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Characteristics of Solutions of Fractional Hybrid

Integro-Differential Equations in Banach Algebra

Ahmed El-Sayed1, Hind Hashem2 and Shorouk Al-Issa3∗

Abstract. In this paper, we discuss the existence results for a class
of hybrid initial value problems of Riemann-Liouville fractional dif-
ferential equations. Our investigation is based on the Dhage hybrid
fixed point theorem, remarks and some special cases will be dis-
cussed. The continuous dependence of the unique solution on one
of its functions will be proved.

1. Introduction

Quadratic perturbation of nonlinear differential equations is quite
worth studying, as one of the most important types of perturbations,
we call it hybrid differential equations. The importance of the investi-
gations of hybrid differential equations lies in the fact that they include
several dynamic systems as special cases. This class of hybrid differential
equations includes the perturbations of original differential equations in
different ways. The consideration of hybrid differential equations is im-
plicit in the works of Krasnoselskii [18] and extensively treated in several
papers on hybrid differential equations with different perturbations, see
[6–16, 20, 21], and the references therein.

In recent years, a hybrid differential equation (quadrature perturba-
tions of a nonlinear differential equation) has attracted much attention.
Dhage and Lakshmikantham [7] started working on hybrid equations.
They introduced a new category of nonlinear differential equations called
ordinary hybrid differential equations and studied the existence of ex-
tremal solutions for this boundary value problem by establishing some
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fundamental differential inequalities. Zhao, Sun, Han, and Li [21], gen-
eralized Dhage’s work and discussed the fractional hybrid differential
equations involving Riemann Liouville differential operators. The ex-
istence theorem for fractional hybrid differential equations is proved
under mixed Lipschitz and Carathodory conditions. Next, Lu et al.
[17] developed the fractional hybrid differential equation involving the
Riemann-Liouville differential operators of order 0 < α < 1, with linear
perturbations of the second type. They established the existence and
uniqueness results under the ϕ-Lipschitz condition.

Also, M.A. Darwish, and K. Sadarangani et. al [8], studied the exis-
tence of the hybrid fractional pantograph equation{

Dα
0+(

x(t)
f(t,x(t),x(τ(t))) = g(t, x(t), x(σ(t)),

x(0) = 0,

t ∈ [0, 1],

where α, τ, σ ∈ (0, 1) and Dα
0+ denotes the Riemann-Liouville fractional

derivative. The results obtained by using the technique of measures of
non-compactness in the Banach algebras and a fixed point theorem for
the product of two operators verifying a Darbo type condition.

In [1], B. Ahmad, S.K. Ntouyas, J. Tariboon, discussed the existence
of solutions by using the hybrid fixed point theorems of Dhage [5] for
the sum of three operators in a Banach algebra for the following non-
local boundary value problem of hybrid fractional integro-differential
equations

(1.1)


cDα

x(t)−
m∑

j=1
Iβjhj(t,x(t))

f(t,x(t))

 = g(t, x(t)),

x(0) = µ(x), x(1) = A,

t ∈ [0, 1],

where cDα denotes the Caputo fractional derivative of order α, 1 <
α ≤ 2, Iβj is the Riemann Liouville fractional integral of order βj , j =
1, 2, . . . ,m.

Motivated by these works, we focus on a class of initial-value problems
of hybrid fractional differential equations (FHDE) involving Riemann
Liouville differential operators given by
(1.2)

Dα

x(t)−
m∑

i=1

ki(t,x(t)).I
γihi(t,x(t))

g(t,x(t))

 = f1(t, I
βf2(t, x(t))),[

x(t)−
m∑
i=1

ki(t, x(t)).I
γihi(t, x(t))

]
t=0

= 0,

t ∈ J = [0, T ],

where Dα denotes the Riemann-Liouville fractional derivative of order
α, 0 < α < 1, Iγi and Iβ are the Riemann-Liouville fractional integral
of orders γi, β ∈ (0, 1), g(t, x(t)),∈ C(J × R,R \ {0}), ki(t, x(t)) and
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hi(t, x(t)) ∈ C(J × R,R), hi(0, 0) = 0, i = 1, 2, . . . ,m, and fj(t, x(t)) ∈
C(J × R,R), j = 1, 2, by using a hybrid fixed point theorem for three
operators in a Banach algebra due to Dhage [5], and under mixed Lips-
chitz and Carathodory conditions. Problem (1.2) contains many integral
and functional differential equations that appear in applications of non-
linear analysis which seem to be important in the study of dynamics of
biological systems [2], some particular cases are presented in Section 3.

Here, we study the existence and uniqueness of solution for the initial
value problem of hybrid fractional differential equations (FHDE) (1.2)
and prove continuous dependence on one of its functions.

Also, this initial value problem can be studied under another sequence
of assumptions as shown in Remark 3.1.

The paper organized as follows: In Section 2, we prove an auxiliary
lemma related to the linear variant of the problem (1.2) and state suffi-
cient conditions which guarantee the existence of solutions to the prob-
lem (1.2). Where in section 3 particular cases and remarks presented.
Section 4, deals with the existence of continuous dependence of unique
solutions for (FHDE) (1.2) on function f1. Our conclusion is presented
in Section 5.

2. Fractional Hybrid Differential Equation

Let X = C(J,R) be the space of all real-valued continuous functions
on J , we equip the space X with the norm ||x|| = sup

t∈J
|x(t)|. Clearly,

C(J,R) is a complete normed algebra with respect to this supremum
norm.

Definition 2.1. By a solution of the FHDE (1.2) we mean a function
x ∈ C(J,R) such that

(i) the function t →
x(t)−

m∑
i=1

ki(t,x(t)).I
γihi(t,x(t))

g(t,x(t)) is continuous for

each x ∈ C(J,R), and
(ii) x satisfies equations in (1.2).

In this section, we consider the initial value problem (1.2). The hybrid
fixed point theorem for three operators in a Banach algebra, due to
Dhage [5] will be used to prove the existence result for the initial value
problem (1.2).

Consider the following assumptions:

(A1) The functions ki : J × R → R, and hi : J × R → R, i =
1, 2, . . . ,m, are continuous and there exist positive functions
λi(t) and ψi(t) with norms ∥λi∥and∥ψi∥ respectively such that

|ki(t, x)− ki(t, y)| ≤ λi(t)|x− y|,
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|hi(t, x)− hi(t, y)| ≤ ψi(t)|x− y|.

for all t ∈ J and x, y ∈ R.
(A2) g : J × R → R\{0} is continuous with ∥g∥ = sup

(t,x)∈J×R
|g(t, x)|,

and there exist a positive function ω(t) with norm ∥ω∥ such
that

|g(t, x)− g(t, y)| ≤ ω(t)|x− y|.
(A3) fj : J ×R→ R, j = 1, 2, satisfy Carathéodory condition

i.e., fj are measurable functions in t for any x ∈ R and con-
tinuous in x for almost all t ∈ J. Moreover, there exists three
functions t→ a(t), t→ b(t) and t→ m(t) such that

|f1(t, x)| ≤ a(t) + b(t)|x|,∀(t, x) ∈ J ×R,

|f2(t, x)| ≤ m(t), ∀(t, x) ∈ J ×R,

where a(·),m(·) and b(·) are measurable and bounded on J such
that: |a(·)| ≤M1 and |m(·)| ≤M2.

(A4) Let r be a positive root of the equation

m∑
i=1

∥λi∥∥ψi∥T γi
Γ(γi + 1)

r2 +

(
1−

[
m∑
i=1

(∥λi∥Hi + ∥ψi∥Ki)T
γi

Γ(γi + 1)

])
r(2.1)

+ ∥g∥
(

M1T
α

Γ(α+ 1)
+

b1M2T
α+β

Γ(α+ β + 1)

)
+

m∑
i=1

HiKiT
γi

Γ(γi + 1)

= 0,

where Ki = sup
t∈J

|ki(t, 0)|, and Hi = sup
t∈J

|hi(t, 0)|. Let(
1−

[
m∑
i=1

(∥λi∥Hi + ∥ψi∥Ki)T
γi

Γ(γi + 1)

])

>

√√√√4

(
m∑
i=1

∥λi∥∥ψi∥T γi

Γ(γi + 1)

)(
∥g∥

(
M1Tα

Γ(α+ 1)
+

b1M2Tα+β

Γ(α+ β + 1)

)
+

m∑
i=1

HiKiT γi

Γ(γi + 1)

)
.

Then

2

[
m∑
i=1

(∥λi∥Hi + ∥ψi∥Ki)T
γi

Γ(γi + 1)

]
−

[
m∑
i=1

(∥λi∥Hi + ∥ψi∥Ki)T
γi

Γ(γi + 1)

]2

+ 4

(
m∑
i=1

∥λi∥∥ψi∥T γi

Γ(γi + 1)

)[
∥g∥

(
M1T

α

Γ(α+ 1)
+

b1M2T
α+β

Γ(α+ β + 1)

)
+

m∑
i=1

HiKiT
γi

Γ(γi + 1)

]
< 1,
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i,e.,

2

[
m∑
i=1

(∥λi∥Hi + ∥ψi∥Ki)T
γi

Γ(γi + 1)

]
−

[
m∑
i=1

(∥λi∥Hi + ∥ψi∥Ki)T
γi

Γ(γi + 1)

]2

+ 4

(
m∑
i=1

∥λi∥∥ψi∥T γi
Γ(γi + 1)

)
m∑
i=1

HiKiT
γi

Γ(γi + 1)

+ 4∥g∥

(
m∑
i=1

∥λi∥∥ψi∥T γi
Γ(γi + 1)

)(
M1T

α

Γ(α+ 1)
+

b1M2T
α+β

Γ(α+ β + 1)

)
< 1.

To prove our main existence result for continuous solutions of the dif-
ferential equations of fractional order (1.2), the following useful lemma
is immediate and follows from the theory of fractional calculus.

Lemma 2.2. Assume that hypotheses (A1) − (A4) hold, α, β, andγi ∈
(0, 1), i = 1, 2, . . . ,m. If function x ∈ C(J,R) is a solution of the FHDE
(1.2), then it satisfies the following quadratic fractional integral equation

(2.2) x(t) =

m∑
i=1

ki(t, x(t))I
γihi(t, x(t))+g(t, x(t))I

αf1(t, I
βf2(t, x(t))).

Proof. Assume that x is a solution of the FHDE (1.2). Applying Riemann-
Liouville fractional integral of order α on both sides of (1.2), we obtain

IαDα

x(t)−
m∑
i=1

ki(t, x(t))I
γihi(t, x(t))

g(t, x(t))

 = Iαf1(t, I
βf2(t, x(t))).

So, we conclude that

1

g(t, x(t))

(
x(t)−

m∑
i=1

ki(t, x(t))I
γihi(t, x(t))

)

− 1

Γ(α)

I1−α
x(t)−

m∑
i=1

ki(t, x(t))I
γihi(t, x(t))

g(t, x(t))


t=0

tα−1


= Iαf1(t, I

βf2(t, x(t))), t ∈ J.

Since [
1

g(t, x(t))

(
x(t)−

m∑
i=1

ki(t, x(t))I
γihi(t, x(t))

)]
t=0
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=
1

g(0, x(0))

[
x(t)−

m∑
i=1

ki(t, x(t))I
γihi(t, x(t))

)]
t=0

=
0

g(0, 0)
= 0,

(due to the fact that g(0, 0) ̸= 0), then we have

x(t)−
m∑
i=1

ki(t, x(t))I
γihi(t, x(t))

g(t, x(t))
= Iαf1(t, I

βf2(t, x(t)),

i.e.,

x(t) = g(t, x(t))Iαf1(t, I
βf2(t, x(t)) +

m∑
i=1

ki(t, x(t))I
γihi(t, x(t)), t ∈ J.

Thus, eq.(2.2) holds.
Conversely, assume that x satisfies eq.(2.2). Then dividing by g(t, x(t))

and applying Dα on both sides of eq.(2.2), so eq.(1.2) is satisfied. Again,
substituting t = 0 in eq.(2.2) yields(

x(t)−
m∑
i=1

ki(t, x(t))I
γihi(t, x(t))

)∣∣∣∣
t=0

g(0, x(0))
= Iαf1(t, I

βf2(t, x(t))

∣∣∣∣
t=0

,

for i = 1, 2, . . . ,m. The proof is completed. □

At this stage, our target is to prove the following existence theorem.

Theorem 2.3. Assume that the hypotheses (A1)− (A4) hold. Then the
FHDE (1.2) has at least one solution defined on J .

Proof. By Lemma 2.2, problem (1.2) is equivalent to the quadratic frac-
tional integral equation (2.2).

Define a subset S of X as

S := {x ∈ X, ∥x∥ ≤ r},

where r satisfies inequality (2.1). Clearly S is closed, convex, and
bounded subset of the Banach space X. Consider the operators A :
X → X,B : S → X and C : X → X defined by:

(Ax)(t) = g(t, x(t)), t ∈ J,(2.3)

(Bx)(t) = Iαf1(t, I
βf2(t, x(t))), t ∈ J,(2.4)

(Cx)(t) =
m∑
i=1

ki(t, x(t))I
γihi(t, x(t))(2.5)
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=

m∑
i=1

ki(t, x(t))

∫ t

0

(t− s)γi−1

Γ(γi)
hi(s, x(s))ds,

t ∈ J, (i = 1, 2, . . . ,m).
Then the integral equation (2.2) is transformed into the operator equa-

tion as:

(2.6) x(t) = Ax(t) ·Bx(t) + Cx(t), t ∈ J.

We shall show that A,B and C satisfy all the conditions of theorem
for three operators in a Banach algebra, due to Dhage [5]. This will be
achieved in the following series of steps.

Step 1. We first show that A and C are Lipschitzian on X. To see
this, let x, y ∈ X. So

|Ax(t)−Ay(t)| = |g(t, x(t))− g(t, y(t))|
≤ ω(t)|x(t)− y(t)| ≤ |ω(t)||x(t)− y(t)|.

Taking the supremum over t ∈ J , we get

∥Ax−Ay∥ ≤ ∥ω∥∥x− y∥, ∀x, y ∈ X.

Therefore, A is Lipschitzian on X with Lipschitz constant ∥ω∥.
Analogously, for any x, y ∈ X, we have

|Cx(t)− Cy(t)|

=

∣∣∣∣∣
m∑
i=1

ki(t, x(t))I
γihi(t, x(t))−

m∑
i=1

ki(t, y(t))I
γihi(t, y(t))

∣∣∣∣∣
≤

∣∣∣∣∣
m∑
i=1

ki(t, x(t))I
γihi(t, x(t))−

m∑
i=1

ki(t, x(t))I
γihi(t, y(t))

∣∣∣∣∣
+

∣∣∣∣∣
m∑
i=1

ki(t, x(t))I
γihi(t, y(t))−

m∑
i=1

ki(t, y(t))I
γihi(t, y(t))

∣∣∣∣∣
≤

m∑
i=1

|ki(t, x(t))||Iγihi(t, x(t))− Iγihi(t, y(t))|

+

m∑
i=1

|ki(t, x(t))− ki(t, y(t))||Iγihi(t, y(t))|

≤
m∑
i=1

[|ki(t, x(t))− ki(t, 0)|+ |ki(t, 0)|]
∫ t

0

(t− s)γi−1

Γ(γi)
ψi(t)|x(s)− y(s)|ds

+
m∑
i=1

λi(t)|x(t)− y(t)|
∫ t

0

(t− s)γi−1

Γ(γi)
[|hi(s, y(s))− hi(s, 0)|+ hi(s, 0)|]ds

≤
m∑
i=1

[|λi(t)||x(t)|+Ki]

∫ t

0

(t− s)γi−1

Γ(γi)
|ψi(s)||x(s)− y(s)|ds
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+
m∑
i=1

|λi(t)||x(t)− y(t)|
∫ t

0

(t− s)γi−1

Γ(γi)
[|ψi(s)||y(s)|+Hi]ds

≤ ∥x− y∥
m∑
i=1

[∥λi∥∥x∥+Ki]
∥ψi∥T γi

Γ(γi + 1)

+

m∑
i=1

∥λi∥[∥ψi∥∥y∥+Hi]∥x− y∥ T γi

Γ(γi + 1)

≤ ∥x− y∥
m∑
i=1

[∥λi∥r +Ki]∥ψi∥+ ∥λi∥[∥ψi∥r +Hi]

Γ(γi + 1)
T γi .

Taking the supremum over t ∈ J , we get

∥Cx− Cy∥ ≤
m∑
i=1

[∥λi∥r +Ki]∥ψi∥+ ∥λi∥[∥ψi∥r +Hi]

Γ(γi + 1)
T γi∥x− y∥.

This shows that C is a Lipschitz mapping on X with the Lipschitz
constant

m∑
i=1

[∥λi∥r +Ki]∥ψi∥+ ∥λi∥[∥ψi∥r +Hi]

Γ(γi + 1)
T γi .

Step 2. We show that B is a compact and continuous operator on S
into X.

First we show that B is continuous on X. Let {xn} be a sequence in S
converging to a point x ∈ S, let us assume that t ∈ J and since f2(t, x(t))
is continuous inX, then f2(t, xn(t)) converges to f2(t, x(t)), (see assump-
tion (A3)). Applying Lebesgue Dominated Convergence Theorem, we
get

lim
n→∞

Iβf2(t, xn(t)) = Iβf2(t, x(t)).

Also, since f1(t, x(t)) is continuous in x, then using the properties of the
fractional-order integral and applying Lebesgue Dominated Convergence
Theorem, we get

lim
n→∞

Bxn(t) = lim
n→∞

Iαf1

(
t, Iβf2(t, xn(t))

)
= Iαf1

(
t, Iβf2(t, x(t))

)
= Bx(t).

Thus, Bxn → Bx as n→ ∞ uniformly on R, and hence B is a continuous
operator on S into S.

Now, we show that B is a compact operator on S. It is enough to
show that B(S) is a uniformly bounded and equicontinuous set in X.
On the one hand, let x ∈ S be arbitrary. Then by hypothesis (A2),

|Bx(t)| ≤
∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβf2(s, xn(s))|ds
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≤
∫ t

0

(t− s)α−1

Γ(α)
[a(s) + b(s)Iβ|f2(s, x(s)|]ds

≤
∫ t

0

(t− s)α−1

Γ(α)
a(s)ds+

∫ t

0

(t− s)α−1

Γ(α)
|b(s)|Iβ|f2(s, x(s))|ds

≤ Iαa(t) + ∥b∥
∫ t

0

(t− s)α−1

Γ(α)
Iβ|m(s)|ds

≤ Iα|a(t)|+ ∥b∥Iα+β|m(t)|

≤M1

∫ t

0

(t− s)α−1

Γ(α)
ds+ ∥b∥M2

∫ t

0

(t− s)α+β−1

Γ(α+ β)
ds

≤M1
Tα

Γ(α+ 1)
+ ∥b∥M2

Tα+β

Γ(α+ β + 1)

= Λ.

Taking supremum over t ∈ J , we have

∥Bx(t)∥ ≤ Λ,

for all x ∈ S. This shows that B is uniformly bounded on S.
Now, we proceed to show that B(S) is also equi-continuous set in X.

Let t1, t2 ∈ J , and x ∈ S. (without loss of generality assume that t1 < t2),
then we have

(Bx)(t2)− (Bx)(t1)

≤
∫ t2

0

(t2 − s)α−1

Γ(α)
f1(s, I

βf2(s, x(s)))ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
f1(s, I

βf2(s, x(s)))ds

≤
∫ t1

0

(t2 − s)α−1

Γ(α)
f1(s, I

βf2(s, x(s)))ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
f1(s, I

βf2(s, x(s)))ds

−
∫ t1

0

(t1 − s)α−1

Γ(α)
f1(s, I

βf2(s, x(s))ds

≤
∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
f1(s, I

βf2(s, x(s)))ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
f1(s, I

βf2(s, x(s)))ds,

and

|(Bx)(t2)− (Bx)(t1)|
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≤
∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
|f1(s, Iβf2(s, x(s)))|ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
|f1(s, Iβf2(s, x(s)))|ds

≤
∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)

[
|a(s)|+ |b(s)|Iβ|f2(s, x(s))|

]
ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)

[
|a(s)|+ |b(s)|Iβ|f2(s, x(s))|

]
ds

≤ ∥a∥
[∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
ds+

∫ t2

t1

(t2 − s)α−1

Γ(α)
ds

]
+ ∥b∥

[ ∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
Iβ|f2(s, x(s))|ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
Iβ|f2(s, x(s))|ds

]
≤ ∥a∥

(
|tα2 − tα1 − 2(t2 − t1)

α|
Γ(α+ 1)

)
+ ∥b∥

[ ∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
Iβm(s)ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
Iβm(s)ds

]
≤ ∥a∥

(
|tα2 − tα1 − 2(t2 − t1)

α|
Γ(α+ 1)

)
+ ∥b∥M2

[ ∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)

∫ s

0

(s− τ)β−1

Γ(β)
dτds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)

∫ s

0

(s− τ)β−1

Γ(β)
dτds

]
≤ ∥a∥

(
|tα2 − tα1 − 2(t2 − t1)

α|
Γ(α+ 1)

)
+ ∥b∥M2

[ ∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)

(s)β

Γ(β + 1)
ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)

(s)β

Γ(β + 1)
ds

]
≤ ∥a∥

(
|tα2 − tα1 − 2(t2 − t1)

α|
Γ(α+ 1)

)
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+ ∥b∥M2
T β

Γ(β + 1)

[ ∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
ds

+

∫ t2

t1

(t2 − s)α−1

Γ(α)
ds

]
≤ ∥a∥

(
|tα2 − tα1 − 2(t2 − t1)

α|
Γ(α+ 1)

)
+ ∥b∥M2

(
|tα2 − tα1 − 2(t2 − t1)

α|T β

Γ(α+ 1)Γ(β + 1)

)
,

i.e.,

|(Bx)(t2)− (Bx)(t1)|

≤ ∥a∥
(
|tα2 − tα1 − 2(t2 − t1)

α|
Γ(α+ 1)

)
+ ∥b∥M2

(
|tα2 − tα1 − 2(t2 − t1)

α|T β

Γ(α+ 1)Γ(β + 1)

)
,

which is independent of x ∈ S. Hence, for ϵ > 0, there exists a δ > 0
such that

|t2 − t1| < δ ⇒ |(Bx)(t2)− (Bx)(t1)| < ϵ,

for all t1, t2 ∈ J and for all x ∈ S. This shows that B(S) is an equicontin-
uous set in X. Now, the set B(S) is a uniformly bounded and equicon-
tinuous set in X, so it is compact by the Arzela-Ascoli theorem. As a
result, B is a complete continuous operator on S.

Step 3. Let x ∈ X and y ∈ S be arbitrary elements such that
x = AxBy + Cx. Then we have

|x(t)|
≤ |Ax(t)||By(t)|+ |Cx(t)|

≤ |g(t, x(t))|
∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβf2(s, y(s)))|ds

+

m∑
i=1

ki(t, x(t))I
γi |hi(t, x(t))|

≤ |g(t, x(t))|
∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβf2(s, y(s))|ds

+
m∑
i=1

(|ki(t, x(t))− ki(t, 0)|+ |ki(t, 0)|)
∫ t

0

(t− s)γi−1

Γ(γi)
(|hi(s, x(s))

− hi(s, 0)|+ |hi(s, 0)|)ds

≤ |g(t, x(t))|
∫ t

0

(t− s)α−1

Γ(α)
(|a(s)|+ |b(s)|Iβ|f2(s, y(s)|)ds

+
m∑
i=1

(λi(t)|x(t)|+Ki)

∫ t

0

(t− s)γi−1

Γ(γi)
(ψi(s)|x(s)|+Hi)ds
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≤ |g(t, x(t))|
∫ t

0

(t− s)α−1

Γ(α)
[|a(s)|+ |b(s)|Iβm(s)]ds

+

m∑
i=1

(|λi(t)||x(t)|+Ki)

∫ t

0

(t− s)γi−1

Γ(γi)
(|ψi(s)||x(s)|+Hi)ds

≤ ∥g∥[Iαa(t) + ∥b∥Iα+βm(t)]

+

m∑
i=1

(∥λi∥∥x∥+Ki)(∥ψi∥∥x∥+Hi)

∫ t

0

(t− s)γi−1

Γ(γi)
ds

≤ ∥g∥
[
M1

∫ t

0

(t− s)α−1

Γ(α)
ds+ ∥b∥M2

∫ t

0

(t− s)α+β−1

Γ(α+ β)
ds

]
+

m∑
i=1

(∥λi∥r +Ki)(∥ψi∥r +Hi)T
γi

Γ(γi + 1)

≤ ∥g∥
(
M1

Tα

Γ(α+ 1)
+ ∥b∥M2

Tα+β

Γ(α+ β + 1)

)
+

m∑
i=1

(∥λi∥r +Ki)(∥ψi∥r +Hi)T
γi

Γ(γi + 1)
.

Taking supremum over t ∈ J , we have

∥x(t)∥ ≤
m∑
i=1

(∥λi∥r +Ki)(∥ψi∥r +Hi)T
γi

Γ(γi + 1)

+ ∥g∥
(

M1T
α

Γ(α+ 1)
+

∥b∥M2T
α+β

Γ(α+ β + 1)

)
≤ r.

Therefore, x ∈ S.
Step 4. Finally we shall show that δM + ρ < 1 holds.

Since

M = ∥B(S)∥

= sup
x∈S

{
sup
t∈J

|Bx(t)|
}

≤ M1T
α

Γ(α+ 1)
+

∥b∥M2T
α+β

Γ(α+ β + 1)
,

and by (A4) we have

2

[
m∑
i=1

(∥λi∥Hi + ∥ψi∥Ki)T
γi

Γ(γi + 1)

]
−

[
m∑
i=1

(∥λi∥Hi + ∥ψi∥Ki)T
γi

Γ(γi + 1)

]2
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+ 4

(
m∑
i=1

(∥λi∥∥ψi∥T γi
Γ(γi + 1)

)
m∑
i=1

HiKiT
γi

Γ(γi + 1)

+ 4∥g∥

(
m∑
i=1

(∥λi∥∥ψi∥T γi
Γ(γi + 1)

)(
M1T

α

Γ(α+ 1)
+

b1M2T
α+β

Γ(α+ β + 1)

)
< 1,

2

[
m∑
i=1

(∥λi∥Hi + ∥ψi∥Ki)T
γi

Γ(γi + 1)

]
−

[
m∑
i=1

(∥λi∥Hi + ∥ψi∥Ki)T
γi

Γ(γi + 1)

]2

+ 4

(
m∑
i=1

∥λi∥∥ψi∥T γi
Γ(γi + 1)

)
m∑
i=1

HiKiT
γi

Γ(γi + 1)
+ 4∥g∥

(
m∑
i=1

(∥λi∥∥ψi∥T γi
Γ(γi + 1)

)
M

< 1,

with δ = 4∥g∥
(

m∑
i=1

(∥λi∥∥ψi∥T γi

Γ(γi+1)

)
, and

ρ = 2

[
m∑
i=1

(∥λi∥Hi + ∥ψi∥Ki)T
γi

Γ(γi + 1)

]
−

[
m∑
i=1

(∥λi∥Hi + ∥ψi∥Ki)T
γi

Γ(γi + 1)

]2

+ 4

(
m∑
i=1

∥λi∥∥ψi∥T γi
Γ(γi + 1)

)
m∑
i=1

HiKiT
γi

Γ(γi + 1)
.

Then
δM + ρ < 1.

Thus all the conditions of Dhage’s hybrid fixed point theorem [5] are
satisfied and hence the operator equation x = AxBx+Cx has a solution
in S. In consequence, problem (1.2) has a solution on J . This completes
the proof. □

By a similar way as done above, we can prove an existence result for
the following fractional hybrid differential equation

 Dα

x(t)−
m∑
i=1

ki(t,x(t)).I
γihi(t,x(t))

g(t,x(t))

 = f1(t, I
βf2(t, x(t))),

x(0) = 0.

t ∈ J,

(2.7)

Lemma 2.4. Assume that hypotheses (A1)− (A4) hold, α, β, and γi ∈
(0, 1), i = 1, 2, . . . ,m. If a function x ∈ C(J,R) is a solution of the
FHDE (2.7), then it satisfies the quadratic fractional integral equation
(2.2).
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Theorem 2.5. Assume that the hypotheses (A1)− (A4) of Theorem 2.3
hold. Then the FHDE (2.7) has at least one solution defined on J .

3. Particular Cases and Remarks

The problem (1.2) considered in this paper includes many particu-
lar well-known classes of initial value problems of fractional differential
equations appearing in the literature and it is equivalent to a multi-
term quadratic integral equation of fractional order. This multi-term
quadratic functions leads to cover many fractional dynamical systems
and special cases:

(i) When ki(t, x) = 1, f2(t, x) = x and letting β → 0, we have the
following hybrid fractional integro-differential equation Dα

x(t)−
m∑
i=1

Iγihi(t,x(t))

g(t,x(t))

 = f1(t, x(t)),

x(0) = 0,

t ∈ J,

which is studied in [19] in case of Caputo fractional derivative.
(ii) When f1(t, x) = 0, we have the m−term quadratic fractional

integral equation

x(t) =

m∑
i=1

ki(t, x(t))I
γihi(t, x(t)),

which is studied in [12].
(iii) When f2(t, x) = x,m = 1, hi(t, x) = 1 and β, γi → 0 we have

the following quadratic fractional integral equation

x(t) = k(t, x(t)) + g(t, x(t))Iαf1(t, x(t)),

which is studied in [12] and when k(t, x) = p(t) ∈ C(J,R) we
obtain a quadratic integral equation of fractional order which is
studied in [4] and [11]. Also, taking g(t, x) = 1, we obtain the
fractional order integral equation

x(t) = p(t) + Iαf1(t, x(t)),

which is studied in [9].
(iv) Taking m = 1, h1(t, x) = 1 and γ1 → 0, we have the following

quadratic fractional integral equation

x(t) = k1(t, x(t)) + g(t, x(t))Iαf1(t, I
βf2(t, x(t))),

which is studied in [3] and proves the existence of solution of
a quadratic integral equations of fractional orders in Banach
algebra.
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(v) When ki(t, x) = 0, f2(t, x) = x and letting β → 0, we have the
following hybrid fractional differential equation{

Dα
(

x(t)
g(t,x(t))

)
= f1(t, x(t)),

x(0) = 0,

t ∈ J,

which is studied in [21].
(vi) When ki(t, x) = 0, g(t, x) = 1. Taking f1(t, x(t)) = p(t) + x(t).

we can deduce existence results for the following FHDE{
Dαx(t) = p(t) + Iβf2(t, x(t)),
x(0) = 0.

t ∈ J,
(3.1)

(vii) Taking m = 1, k1(t, x) = f1(t, x), α → 1 and h1(t, x) = g(t, x),
we obtain the two term quadratic integral equation

x(t) = f1(t, x(t))

∫ t

0
g(s, x(s))ds+ g(t, x(t))

∫ t

0
f1(s, x(s))ds,

which is studied in [15] and proves the existence of solution of
a quadratic integro-differential equation

x(t) =

∫ t

0
g(s, x′(s))ds.

∫ t

0
f1(s, x

′(s))ds, x(0)(3.2)

= x0.

Differentiating both sides of (3.2), we

x′(t) = f1(t, x
′(t))

∫ t

0
g(s, x′(s))ds+ g(t, x′(t))

∫ t

0
f1(s, x

′(s))ds,

then

u(t) = f1(t, u(t))

∫ t

0
g(s, u(s))ds+ g(t, u(t))

∫ t

0
f1(s, u(s))ds.

(viii) Taking g(t, x) = 1, we obtain a class of neutral fractional order
differential equations

 Dα

(
x(t)−

m∑
i=1

ki(t, x(t)).I
γihi(t, x(t))

)
= f1(t, I

βf2(t, x(t))),

x(0) = 0.

t ∈ J,

(3.3)

Remark 3.1. The existence results for the FHDE (1.2) can be proved
under another sequence of assumptions.

Let the assumptions of Theorem 2.3 be satisfied, and replace assump-
tions (A1)− (A2) and (A4) by the following assumptions:
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(A∗
1) The functions g : J × R → R\{0}, ki, : J × R → R, and hi :
J × R → R, hi(0, 0) = 0, i = 1, 2, . . . ,m, are continuous and
there exist positive functions λi(t), ψi(t), and ω(t) with norms
∥λi∥, ∥ψi∥, and ∥ω∥ respectively such that

|ki(t, x)| ≤ pi(t)Φ(|x|),
|hi(t, x)− hi(t, y)| ≤ ψi(t)|x− y|,
|g(t, x)− g(t, y)| ≤ ω(t)|x− y|.

(A∗
4) There exists a number r > 0 such that

m∑
i=1

(∥p∥Φ(r))(∥ψi∥r +Hi)T
γi

Γ(γi + 1)

+ (∥ω∥r +G)

(
M1T

α

Γ(α+ 1)
+

b1M2T
α+β

Γ(α+ β + 1)

)
≤ r,

where G = sup
t∈J

|g(t, 0)|, and Hi = sup
t∈J

|hi(t, 0)|,

m∑
i=1

[∥p∥Φ(r) + ∥λi∥Hi + ∥ψi∥Ki]T
γi

Γ(γi + 1)

+
∥ω∥M1T

α

Γ(α+ 1)
+

∥ω∥b1M2T
α+β

Γ(α+ β + 1)

< 1.

4. Continuous Dependence

In this section, we give sufficient conditions for the uniqueness of the
solution of the quadratic functional integral equation (1.2) and study
the continuous dependence of solution on the function f1.

4.1. Uniqueness of the solution. Let us assume the following as-
sumption

(A∗
2) Let fj : J×R→ R, j = 1, 2, be a continuous functions satisfying

the Lipschitz condition and there exists two positive functions
φ(t), θ(t) with norms ∥φ∥ and ∥θ∥, such that

|f1(t, x)− f1(t, y)| ≤ φ(t)|x− y|,
|f2(t, x)− f2(t, y)| ≤ θ(t)|x− y|,

with F1 = supt∈J |f1(t, 0)|, and F2 = supt∈J |f2(t, 0)|.
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Theorem 4.1. Let the assumptions of Theorem 2.3 hold, with replace
assumption (A2) by (A∗

2), if
m∑
i=1

[∥λi∥r +Ki]∥ψi∥+ ∥λi∥[∥ψi∥r +Hi]

Γ(γi + 1)
T γi

+ ∥L∥
[
r∥θ∥Tα+βF2

Γ(α+ β + 1)
+

TαF1

Γ(α+ 1)

]
+ [∥L∥r +G]

∥φ∥∥θ∥Tα+β

Γ(α+ β + 1)

< 1.

Then the solution x ∈ C[0, T ] of FHDE(1.2) is unique.

Proof. Firstly, we notice that condition (A∗
2) implies condition (A2) for

functions fj , j = 1, 2. Let x, y be two solutions of (1.2). Then

|x(t)− y(t)|

≤

∣∣∣∣∣
m∑
i=1

ki(t, x(t))I
γihi(t, x(t))−

m∑
i=1

ki(t, y(t))I
γihi(t, y(t))

∣∣∣∣∣
+ |g(t, x(t))Iαf1(t, Iβf2(t, x(t)))− g(t, y(t))Iαf1(t, I

βf2(t, y(t)))|

≤

∣∣∣∣∣
m∑
i=1

ki(t, x(t))I
γihi(t, x(t))−

m∑
i=1

ki(t, x(t))I
γihi(t, y(t))

∣∣∣∣∣
+

∣∣∣∣∣
m∑
i=1

ki(t, x(t))I
γihi(t, y(t))−

m∑
i=1

ki(t, y(t))I
γihi(t, y(t))

∣∣∣∣∣
+ |g(t, x(t))− g(t, y(t))|

∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβf2(s, x(s))|ds

+ |g(t, x(t))|
∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβf2(s, x(s))− f1(s, I

βf2(s, y(s))|ds

≤
m∑
i=1

|ki(t, x(t))||Iγihi(t, x(t))− Iγihi(t, y(t))|

+

m∑
i=1

|ki(t, x(t))− ki(t, y(t))||Iγihi(t, y(t))|

+ L(t)|x(t)− y(t)|
∫ t

0

(t− s)α−1

Γ(α)
[|f1(s, Iβf2(s, x(s))− f1(s, 0)|+ |f1(s, 0)|]ds

+ [[L(t)|x(t)|+G]]

∫ t

0

(t− s)α−1

Γ(α)
φ(s)|Iβf2(s, x(s))− Iβf2(s, y(s))|ds

≤
m∑
i=1

[|ki(t, x(t))− ki(t, 0)|+ |ki(t, 0)|]
∫ t

0

(t− s)γi−1

Γ(γi)
ψi(s)|x(s)− y(s)|ds

+

m∑
i=1

λi(t)|x(t)− y(t)|
∫ t

0

(t− s)γi−1

Γ(γi)
[|hi(s, y(s))− hi(s, 0)|+ hi(s, 0)|]ds

+ |L(t)||x(t)− y(t)|
∫ t

0

(t− s)α−1

Γ(α)
[|φ(s)|Iβ |f2(s, x(s))|+ F1]ds

+ [L(t)|x(t)|+G]

∫ t

0

(t− s)α−1

Γ(α)
|φ(s)|Iβ |f2(s, x(s))− f2(s, y(s))|ds
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≤
m∑
i=1

[|λi(t)||x(t)|+Ki]

∫ t

0

(t− s)γi−1

Γ(γi)
|ψi(s)||x(s)− y(s)|ds

+
m∑
i=1

|λi(t)|∥x− y∥
∫ t

0

(t− s)γi−1

Γ(γi)
[|ψi(s)||x(s)|+Hi]ds

+ ∥L∥∥x− y∥∥φ∥
∫ t

0

(t− s)α−1

Γ(α)

[
Iβ [|f2(s, x(s))− f2(s, 0)|+ |f2(s, 0)|] + F1

]
ds

+ ∥L∥∥x∥+G]∥φ∥∥θ∥
∫ t

0

(t− s)α−1

Γ(α)
Iβ |x(s)− y(s)|ds

≤ ∥x− y∥
m∑
i=1

[∥λi∥∥x∥+Ki]
∥ψi∥T γi

Γ(γi + 1)

+
m∑
i=1

∥λi∥[∥ψi∥∥x∥+Hi]∥x− y∥ T γi

Γ(γi + 1)

+ ∥L∥∥x− y∥∥φ∥
∫ t

0

(t− s)α−1

Γ(α)

[
Iβ [|θ(s)||x(s)|+ F2] + F1

]
ds

+ ∥L∥∥x∥+G]∥φ∥∥θ∥
∫ t

0

(t− s)α−1

Γ(α)
Iβ∥x− y∥

≤
m∑
i=1

[∥λi∥∥x∥+Ki]∥ψi∥+ ∥λi∥[∥ψi∥∥x∥+Hi]

Γ(γi + 1)
T γi∥x− y∥

+ ∥L∥∥x− y∥[| θ∥∥x∥ Tα+β

Γ(α+ β + 1)
F2 +

Tα

Γ(α+ 1)
F1]

+ [∥L∥∥x∥+G] ∥φ∥∥θ∥∥x− y∥ Tα+β

Γ(α+ β + 1)
.

Taking the supremum for t ∈ J , we have

∥x− y∥ ≤

[
m∑
i=1

[∥λi∥r +Ki]∥ψi∥+ ∥λi∥[∥ψi∥r +Hi]

Γ(γi + 1)
T γi

+ ∥L∥
[
r∥θ∥Tα+βF2

Γ(α+ β + 1)
+

TαF1

Γ(α+ 1)

]
+ [∥L∥r +G]

∥φ∥∥θ∥Tα+β

Γ(α+ β + 1)

]
∥x− y∥.

Then[
1−

([ m∑
i=1

[∥λi∥r +Ki]∥ψi∥+ ∥λi∥[∥ψi∥r +Hi]

Γ(γi + 1)
T γi + ∥L∥

[
r∥θ∥Tα+βF2

Γ(α+ β + 1)

+
TαF1

Γ(α+ 1)

]
+ [∥L∥r +G]

∥φ∥∥θ∥Tα+β

Γ(α+ β + 1)

])]
∥x− y∥

≤ 0.
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Since
m∑
i=1

[∥λi∥r +Ki]∥ψi∥+ ∥λi∥[∥ψi∥r +Hi]

Γ(γi + 1)
T γi

+ ∥L∥
[
r∥θ∥Tα+βF2

Γ(α+ β + 1)
+

TαF1

Γ(α+ 1)

]
+ [∥L∥r +G]

∥φ∥∥θ∥Tα+β

Γ(α+ β + 1)

< 1,

then, x(t) = y(t) and the solution of the FHDE (1.2) is unique. □
4.2. Continuous dependence. Next, we prove the continuous depen-
dence of the unique solutions on the functions f1.

Definition 4.2. The solution of FHDE (1.2) depends continuously on
the functions f1 if ∀ϵ > 0, ∃δ > 0, such that

|f1(t, x(t))− f∗1 (t, x(t))| ≤ δ ⇒ ||x− x∗|| ≤ ϵ.

Theorem 4.3. Let the assumptions of Theorem 4.1 hold. Then the
solution of FHDE (1.2) depends continuously on the function f1.

Proof. Let x, x∗ be two solutions of the FHDE (1.2).
Let δ > 0 be given such that |f1(t, x(t)) − f∗1 (t, x(t))| ≤ δ, ∀δ ≥ 0.

Then

|x(t)− x∗(t)|

≤ |
m∑
i=1

ki(t, x(t))I
γihi(t, x(t))−

m∑
i=1

ki(t, x
∗(t))Iγihi(t, x

∗(t))|

+
∣∣g(t, x(t)) ∫ t

0

(t− s)α−1

Γ(α)
f1(s, I

βf2(s, x(s))ds

− g(t, x∗(t))

∫ t

0

(t− s)α−1

Γ(α)
f∗
1 (s, I

βf2(s, x
∗(s))ds

∣∣
≤

m∑
i=1

|ki(t, x(t))||Iγihi(t, x(t))− Iγihi(t, x
∗(t))|

+

m∑
i=1

|ki(t, x(t))− ki(t, x
∗(t))||Iγihi(t, x

∗(t))|

+ |g(t, x(t))|
∫ t

0

(t− s)α−1

Γ(α)
f1(s, I

βf2(s, x(s))ds

− g(t, x∗(t))

∫ t

0

(t− s)α−1

Γ(α)
f1(s, I

βf2(s, x(s))ds|

+ |g(t, x∗(t))
∫ t

0

(t− s)α−1

Γ(α)
f1(s, I

βf2(s, x(t))ds

− g(t, x∗(t))

∫ t

0

(t− s)α−1

Γ(α)
f∗
1 (s, I

βf2(s, x
∗(t))ds|

≤
m∑
i=1

[|ki(t, x(t))− ki(t, 0)|+ |ki(t, 0)|]
∫ t

0

(t− s)γi−1

Γ(γi)
ψi(t)|x(s)− x∗(s)|ds
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+

m∑
i=1

λi(t)|x(t)− x∗(t)|
∫ t

0

(t− s)γi−1

Γ(γi)
[|hi(s, x

∗(s))− hi(s, 0)|+ hi(s, 0)|]ds

+ |g(t, x(t))− g(t, x∗(t))|
∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβf2(s, x(s))|ds

+ |g(t, x∗(t))|
∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβf2(s, x(s))− f∗

1 (s, I
βf2(s, x

∗(s))|ds

≤
m∑
i=1

[|λi(t)||x(t)|+Ki]

∫ t

0

(t− s)γi−1

Γ(γi)
|ψi(s)||x(s)− x∗(s)|ds

+

m∑
i=1

|λi(t)||x(t)− x∗(t)|
∫ t

0

(t− s)γi−1

Γ(γi)
[|ψi(s)||x∗(s)|+Hi]ds

+ L(t)|x(t)− x∗(t)|
∫ t

0

(t− s)α−1

Γ(α)
[|f1(s, Iβf2(s, x(s))− f1(s, 0)|+ |f1(s, 0)|]ds

+ (∥L∥|x∗(t)|+G)

[ ∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβf2(s, x(s)))− f1(s, I

βf2(s, x
∗(s)))|ds

+

∫ t

0

(t− s)α−1

Γ(α)
|f1(s, Iβf2(s, x∗(s)))− f∗

1 (s, I
βf2(s, x

∗(s)))|ds
]

≤ ∥x− x∗∥
m∑
i=1

[∥λi∥r +Ki]
∥ψi∥T γi

Γ(γi + 1)
+

m∑
i=1

∥λi∥[∥ψi∥r +Hi]∥x− x∗∥ T γi

Γ(γi + 1)

+ ∥L∥∥x− x∗∥
∫ t

0

(t− s)α−1

Γ(α)
[φ(s)|Iβ |f2(s, x(s))|+ F1]ds

+ (∥L∥∥x∗∥+G)

[ ∫ t

0

(t− s)α−1

Γ(α)
|φ(s)||Iβf2(s, x(s))− Iβf2(s, x

∗(s))|ds

+ (∥L∥∥x∗∥+G)

∫ t

0

(t− s)α−1

Γ(α)
δds

≤ ∥x− x∗∥
[ m∑

i=1

[∥λi∥r +Ki]
∥ψi∥T γi

Γ(γi + 1)
+

m∑
i=1

∥λi∥[∥ψi∥r +Hi]
T γi

Γ(γi + 1)

]
+ ∥L∥∥x− x∗∥

∫ t

0

(t− s)α−1

Γ(α)
[φ(s)|Iβ |[|θ(s)||x(s)|+ F2]|+ F1]ds

+ (∥L∥∥x∗∥+G)

∫ t

0

(t− s)α−1

Γ(α)
||φ(s)||Iβ [|θ(s)||x(s)− x∗(s)|]ds

+ (∥L∥∥x∗∥+G)δ
Tα

Γ(α+ 1)

≤ ∥x− x∗∥
[ m∑

i=1

[∥λi∥r +Ki]
∥ψi∥T γi

Γ(γi + 1)
+

m∑
i=1

∥λi∥[∥ψi∥r +Hi]
T γi

Γ(γi + 1)

]
+ ∥L∥∥x− x∗∥∥φ∥ Tα

Γ(α+ 1)
[

T β

Γ(β + 1)
|[∥θ∥∥x∥+ F2]|+ F1]

+ (∥L∥∥x∗∥+G)
Tα

Γ(α+ 1)
∥φ∥ T β

Γ(β + 1)
∥θ∥∥x− x∗∥+ (∥L∥∥x∗∥+G)δ

Tα

Γ(α+ 1)

≤ ∥x− x∗∥
[ m∑

i=1

[∥λi∥r +Ki]
∥ψi∥T γi

Γ(γi + 1)
+

m∑
i=1

∥λi∥[∥ψi∥r +Hi]
T γi

Γ(γi + 1)
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+ ∥L∥∥φ∥ Tα

Γ(α+ 1)
[

T β

Γ(β + 1)
|[∥θ∥∥x∥+ F2]|+ F1]

+ (∥L∥∥x∗∥+G)
Tα

Γ(α+ 1)
∥φ∥ T β

Γ(β + 1)
∥θ∥
]
+ (∥L∥∥x∗∥+G)δ

Tα

Γ(α+ 1)
.

Taking the supremum t ∈ J , we have

∥x− x∗∥

≤
(
1−

[ m∑
i=1

[∥λi∥r +Ki]
∥ψi∥T γi
Γ(γi + 1)

+

m∑
i=1

∥λi∥[∥ψi∥r +Hi]
T γi

Γ(γi + 1)

+ ∥L∥∥φ∥ Tα

Γ(α+ 1)
[

T β

Γ(β + 1)
|[∥θ∥r + F2]|+ F ]

+ (∥L∥r +G)
Tα

Γ(α+ 1)
∥φ∥ T β

Γ(β + 1)
∥θ∥
])−1

(∥L∥r +G)
δTα

Γ(α+ 1)

≤ ϵ.

This means that the solution of the FHDE (1.2) depends continuously
on f1. This completes the proof. □

By a similar way as done above, the continuous dependence of the
solution of the FHDE (1.2) on functions ki, hi, i = 1, 2, . . . ,m, f2 and g
can be studied.

5. Conclusion

It is known that, various forms of fractional differential equations
model most natural phenomena. This variety in the study of compli-
cated fractional differential equations increases our ability to model var-
ious phenomena precisely. That helps develop modern software that
allows us to allow more cost-free testing and less consumption of mate-
rials. In this work, we have proven an auxiliary lemma related to the
linear variant of the FHDEs (1.2) and stated sufficient conditions that
guarantee the existence of solutions in a Banach algebra due to Dhage
[5], some particular cases, remarks are added. Results on the existence
and continuous dependence of solutions for FHDE (1.2) on function f1
were also studied. In the same way, the reader can get the continuous
dependence of solutions on the other functions.
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