∣

> 1−

∞∑
k=1

(k + β − 1)|bk|

1−
∞∑
k=2

(k + β − 1)|ak|

> 1−

∞∑
k=1

(
k+λ
1+λ

)n
k+α+λ(1+α)
(1+λ)(1−α) β|bk|

1−
∞∑
k=2

(
k+λ
1+λ

)n
k−α+λ(1−α)
(1+λ)(1−α) β|ak|

≥ 0.

We shall now prove that under condition (2.1), fβ ∈ Hβ(n, λ, α) i.e.,

ℜ
(
I(n+ 1, λ)fβ

I(n, λ)fβ

)
≥ α.

We know that ℜ(w) > α if and only if |1− α+ w| > |1 + α− w|. Thus∣∣I(n+ 1, λ)fβ + (1− α)I(n, λ)fβ
∣∣− ∣∣I(n+ 1, λ)fβ − (1 + α)I(n, λ)fβ

∣∣
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=

∣∣∣∣∣zβ +
∞∑
k=2

(
k + λ

1 + λ

)n+1

βakz
k+β−1 + (−1)n+1

∞∑
k=1

(
k + λ

1 + λ

)n+1

βbkz
k+β−1

+ (1− α)

[
zβ +

∞∑
k=2

(
k + λ

1 + λ

)n

βakz
k+β−1 + (−1)n

∑
k=1

(
k + λ

1 + λ

)n

βbkz
k+β−1

]∣∣∣∣∣
−

∣∣∣∣∣zβ +
∞∑
k=2

(
k + λ

1 + λ

)n+1

βakz
k+β−1 + (−1)n+1

∞∑
k=1

(
k + λ

1 + λ

)n+1

βbkz
k+β−1

− (1 + α)

[
zβ +

∞∑
k=2

(
k + λ

1 + λ

)n

βakz
k+β−1 + (−1)n

∞∑
k=1

(
k + λ

1 + λ

)n

βbkz
k+β−1

]∣∣∣∣∣
≥ 2(1− α)|z|β

[
1−

∞∑
k=2

(
k + λ

1 + λ

)n(
k − α+ λ(1− α)

(1− α)(1 + λ)

)
β|ak|

−
∞∑
k=1

(
k + λ

1 + λ

)n(
k + α+ λ(1 + α)

(1− α)(1 + λ)

)
β|bk|

]
≥ 0, in view of (2.1).

Hence, it completes the proof. □

In the next result we show that the coefficient condition (2.1) is nec-

essary for the functions in the class Hβ(n, λ, α).

Theorem 2.2. Let fβ
n = hβ+gβn be given by (1.5). Then fβ

n ∈ Hβ(n, λ, α)

if and only if fβ
n satisfies condition (2.1).

Proof. In view of Theorem 2.1 and the relationHβ(n, λ, α) ⊂ Hβ(n, λ, α)

we require to prove ‘only if’ part. Let fβ
n = hβ + gβn ∈ Hβ(n, λ, α), then

we observe

ℜ
[(

I(n+ 1, λ)fn(z)
β

I(n, λ)fn(z)β

)
− α

]
≥ 0, 0 ≤ α < 1.

After substituting I(n + 1, λ)fn(z)
β and I(n, λ)fn(z)

β in the above in-
equality we have,

ℜ


(1 − α)zβ −

∞∑
k=2

(
k+λ
1+λ

)n k−α+λ(1−α)
(1+λ)

βakz
k+β−1 − (−1)2n

∞∑
k=1

(
k+λ
1+λ

)n k+α+λ(1+α)
(1+λ)

βbkz
k+β−1

zβ −
∞∑

k=2

(
k+λ
1+λ

)n
βakzk+β−1 + (−1)2n

∞∑
k=1

(
k+λ
1+λ

)n
βbkzk+β−1


(2.2)

≥ 0.

The above required condition (2.2) holds true for all values of z, |z| =
r < 1. Choosing the values of z on positive real axis, where 0 ≤ z = r <
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1, we have

(1− α)−
∞∑
k=2

(
k+λ
1+λ

)n
k−α+λ(1−α)

(1+λ) βakr
k−1 −

∞∑
k=1

(
k+λ
1+λ

)n
k+α+λ(1+α)

(1+λ) βbkr
k−1

1−
∞∑
k=2

(
k+λ
1+λ

)n
βakrk−1 +

∞∑
k=1

(
k+λ
1+λ

)n
βbkrk−1

≥ 0.

If condition (2.1) doesn’t hold true, then numerator of the above fraction
will be negative for successfully large values of r close to 1. Hence, there
exists z0 = r0 in (0, 1) for which the quotient in the above inequality will

be negative. It contradicts the required condition that fβ
n ∈ Hβ(n, λ, α)

and so it completes the proof. □

Next we establish that the family Hβ(n, λ, α) is non-empty, that is
we prove that there exist harmonic functions which are members of the

class Hβ(n, λ, α) and moreover these functions are the extermums for

the family Hβ(n, λ, α).

Theorem 2.3. Let fβ
n = hβ + gβn , then fβ

n ∈ Hβ(n, λ, α) if and only if

fn(z)
β =

∞∑
k=1

(
Xkhk(z)

β + Ykgnk
(z)β

)
, where

h1(z)
β = zβ,

hk(z)
β = zβ − (1− α)(1 + λ)n+1

((k − α) + λ(1− α)) (k + λ)n
zk+β−1, k = 2, 3, 4 . . .

gnk
(z)β = zβ + (−1)n

(1− α)(1 + λ)n+1

((k + α) + λ(1 + α)) (k + λ)n
zk+β−1, k = 1, 2, 3, . . . ,

and
∞∑
k=1

(Xk + Yk) = 1, Xk ≥ 0, Yk ≥ 0. In particular, the extreme

points of Hβ(n, λ, α) are {hβk} and {gβnk}.

Proof. For function fβ
n = hβ+gβnk , where h

β and gβnk are given as above,
we have

fn(z)
β =

∞∑
k=1

(
Xkhk(z)

β + Ykgnk
(z)β

)
,

fn(z)
β = zβ −

∞∑
k=2

(1− α)(1 + λ)n+1

((k − α) + λ(1− α)) (k + λ)n
Xkz

k+β−1(2.3)

+ (−1)n
∞∑
k=1

(1− α)(1 + λ)n+1

((k + α) + λ(1 + α)) (k + λ)n
Ykz

k+β−1.
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Comparing (2.3) with

fn(z)
β = zβ −

∞∑
k=2

β|ak|zk+β−1 + (−1)n
∞∑
k=1

β|bk|zk+β−1,

we obtain

|ak| =
(1− α)(1 + λ)n+1

((k − α) + λ(1− α))β(k + λ)n
Xk,

and

|bk| = (−1)n
(1− α)(1 + λ)n+1

((k + α) + λ(1 + α))β(k + λ)n
Yk.

Now,

∞∑
k=2

(
k + λ

1 + λ

)n [(k − α) + λ(1− α)

(1− α)(1 + λ)

]
β|ak|

+
∞∑
k=1

(
k + λ

1 + λ

)n [(k + α) + λ(1 + α)

(1− α)(1 + λ)

]
β|bk|

=
∞∑
k=2

Xk +
∞∑
k=1

Yk

= 1−X1 ≤ 1.

Therefore, fn ∈ Hβ(n, λ, α). Conversely, let fn ∈ Hβ(n, λ, α). Set

Xk =

(
k + λ

1 + λ

)n [(k − α) + λ(1− α)

(1− α)(1 + λ)

]
|ak|, k = 2, 3, 4, . . . ,

Yk =

(
k + λ

1 + λ

)n [(k + α) + λ(1 + α)

(1− α)(1 + λ)

]
|bk|, k = 1, 2, 3, . . . ,

and
∞∑
k=1

(Xk + Yk) = 1. Since fβ
n ∈ Hβ(n, λ, α), therefore

fn(z)
β = zβ −

∞∑
k=2

β|ak|zk+β−1 + (−1)n
∞∑
k=1

β|bk|zk+β−1,

by substituting values of |ak| and |bk|, we get

fn(z)
β =

∞∑
k=1

(
Xkhk(z)

β + Ykgnk
(z)
)
,

where hk(z)
β and gnk

(z)β are as mentioned above. Hence the proof is
complete. □
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In the following results we investigate geometric properties of the

functions in the class Hβ(n, λ, α). We prove that the functions in the

class Hβ(n, λ, α) are starlike of order α and we obtain the radius of
convexity for the functions in this class.

Theorem 2.4. Let fβ
n ∈ Hβ(n, λ, α), then fβ

n maps the unit disk onto
a domain which is starlike of order α.

Proof. A function fβ
n = hβ+gβn ∈ Hβ(n, λ, α) maps the unit disk E onto

a domain starlike of order α if and only if for z ∈ E,

(2.4) ℜ

{
z(h(z)β)′ − z(gn(z)β)′

h(z)β + gn(z)β

}
> α.

We know that ℜ(w) > α if and only if |1−α+w| > |1+α−w|. Therefore
to prove (2.4), it suffices to show that∣∣∣(1− α)

(
h(z)β + gn(z)β

)
+ z(h(z)β)′ − z(gn(z)β)′

∣∣∣
−
∣∣∣(1 + α)

(
h(z)β + gn(z)β

)
− zh′(z)β + zg′n(z)

β
∣∣∣ > 0.

Since∣∣∣(1− α)
(
h(z)β + gn(z)β

)
+ zh′(z)β − zg′n(z)β

∣∣∣
−
∣∣∣(1 + α)

(
h(z)β + gn(z)β

)
− zh′(z)β + zg′n(z)β

∣∣∣
=

∣∣∣∣∣(1− α)

(
zβ −

∞∑
k=2

|ak|zk+β−1 + (−1)n
∞∑

k=1

|bk|zk+β−1

)

+

(
βzβ −

∞∑
k=2

(k + β − 1)|ak|zk+β−1

)
− (−1)n

∞∑
k=1

(k + β − 1)|bk|zk+β−1

∣∣∣∣∣
−

∣∣∣∣∣(1 + α)

(
zβ −

∞∑
k=2

|ak|zk+β−1 + (−1)n
∞∑

k=1

|bk|zk+β−1

)

−

(
βzβ −

∞∑
k=2

(k + β − 1)|ak|zk+β

)
+

∞∑
k=1

(k + β − 1)|bk|zk+β

∣∣∣∣∣
=

∣∣∣∣∣(1− α+ β)zβ −
∞∑

k=2

(β + k − α)|ak|zk+β−1 + (−1)n
∞∑

k=1

(2− α− β − k)|bk|zk+β−1

∣∣∣∣∣
−

∣∣∣∣∣(1− α− β)zβ
∞∑

k=2

(2− α− β − k)|ak|zk+β−1 + (−1)n
∞∑

k=1

(β + k − α)|bk|zk+β−1

∣∣∣∣∣
≥ 2(1− α)|z|β

[
1−

∞∑
k=2

|ak||z|k−1 −
∞∑

k=1

|bk||z|k−1

]

≥ 2(1− α)|z|β
[
1−

∞∑
k=2

|ak| −
∞∑

k=1

|bk|

]
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> 2(1− α)|z|β
[
1−

∞∑
k=2

(
k + λ

1 + λ

)n
k − α+ λ(1− α)

(1− α)(1 + λ)
β|ak|

−
∞∑

k=1

(
k + λ

1 + λ

)n
k + α+ λ(1 + α)

(1− α)(1 + λ)
β|bk|

]
> 0,

so the theorem follows. □

Theorem 2.5. If fβ
n ∈ Hβ(n, λ, α) then fβ

n is convex of order α in the
disk

|z| ≤ min
q

(
(1− α)(1− |b1|)

q ((1− α)| − (1 + α)|b1|)

)1/(q+β−1)

.

Proof. Let fβ
n ∈ Hβ(n, λ, α) and let r, 0 < r < 1 be fixed. If fβ

n is
convex of order α in the disk |z| ≤ r, then r will satisfy
∞∑
k=2

(
k(k − α)

(1− α)
|ak|+

k(k + α)

(1− α)
|bk|
)
rk+β−1

≤
∞∑
k=2

(
k + λ

1 + λ

)n((
k − α+ λ(1− α)

(1− α)(1 + λ)

)
|ak|+

(
k + α+ λ(1 + α)

(1− α)(1 + λ)

)
|bk|
)
krk+β−1

≤ 1− |b1|,

provided

krk+β−1 ≤ 1− |b1|
1− 1+α

1−αβ|b1|
,

or

r ≤ min
q

(
(1− α)(1− |b1|)

q ((1− α)− (1 + α|b|)β|b1|)

)1/(q+β−1)

.

□

3. Inclusion Properties

In this section we discuss that the class Hβ(n, λ, α) is closed under
the harmonic convolution and convex combinations. Further we prove
that the class is also invariant under Bernandi-Libera-Livingston integral
operator for harmonic functions.

For harmonic functions

fn(z)
β = zβ −

∞∑
k=2

|ak|zk+β−1 + (−1)n
∞∑
k=1

|bk|zk+β−1,

and

Fn(z)
β = zβ −

∞∑
k=2

|Ak|zk+β−1 + (−1)n
∞∑
k=1

|Bk|zk+β−1,



36 D. KHURANA, R. KUMAR, S. VERMA AND G.M.S. MOORTHY

the convolution of fβ
n and F β

n is given by

(fβ
n ∗ F β

n )(z) = fn(z)
β ∗ Fn(z)

β

= zβ −
∞∑
k=2

|akAk|zk+β−1 + (−1)n
∞∑
k=1

|bkBk|zk+β−1.

Theorem 3.1. Let fβ
n ∈ Hβ(n, λ, α1) and F β

n ∈ Hβ(n, λ, α2), where

0 ≤ α1 ≤ α2 < 1. Then fβ
n ∗ F β

n ∈ Hβ(n, λ, α2) ⊂ Hβ(n, λ, α1).

Proof. We wish to show that
(
fβ
n ∗ F β

n

)
satisfies the coefficient condition

(2.1). For F β
n ∈ Hβ(n, λ, α2), we note that |Ak| ≤ 1 and |Bk| ≤ 1. Now,

for the coefficients of convolution function
(
fβ
n ∗ F β

n

)
, we have

∞∑
k=2

(
k + λ

1 + λ

)n [(k − α2) + λ(1− α2)

(1− α2)(1 + λ)

]
β|akAk|

+
∞∑
k=1

(
k + λ

1 + λ

)n [(k + α2) + λ(1 + α2)

(1− α2)(1 + λ)

]
β|bkBk|

≤
∞∑
k=2

(
k + λ

1 + λ

)n (k − α2) + λ(1− α2)

(1− α2)(1 + λ)
β|ak|

+

∞∑
k=1

(
k + λ

1 + λ

)n (k + α2) + λ(1 + α2)

(1− α2)(1 + λ)
β|bk|

≤
∞∑
k=2

(
k + λ

1 + λ

)n (k − α1) + λ(1− α1)

(1− α1)(1 + λ)
β|ak|

+

∞∑
k=1

(
k + λ

1 + λ

)n (k + α1) + λ(1 + α1)

(1− α1)(1 + λ)
β|bk|

≤ 1.

Since 0 ≤ α1 ≤ α2 and fβ
n ∈ Hβ(n, λ, α2), therefore,

(fβ
n ∗ F β

n ) ∈ Hβ(n, λ, α2) ⊂ Hβ(n, λ, α1).

□

For i = 1, 2, 3, . . . let the function fn,i(z)
β be defined as

fn,i(z)
β = zβ −

∞∑
k=2

|ak,i|zk+β−1 + (−1)n
∞∑
k=1

|bk,i|zk+β−1.(3.1)
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Theorem 3.2. Let fn,i(z)
β defined by (3.1) be in the class Hβ(n, λ, α)

for every i = 1, 2, 3, . . . ,m. Then ci(z) defined by

ci(z) =
m∑
i=1

tifn,i(z)
β, (0 ≤ ti ≤ 1),(3.2)

is also in the class Hβ(n, λ, α), where
m∑
i=1

ti = 1.

Proof. For i = 1, 2, 3, · · ·m, let fβ
n,i ∈ Hβ(n, λ, α), where fβ

n,i is given by

(3.1). Since each fn,i(z)
β is in Hβ(n, λ, α) therefore by Theorem 2.2, we

obtain

∞∑
k=1

(
k + λ

1 + λ

)n [(
(k − α) + λ(1− α)

(1 + λ)

)
β|ak,i|+

(
(k + α) + λ(1 + α)

(1 + λ)

)
β|bk,i|

](3.3)

≤ (1 + β)(1− α).

For
m∑
i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combinations of fβ
n,i may be

written as

ci(z) =
m∑
i=1

tifn,i(z)
β

= zβ −
∞∑
k=2

(
m∑
i=1

ti|ak,i|

)
zk+β−1 + (−1)n

∞∑
k=1

(
m∑
i=1

ti|bk,i|

)
zk+β−1.

Now for ci(z), consider

∞∑
k=1

(
k + λ

1 + λ

)n
[(

(k − α) + λ(1− α)

(1 + λ)

)
β

∣∣∣∣∣
m∑
i=1

tiak,i

∣∣∣∣∣
+

(
(k + α) + λ(1 + α)

(1 + λ)

)
|

m∑
i=1

tibk,i|

]

=

m∑
i=1

ti

[ ∞∑
k=1

(
k + λ

1 + λ

)n [((k − α) + λ(1− α)

(1 + λ)

)
|ak,i|

+

(
(k + α) + λ(1 + α)

(1 + λ)

)
|bk,i|

]
β

]
≤ (1 + β)(1− α)

m∑
i=1

ti

= (1 + β)(1− α).

Thus, ci(z) ∈ Hβ(n, λ, α). □
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Theorem 3.3. Let Ic[f(z)
β] denote the Bernandi-Libera-Livingston in-

tegral operator for harmonic functions fβ = hβ + gβ, where,

Ic[f(z)
β] =

c+ β

zc

∫ z

0
ξc−1h(ξ)βdξ +

c+ β

zc

∫ z

0
ξc−1g(ξ)βdξ, (c > 0).

If fβ
n ∈ Hβ(n, λ, α), then Ic[fn(z)

β] ∈ Hβ(n, λ, α).

Proof. Let fn(z)
β = h(z)β + gn(z)β ∈ Hβ(n, λ, α). Then,

Ic[fn(z)
β] =

c+ β

zc

∫ z

0
ξc−1h(ξ)βdξ +

c+ β

zc

∫ z

0
ξc−1gn(ξ)βdξ

=
c+ β

zc

∫ z

0
ξc−1

(
ξβ −

∞∑
k=2

|ak|ξk+β−1

)
dξ

+
c+ β

zc

∫ z

0
ξc−1

(
(−1)n

∞∑
k=1

|bk|ξk+β−1

)
dξ

= zβ −
∞∑
k=2

|Ak|zk+β−1 + (−1)n
∞∑
k=1

|Bk|zk+β−1,

where, |Ak| =
(

c+ β

c+ k + β − 1

)
|ak| and |Bk| =

(
c+ β

c+ k + β − 1

)
|bk|.

Thus

∞∑
k=1

(
k + λ

1 + λ

)n [(
(k − α) + λ(1− α)

(1 + λ)

)
β|Ak|+

(
(k + α) + λ(1 + α)

(1 + λ)

)
β|Bk|

]

=
∞∑
k=1

[(
k + λ

1 + λ

)n(
(k − α) + λ(1− α)

(1 + λ)

)
β

(
c+ β

c+ k + β − 1

)
|ak|

+

(
(k + α) + λ(1 + α)

(1 + λ)

)
β

(
c+ β

c+ k + β − 1

)
|bk|
]

≤
∞∑
k=1

[(
k + λ

1 + λ

)n(
(k − α) + λ(1− α)

(1 + λ)

)
β|ak|+

(
(k + α) + λ(1 + α)

(1 + λ)

)
β|bn|

]
≤ (1 + β)(1− α).

Hence, Ic[fn(z)
β] ∈ Hβ(n, λ, α). □
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