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Existence and Uniqueness for a Class of SPDEs Driven by

Lévy Noise in Hilbert Spaces

Majid Zamani1, S. Mansour Vaezpour2∗ and Erfan Salavati3

Abstract. The present paper seeks to prove the existence and
uniqueness of solutions to stochastic evolution equations in Hilbert
spaces driven by both Poisson random measure and Wiener process
with non-Lipschitz drift term. The proof is provided by the theory
of measure of noncompactness and condensing operators. Moreover,
we give some examples to illustrate the application of our main
theorem.

1. Introduction

Stochastic evolution equations are natural development of SDEs and
owing to their mathematical and natural science basis, they have at-
tracted much attention. There are several papers and books providing
significant applications of the types of equations in various fields of stud-
ies (see, for example, [11, 19]).

There are strong results and published papers on the existence and
uniqueness of stochastic evolution equations driven by Wiener process,
(see, for instance, [11] and references therein). Over the last few years, a
number of authors have focused on stochastic evolution equations driven
by Poisson random measure or Lévy process with different conditions
on coefficients (see, e.g., [2, 7, 9, 10, 14, 15, 19, 20]). In one of these
categories of conditions, first, Taniguchi [22] studied the existence and
uniqueness of solutions to the following SDE in Rn by the method of
successive approximations

dXt = f(t,Xt)dt+ g(t,Xt)dWt, X0 = ξ,
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where f and g satisfy more general non-Lipschitz conditions including
the special result of Yamada [25]. Likewise, some researchers extended
the results of Taniguchi [22] to the infinite dimensional case. They con-
sidered the stochastic evolution equations with the coefficients satisfying
the conditions suggested by Taniguchi [22]. Barbu [4] and then Barbu
and Bocan [5, 6] studied the existence and uniqueness of the mild solu-
tion of the following equation with the coefficients of Taniguchi type in
Hilbert spaces

dXt = AXtdt+ f(t,Xt)dt+ g(t,Xt)dWt, X0 = ξ.

Their proof is based on the method of measure of noncompactness, Pi-
card’s method of approximation and successive approximation method,
respectively. See also [12, 13, 17, 24] in the case of Wiener noise.

There are some works focused on stochastic evolution equations in
Hilbert spaces driven by Poisson random measure with the coefficients
of Taniguchi type. For instance, Tanguchi [? ] investigated the existence
and uniqueness of the energy solutions of stochastic functional evolution
equation driven by Poisson jumps. He used the Pardoux method [18] to
prove his main theorem, (see also [3, 8, 23]).

This paper sets out to prove the existence and pathwise uniqueness
of the mild solution of the following SPDE

dXt = AXtdt+ f(t,Xt)dt+ g(t,Xt)dWt(1.1)

+

∫
E\{0}

k
(
t,Xt, y

)
N(dt, dy), X0 = ξ,

where W is a Wiener process, N(dt, dy) denotes the compensated Pois-
son random measure, A : D(A) ⊆ H −→ H generates a contraction
semigroup (etA)t≥0 in Hilbert space H, functions f, g and k are mea-
surable and ξ is an F0-measurable random variable in H. Thanks to
Lévy-Itô decomposition theorem, equation (1.1) includes a large class
of equations driven by Lévy noise. Our proof is based on the theory of
measure of noncompactness, so we extend the result of [4] for stochastic
evolution equations driven by Lévy noise.

This paper is structured as follows. The second section introduces
some notations and lemmas, used throughout the paper and in the third
section, we go through the proof of the main result and corroborate our
main claim by the help of an example.

2. Preliminaries

Let K and H be two real Hilbert spaces and let L(K,H) denote the
space of linear bounded operators from K into H. For simplicity, norm
and inner product in both K and H are denoted by ∥.∥ and ⟨., .⟩ and we
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assume that (Ω,F , {Ft}t≥0, P ) is a filtered probability space. Let P and
PT be the predictable σ-fields on Ω∞ = [0,∞)×Ω and ΩT = [0, T )×Ω,
respectively. Moreover, W is a Wiener process on Hilbert space H with
covariance operator Q. Furthermore, L0

2 = L2(U0,H) stands for the
space of all Hilbert-Schmit operators from U0 into H where U0 is the

Cameron-Martin space U0 = Q
1
2 (U) with the norm ∥u∥0 =

∥∥∥Q−1
2 (u)

∥∥∥
and L0

2 is a Hilbert space endowed with the following norm:

∥φ∥L0
2
=
∥∥∥φQ 1

2

∥∥∥ tL2(U,H).

In addition, N(dt, dx) stands for Poisson random measure on R+ × E
with intensity measure ν(dx)dt where (E, E) is a measurable space.
We denote by N(dt, dx) the compensated Poisson measure defined by
N(dt, dx) = N(dt, dx)− ν(dx)dt; furthermore, N and W are assumed to
be independent.

For more details about Poisson random measure and Wiener process
in Hilbert spaces, see, [11, 19].

Definition 2.1. A predictable process X : [0, T ] × Ω −→ H is a mild
solution of equation (1.1) if for every t ∈ [0, T ] we have

P

(∫ t

0

∥∥∥e(t−s)Af(s,Xs)
∥∥∥ ds+ ∫ t

0

∥∥∥e(t−s)Ag(s,Xs)
∥∥∥2
L0
2

ds

+

∫ t

0

∫
E\{0}

∥∥∥e(t−s)Ak
(
s,Xs, y

)∥∥∥2 ν(dy)ds < ∞

)
= 1,

and it satisfies the following equation P -almost surely

Xt = etAξ +

∫ t

0
e(t−s)Af(s,Xs)ds+

∫ t

0
e(t−s)Ag(s,Xs)dWs

+

∫ t

0

∫
E\{0}

e(t−s)Ak
(
s,Xs, y

)
N̄(ds, dy).

Let us state some important lemmas which will play a fundamental
role in the proof of our results.

Lemma 2.2 ([19]). Suppose that A generates a contraction semigroup
and Φ(t) is an L0

2-valued predictable process satisfying

E

∫ T

0
∥Φ(s)∥2

L0
2
ds < ∞,

then for a constant CT , the following inequality holds

E

(
sup

t∈[0,T ]

∥∥∥∥∫ t

0

e(t−s)AΦ(s)dWs

∥∥∥∥2
)

≤ CT E

∫ T

0
∥Φ(s)∥2

L0
2
ds, t ∈ [0, T ].
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Lemma 2.3 ([16]). Assume Φ : R+ × Ω × E\{0} −→ H is a P × E-
measurable function such that∫ t

0

∫
E\{0}

∥Φ(s, x)∥2ν(dx)ds < ∞,

for all t ≥ 0, and let A generate a contraction semigroup, then for each
0 < p ≤ 2, we have

E

(
sup

t∈[0,T ]
∥Z(t)∥p

)
≤ C

′
p,TE

[ ∫ T

0

∫
E\{0}

∥Φ(s, x)∥2ν(dx)ds
] p

2

,

where C
′
p,T is a constant and

Z(t) =

∫ t

0

∫
E\{0}

e(t−s)AΦ(s, x)N̄(ds, dy).

The notation MT stands for the Banach space of all càdlàg and pre-
dictable processes Xt(w) defined on [0, T ] × Ω and endowed with the
following norm

∥X∥MT
=

{
E

(
sup

t∈[0,T ]
∥Xt(w)∥2

)} 1
2

< ∞.

Besides, we denote by

Nr[X0] =
{
X ∈ M : ∥X −X0∥MT

≤ r
}
,

the closed ball with center X0 and radius r in MT .
Let us introduce the basic notations related to measure of noncom-

pactness (see [1] for more details).

Definition 2.4. Assume that (A,≤) is a partially ordered set and E is
a Banach space. A function α defined from P (E), the power set of E,
into A is called a measure of noncompactness if α(coB) = α(B), for all
B ⊆ E. Here coB denotes the closure of the convex hall of B.

Definition 2.5. The Hausdorf measure of noncompactness of a nonempty
subset B of a Banach space E, denoted by χ(B), is the infimum of all
numbers ϵ for which B has a finite ϵ-net in E.

Definition 2.6. Assume that α is a measure of noncompactness in a
Banach space E with values in (A,≤). An α-condensing operator is a
continuous operator Ψ : D(Ψ) ⊆ E −→ E such that for B ⊆ D(Ψ),
α[Ψ(B)] ≥ α(B) implies that B is relatively compact.
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Theorem 2.7 ([1]). Assume that α is a measure of noncompactness on
a Banach space E such that α(B ∪ {x}) = α(B) for any B ⊆ E and
x ∈ E (called additively nonsingular property), and let Ψ : E −→ E be
an α-condensing operator on E such that for some nonempty, convex
and closed subset K satisfies Ψ(K) ⊆ K. Then Ψ has at least one fixed
point in K.

We denote by S[0, T ] the space of all real increasing functions on
[0, T ]. Furthermore, notice that S[0, T ] is partially ordered by the usual
ordered ≤. Also, we indicate the following measure of noncompactness
on MT by µ; {

µ : P (MT ) → S[0, T ],
Λ → µ(Λ).

Here {
µ(Λ) : [0, T ] → R,
t → χt(Λt),

where Λt = {X |[0,t] : X ∈ Λ} ⊆ Mt and χt is the Hausdorff measure

of noncompactness on Mt. For more details about µ, see [1].

3. Main Results

In this section, we prove our main result, based on Theorem 2.7.

Theorem 3.1. Considering equation (1.1), suppose that the following
assumptions hold:

(i) There exists a function G : R+ × R+ −→ R+ for which

E ∥f(t,X)∥2+E∥g(t,X)∥2
L0
2
+E

∫
E\{0}

∥k(t,X, y)∥2ν(dy) ≤ G
(
t, E ∥X∥2

)
,

for all t ∈ [0, T ] and all X ∈ L2(Ω,F ,H).
(ii) G(t, x) is continuous and increasing in x and it is locally inte-

grable in t.
Then the operator

Ψ : (Mτ , ∥.∥Mτ ) −→ (Mτ , ∥.∥Mτ ) ,

defined by

ΨXt = etAξ +

∫ t

0
e(t−s)Af(s,Xs)ds+

∫ t

0
e(t−s)Ag(s,Xs)dWs

+

∫ t

0

∫
E\{0}

e(t−s)Ak
(
s,Xs, y

)
N̄(ds, dy); t ∈ [0, T ],

is well defined and has the following property for a fixed τ ∈
[0, T ]:

Ψ
(
Nr

[
e·Aξ

])
⊆ Nr[e

·Aξ].
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Proof. From Lemmas 2.2 and 2.3, we conclude that the operator Ψ is
well defined. And we get

E

(
sup

0≤s≤τ

∥∥ΨXs − esAξ
∥∥2)

≤ 3E

(
sup

0≤s≤τ

∥∥∥∥∫ s

0
e(s−r)Af(r,Xr)dr

∥∥∥∥2
)

︸ ︷︷ ︸
I1

+ 3E

(
sup

0≤s≤τ

∥∥∥∥∫ s

0
e(s−r)Ag(r,Xr)dWr

∥∥∥∥2
)

︸ ︷︷ ︸
I2

+ 3E

 sup
0≤s≤τ

∥∥∥∥∥
∫ s

0

∫
E\{0}

e(s−r)Ak
(
r,Xr, y

)
N̄(dr, dy)

∥∥∥∥∥
2


︸ ︷︷ ︸
I3

.

The Hölder’s inequality implies that

I1 ≤ 3E sup
0≤s≤τ

(∫ s

0
∥f(r,Xr)∥ dr

)2

(3.1)

≤ 3E

(∫ τ

0
∥f(r,Xr)∥dr

)2

≤ 3τE

∫ τ

0
∥f(r,Xr)∥2dr.

Applying Lemma 2.2, we get

I2 ≤ 3CτE

∫ τ

0
∥g(r,Xr)∥2L0

2
dr.(3.2)

Also, Lemma 2.3 for p = 2 implies

I3 ≤ 3C
′
τE

∫ τ

0

∫
E\{0}

∥∥k(r,Xr, y
)∥∥2 ν(dy)dr.(3.3)

By the inequalities (3.1), (3.2), (3.3) and assumption (i), we have

E

(
sup

0≤s≤τ

∥∥ΨXs − esAξ
∥∥2) ≤ L

∫ τ

0
G
(
s,E ∥Xs∥2

)
ds,

where L = 3(τ+Cτ+C
′
τ ). IfX ∈ Nr[e

·Aξ] ⊆ Mτ then E
∥∥Xs − esAξ

∥∥2 ≤
r2 for any s ∈ [0, τ ] and we get

E ∥Xs∥2 ≤ E
(∥∥Xs − esAξ

∥∥+ ∥∥esAξ∥∥)2
≤ 2E

∥∥Xs − esAξ
∥∥2 + 2E

∥∥esAξ∥∥2
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≤ 2r2 + 2E
∥∥esAξ∥∥2

≤ 2r2 + 2E ∥ξ∥2

= M.

According to assumption (ii), the function G(t, x) is increasing in x, and
therefore, we get

E

(
sup

0≤s≤τ

∥∥ΨXs − esAξ
∥∥2) ≤ L

∫ τ

0
G(s,M)ds,

for all X ∈ Nr[e
·Aξ] ⊆ Mτ . Notice that G(.,M) is locally integrable and

therefore, there exists τ
′
such that L

∫ τ
′

0 G(s,M)ds ≤ r2 and we get

Ψ
(
Nr

[
e·Aξ

])
⊆ Nr[e

·Aξ].

□

Theorem 3.2. Assume that the functions f , g and k satisfy all the
conditions of Theorem 3.1. Furthermore, suppose that:

(i) There exists a function D : R+×R+ −→ R+ which is increasing
and continuous in x and it is locally integrable in t. Further-
more, D(t, 0) ≡ 0 and

E ∥f(t,X)− f(t, Y )∥2 + E∥g(t,X)− g(t, Y )∥2
L0
2

(3.4)

+ E

∫
E\{0}

∥k(t,X, y)− k(t, Y, y)∥2ν(dy)

≤ D
(
t, E ∥X − Y ∥2

)
,

for all t ∈ [0, T ] and X,Y ∈ L2(Ω,F ,H).
(ii) If there exists a nonnegative function V (t) which satisfies

(3.5)

{
V (t) ≤ α

∫ t
t0
D
(
s, V (s)

)
ds, t ∈ [0, T ],

V (0) = 0,

then V (t) = 0 for all t ∈ (0, T1], where α is a positive number
and T1 ∈ (0, T ].

Then the operator Ψ
′
:
(
MT , ∥.∥MT

)
−→

(
MT , ∥.∥MT

)
defined by

Ψ
′
Xt =

∫ t

0
e(t−s)Af

(
s,Xs

)
ds+

∫ t

0
e(t−s)Ag

(
s,Xs

)
dWs

+

∫ t

0

∫
E\{0}

e(t−s)Ak
(
s,Xs, y

)
N̄(ds, dy), t ∈ [0, T ],

is a condensing operator with respect to µ on any bounded subset of MT .
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Proof. Assume µ(B) ≤ µ(Ψ
′
(B)) for a fixed bounded set B ⊆ MT . To

accomplish our goal, we use this fact that the function t −→ [µ(B)](t)
is increasing and bounded. Consequently, the number of jumps with
values greater than ϵ is finite for any fixed ϵ ≥ 0.

Remove disjoint δ1-neighborhoods of these jumps from the interval
[0, T ], we divide the remaining intervals into smaller intervals by choos-
ing points αi, i = 1, . . . , n, on which the oscillation of µ(B) is smaller
than ϵ. Now surround the points αi by δ2-neighborhoods and consider
Λ = {hk : k = 1, . . . , l} which includes all almost surely continuous func-
tions, constructed as follows; hk coincides with an arbitrary element of
[(µ(B)(αi)+ϵ]-net of the set Bαi on σi = [αi−1+δ2, αi+δ2],i = 1, . . . , n,

and it is linear on the complementar segments. Now assume u ∈ Ψ
′
(B),

for some h ∈ B we have u = Ψ
′
(h) and

∥h− h
αi
r ∥2Mαi

≤ [(µ(B)(αi) + ε]2,

here hαi
r is an element of the [(µ(B)(αi) + ϵ]-net of Bαi . Since hαi

r |σi =
hk|σi

for some element hk of Λ, it implies that for s ∈ σi we get

E ∥h(s)− hk(s)∥2 ≤ E

(
sup

αi−1 + δ2≤s≤αi − δ2

∥h(s)− hk(s)∥2
)

≤ ∥h− h
αi
r ∥2Mαi

≤ [
(
µ(B)

)
(αi) + ε]2

≤ [
(
µ(B)

)
(s) + 2ε]2.

Then

E

(
sup
0≤s≤t

∥∥∥Ψ′
h(s)−Ψ

′
hk(s)

∥∥∥2)
≤ 3t

∫ t

0
E ∥f(s, h(s))− f(s, hk(s))∥2ds

+ 3Ct

∫ t

0
E ∥g(s, h(s))− g(s, hk(s))∥2L0

2
ds

+ 3C
′
t

∫ t

0

∫
E\{0}

E ∥k(s, h(s), y)− k(s, hk(s), y)∥2 ν(dy)ds

≤ M

∫ t

0
D
(
s,E ∥h(s)− hk(s)∥2

)
ds

= M
n∑

i=1

∫
σi

D
(
s,E ∥h(s)− hk(s)∥2

)
ds
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+M

∫
[0,t]−

n∪
i=1

σi

D
(
s, E ∥h(s)− hk(s)∥2

)
ds.

The set Λ is finite and B is bounded and therefore, there exists b ≥ 0
for which we have E(∥h(s)− hk(s)∥2) < b for all h ∈ B, hk ∈ Λ and
s ∈ [0, T ]. Using Theorem 3.2 (i), we find δ1, δ2 ≥ 0 sufficiently small
such that

[(µ(B))(t)]2 ≤
[
(µ(Ψ

′
B))(t)

]2
≤ ε+M

∫ t

0
D(s, [(µ(B))(s) + 2ε]2)ds.

The function D(t, x) is continuous in x and ϵ is arbitrary and as a result,
we have:

(3.6) [(µ(B))(t)]2 ≤ M

∫ t

0
D(s, [(µ(B))(s)]2)ds.

Finally, by inequality (3.6), Lemma 2.2 in [4] and Theorem 3.2 (ii),
we conclude that µ(B) = 0. Hence, B is totally bounded in MT and
therefore it is relatively compact.
To prove the continuity of the operator Ψ

′
, assume {Xn}n≥1 to be a

sequence converging to X in MT , thus∥∥∥Ψ′
X −Ψ

′
Xn
∥∥∥2
MT

= E

(
sup

0≤t≤T

∥∥∥Ψ′
Xt −Ψ

′
Xn

t

∥∥∥2)

≤ 3T

∫ T

0
E ∥f(s,Xs)− f(s,Xn

s )∥
2ds

+ 3CT

∫ T

0
E ∥g(s,Xs)− g(s,Xn

s )∥
2
L0
2
ds

+ 3C
′
T

∫ T

0

∫
E\{0}

E ∥k(s,Xs, y)− k(s,Xn
s , y)∥

2 ν(dy)ds

≤ M

∫ T

0
D
(
s, ∥X −Xn∥2MT

)
ds,

which implies
∥∥∥Ψ′

X −Ψ
′
Xn
∥∥∥2
MT

−→ 0 as ∥X −Xn∥MT
−→ 0. □

Remark 3.3. (i) Notice that, under the assumptions of Theorem
3.2, the operator Ψ : MT −→ MT defined by

(3.7) ΨXt = etAξ +Ψ
′
Xt, t ∈ [0, T ],
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is also µ-condensing.
(ii) Notice that ifD(t, x) is concave in x and it satisfies the following

inequality

∥f(t, x)− f(t, y)∥2 + ∥g(t, x)− g(t, y)∥2
L0
2

+

∫
E\{0}

∥k(t, x, z)− k(t, y, z)∥2ν(dz)

≤ D
(
t, ∥x− y∥2

)
,

for all y, x ∈ H and any t ≥ 0, then the inequality (3.4) is
followed immediately by Jensens inequality.

(iii) Let D(t, x) = λ(t)φ(x), where λ(t) is a locally integrable, non-
negative function and φ : R+ −→ R+ is a continuous and in-
creasing function such that φ(0) = 0 and

∫
0+

1
φ(x)dx = ∞, then

the function D(t, x) satisfies inequality (3.5) of Theorem 3.2,
see [21].

(vi) Let D(t, x) = λ(t)φ2(x
1
2 ), where λ(t) is a locally integrable,

nonnegative function and φ : R+ −→ R+ is a concave increasing
function on R+ such that φ(0) = 0 and

∫
0+

x
φ2(x)

dx = ∞, then

the function D(t, x) satisfies inequality (3.5) of Theorem 3.2,
see [8].

We are now in a position to prove our main theorem.

Theorem 3.4. Under the assumptions of Theorem 3.2, equation (1.1)

has a unique solution for some T
′ ∈ (0, T ] in MT

′ .

Proof. According to Theorem 3.1 for some T
′ ∈ (0, T ], the operator Ψ

has the following property:

Ψ
(
Nr

[
e·Aξ

])
⊆ Nr[e

·Aξ]

⊆ MT ′ .

Notice that Nr[e
·Aξ] is a convex, closed and nonempty subset of MT ′ ,

and Ψ is a µ-condensing operator on Nr[e
·Aξ], then by Theorem 2.7,

Ψ has at least one fixed point in Nr[e
·Aξ] ⊆ MT ′ . Let us prove the

uniqueness of solution. Assume X,Y ∈ MT ′ to be two fixed points for
Ψ. Then

E

(
sup
0≤s≤t

∥Xs − Ys∥2
)

≤ 3t

∫ t

0
E ∥f(s,Xs)− f(s, Ys)∥2ds

+ 3Ct

∫ t

0
E ∥g(s,Xs)− g(s, Ys)∥2L0

2
ds
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+ 3C
′
t

∫ t

0

∫
E\{0}

E ∥k(s,Xs, y)− k(s, Ys, y)∥2 ν(dy)ds

≤ M

∫ t

0
D
(
s,E ∥Xs − Ys∥2

)
ds.

Hence,

(3.8) ∥X − Y ∥2Mt
≤ M

∫ t

0
D(s, ∥X − Y ∥2Ms

)ds,

finally, consider V (t) = ∥X − Y ∥Mt in inequality (3.8), therefore V (t) =
∥X − Y ∥Mt satisfies inequality (3.5) in Theorem 3.2 (ii) and it follows
that V (t) = ∥X − Y ∥Mt = 0 and we get X = Y . □

Eventually, in an attempt to prove equation (1.1) has a global solution,
we assume that A generates a compact infinitesimal C0-semigroup.

Theorem 3.5. For equation (1.1), suppose that the functions g(t, w, x),
f(t, w, x) and k(t, w, x, y) satisfy all the conditions of Theorem 3.2 with
T = ∞. Furthermore, let equation

(3.9)
dv(t)

dt
= αG

(
t, v(t)

)
,

have a global solution on (t0,∞) for all T > 0, α > 0 and for each initial
value (t0, v0), t0 > 0, v0 ≥ 0. Then equation (1.1) has a global solution
on [0,∞).

Proof. Let the set G include all s such that equation (1.1) has a mild
solution on [0, s] and put s1 = sup

s∈G
s. According to Theorem 3.4, we get

s1 > 0. Assume s1 < ∞ and let s1 < T < ∞. We shall prove that
there exists a continuous extension on [0, s1] for equation (1.1) defined
on [0, s1). As a result, by considering Theorem 3.4, equation (1.1) has an
extension to the right of s1 and this is in contradiction to the definition
of s1.

Assume Xt is the mild solution of equation (1.1). Then we get

E ∥Xt∥2 ≤ 4E ∥ξ∥2 + 4t

∫ t

0
E ∥f(s,Xs)∥2 ds

+ 4Ct

∫ t

0
E ∥g(s,Xs)∥2L0

2
ds

+ 4C
′
t

∫ t

0

∫
E\{0}

E
∥∥k(s,Xs, y

)∥∥2 ν(dy)ds,
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for a fixed t ∈ [0, s1), and from Theorem 3.1, we have

E ∥Xt∥2 ≤ 4E ∥ξ∥2 + 4(t+ Ct + C
′
t)

∫ t

0
G
(
s,E ∥Xs∥2

)
ds.

Let v0 > 4E
(
∥ξ∥

)2
, α = 4(t + Ct + C

′
t) and assume v(t) is the global

solution of the following equation{
dv(t)
dt = αG

(
t, v(t)

)
,

v(0) = v0.

Then we have

E ∥Xt∥2 − α

∫ t

0
G
(
s,E ∥Xs∥2

)
ds < v0

= v(t)− α

∫ t

0
G
(
s, v(s)

)
ds,

for all t ∈ [0, s1).

Then by Lemma 4 in [22], we get E ∥Xt∥2 < v(t) ≤ v(T ) for all
t ∈ [0, s1).

We have:

E ∥Xt −Xs∥2

= E

(∥∥∥∥(etA − esA
)
ξ +

∫ s

0

(
e(t−r)A − e(s−r)A

)
f(r,Xr)dr

+

∫ t

s
e(t−s)Af(r,Xr)dr +

∫ s

0

(
e(t−r)A − e(s−r)A

)
g(r,Xr)dWr

+

∫ t

s
e(t−s)Ag(r,Xr)dWr

+

∫ s

0

∫
E\{0}

(
e(t−r)A − e(s−r)A

)
k
(
r,Xr, y

)
N(dr, dy)

+

∫ t

s

∫
E\{0}

e(t−s)Ak
(
r,Xr, y

)
N(dr, dy)

∥∥∥∥∥
)2

≤ 6
(
etA − esA

)2
E ∥ξ∥2

+ 6TE

∫ s

0

∥∥∥(e(t−r)A − e(s−r)A
)∥∥∥2 ∥f(r,Xr)∥2 dr

+ 6T

∫ t

s
E ∥f(r,Xr)∥2 dr

+ 6CTE

∫ s

0

∥∥∥(e(t−r)A − e(s−r)A
)∥∥∥2 ∥g(r,Xr)∥2 dr
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+ 6CT

∫ t

s
E ∥g(r,Xr)∥2 dr

+ 6C ′
TE

∫ s

0

∫
E\{0}

∥∥∥(e(t−r)A − e(s−r)A
)∥∥∥2 ∥k(r,Xr, y)∥2 ν(dy)dr

+ 6C ′
T

∫ t

s

∫
E\{0}

E ∥k(r,Xr, y)∥2 ν(dy)dr.

By Theorem 3.1, we get

E ∥Xt −Xs∥2 ≤ 6
∥∥(etA − esA

)∥∥2E ∥ξ∥2

+ 6(T + CT + C
′
T )

∫ s

0

∥∥∥(e(t−r)A − e(s−r)A
)∥∥∥2G(r, v(r))dr

+ 6(T + CT + C
′
T )

∫ t

s
G
(
r, v(r)

)
dr.

Now, owing to the fact that the function r −→ G
(
r, v(r)

)
is integrable

on [0, T ] and the function t −→ etA is continuous in operator norm, by
using Lebesgue convergence theorem we get

lim
s,t↑s1

E∥Xt −Xs∥2 = 0.

Therefore, it follows that there exists lim
t↑s1

Xt
def
= Xs1 and E ∥Xs1∥

2 <

∞. □

4. Illustrated Examples

In this section, motivated by [8], to illustrate the application of our
main theorem, we provide some examples of equation (1.1).

Example 4.1. Consider equation (1.1). Let N(dt, dx) be a Poisson
random measure on R+ × E with intensity measure ν(dx)dt, where E
is a Banach space and ν(dx) satisfies

∫
E\{0} ∥x∥

2ν(dx) < ∞. Also, set

k(t,X, y) =
√
λt∥y∥E

∑∞
m=0 βm(t,X)em, f(t,X) = g(t,X) = 0, where

X ∈ L2(Ω,F ,H), em is an orthonormal basis for Hilbert space H, λ(t) is
a nonnegative, locally integrable and increasing function, β2m+1(t,X) =
α2m+1sin(m

q∥X∥), β2m(t,X) = α2mcos(mq∥X∥), which q > 0, α2m =

O
(
m−(q+ 1

2
)
)
and α2m+1 = O

(
m−(q+ 1

2
)
)
. Then we have∫

E\{0}
∥k(t,X, y)− k(t, Y, y)∥2H ν(dy)

=

∫
E\{0}

∥∥∥∥∥√λt∥y∥E
∞∑

m=0

(βm(t,X)− βm(t, Y ))em

∥∥∥∥∥
2

H

ν(dy)
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= λt

∫
E\{0}

∥y∥2Eν(dy)
∞∑

m=0

∣∣βm(t,X)− βm(t, Y )|2.

By [8] we have

∞∑
m=0

∣∣βm(t,X)− βm(t, Y )|2 ≤ c
∞∑

m=1

m−(2q+1) sin2
(
mq∥X − Y ∥

2

)(4.1)

≤ cφ2(∥X − Y ∥),

for all sufficiently small ∥X −X
′∥, where

φ(x) =


0,

cx(− lnx)
1
2 ,

cδ(− ln δ)
1
2 ,

x = 0,
0 < x ≤ δ,
x > δ,

and δ ∈ (0, 1) is sufficiently small. Therefore, by (4.5), (4.1) we conclude∫
E\{0}

∥k(t,X, y)− k(t, Y, y)∥2H ν(dy) ≤ cλtφ
2(∥X − Y ∥)

∫
E\{0}

∥y∥2E ν(dy)

= D(t, ∥X − Y ∥2),

where D(t, x) = cλ(t)φ2
(
x

1
2

) ∫
E\{0} ∥y∥

2
Eν(dy). Notice that g(x) =

φ2
(
x

1
2

)
is an increasing, continuous and concave function on R+ for

which
∫
0+

1
g(x)dx = ∞, hence, by Remark 3.3, equation (1.1) has a

unique solution.

In the next example, we consider two special cases of Example 4.1 to
make it more clear.

Example 4.2. Let us consider H = ℓ2 in Example 4.1 where ℓ2 is the
Hilbert space of square summable sequences and βi’s are defined as in
Example 4.1, also let A : D(A) ⊆ ℓ2 −→ ℓ2 be an operator such that
Aen = λnen where {en}n≥1 denotes the standard basis of ℓ2 and λn is
negative for each n ∈ N. Also let (etA)t≥0 be the C0-semigroup (etA)t≥0

generated by A.
For each x = (x1, x2, . . .) ∈ ℓ2, we have∥∥etAx∥∥2

2
=

∞∑
n=1

e2tλnx2n

≤
∞∑
n=1

x2n

= ∥x∥22,
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therefore, (etA)t≥0 is a contraction semigroup on ℓ2.
In this case, Example 4.1 is equivalent to the following infinite system

of stochastic differential equations and it has a unique mild solution
X(t) =

(
X1(t), X2(t), . . .

)
∈ ℓ2

(4.2) dXi(t) = λiXi(t)dt+

∫
E\{0}

√
λ(t) ∥y∥βi

(
t,X(t)

)
N̄(dt, dy),

for each i ∈ N.
As another special case of Example 4.1, consider H = (Rm, ∥.∥2) and

the C0-semigroup (etA)t≥0 on Rm, where A = diag(a1, . . . , am) is a diag-
onal matrix with negative entries a1, . . . , am and etA = diag(ea1t, . . . , eamt).
For each x = (x1, . . . , xm) ∈ Rm, we have

(4.3)
∥∥etAx∥∥

2
=
√

e2a1tx21 + · · ·+ e2amtx2m ≤ eαt∥x∥2 ≤ ∥x∥2,

where α = max{a1, . . . , am}.
Therefore, (etA)t≥0 is a contraction semigroup with respect to the

Euclidean norm ∥.∥2. In this case, Example 4.1 is equivalent to the
following system of stochastic differential equations

(4.4) dXi(t) = aiXi(t)dt+

∫
E\{0}

√
λ(t) ∥y∥βi

(
t,X(t)

)
N̄(dt, dy),

for each i = 1, 2, 3, . . . ,m.

Now let us give an example of equation (1.1) without jumps.

Example 4.3. Consider equation (1.1). Let f(t,X) = k(t,X, y) = 0 for
each t ≥ 0, y ∈ E,X ∈ L2(Ω,F ,H) and g(t,X) =

√
λt
∑∞

m=0 βm(t,X)em
where {em}m≥1 is an orthonormal basis for L2(U,H), λ(t) is a non-
negative, locally integrable and increasing function and βm(t,X) =
m−pφ(mq ∥X∥) where φ2 is an increasing and concave function on R+,
φ(0) = 0, O

(
φ(x)

)
= xα, α < 1 and 2q − 2p < −1.

Notice that φ is a concave function and φ(0) = 0, therefore it satisfies
φ(x)− φ(y) ≤ φ(x− y) and we get∥∥∥g(t,X)− g(t,X

′
)
∥∥∥
L2(U,H)

(4.5)

=

(
λ(t)

∞∑
m=1

(
βm(t,X)− βm(t,X

′
)
)2) 1

2

=
√

λ(t)

( ∞∑
m=1

m−2p
(
φ(mq∥X∥)− φ(mq∥X ′∥)

)2) 1
2
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≤
√

λ(t)

( ∞∑
m=1

m−2pφ2
(
mq∥X −X

′∥
)) 1

2

=
√

λ(t)ρ
(∥∥∥X −X

′
∥∥∥)

= D

(
t,
∥∥∥X −X

′
∥∥∥2) 1

2

,

therefore D(t, x) = λ(t)ρ2
(
x

1
2

)
where ρ(x) =

( ∞∑
m=1

m−2pφ2(mqx)

) 1
2

.

Notice that ρ is an increasing, continuous and concave function on R+

for which
∫
0+

x
ρ2(x)

dx = ∞. Hence, by Remark 3.3, equation (1.1) has a

unique mild solution in H.
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