Document Type: Research Paper

Author

Department of Mathematics, Farhangian University, Iran.

Abstract

In this paper, we introduce some new classes of proximal contraction mappings and establish  best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the usability of the obtained results.

Keywords

Main Subjects

[1] R.P. Agarwal, M.A. El-Gebeily, and D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008) 109-116.

[2] R.P. Agarwal, N. Hussain, and M.A. Taoudi, Fixed point theorems in ordered Banach spaces and applications to nonlinear integral equations, Abstr. Appl. Anal., (2012), Article ID 245872, 15 pp.

[3] S.S. Basha, Discrete optimization in partially ordered sets, J. Global Optim., {54} (2012) 511-517.

[4] S.S. Basha, Common best proximity points: global minimization of multi-objective functions, J. Global Optim., 54 (2) (2012) 367-373.

[5] S. Cang and D. Partridge, Feature ranking and best feature subset using mutual information, Neural Computing  Appl., 13 (2004) 175-184.

[6] A. Celikyilmaz and I.B. Türksen, Fuzzy functions with support vector machines, Inform. Sci., 177 (2007) 51-63.

[7] L. Ciric, M. Abbas, R. Saadati, and N. Hussain, Common fixed points of almost generalized contractive mappings in ordered metric spaces, Appl. Math. Comput., 217 (2011) 5784-5789.

[8] Z.K.  Deng, Fuzzy pseudometric spaces, J. Math. Anal. Appl., 86 (1982) 74-95.

[9] C. Di Bari, T. Suzuki, and C. Vetro, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal., 69 (2008) 3790-3794.

[10] C. Di Bari and C. Vetro, A fixed point theorem for a family of mappings in a fuzzy metric space, Rend. del Circolo Mat. di Palermo., 52 (2003) 315-321.

[11] C. Di Bari and C. Vetro, Fixed points, attractors and weak fuzzy contractive mappings in a fuzzy metric space, J. Fuzzy Math., 13 (2005) 973-982.

[12] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z., 112 (1969) 234-240.

[13] A. George and P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets  Syst., 64 (1994) 395-399.

[14] A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets  Syst., 90 (1997) 365-368.

[15] D. Gopal, M. Imdad, C. Vetro, and M.  Hasan, Fixed point theory for cyclic weak Φ-contraction in fuzzy metric spaces, J. Nonlinear Anal. Appl., (2012), 11 pp.

[16] V. Gregori and A. Sapena, On fixed-point theorems in fuzzy metric spaces, Fuzzy Sets  Syst., 125 (2002) 245-252.

[17] N. Hussain, S. Al-Mezel, and P. Salimi, Fixed points for ψ-graphic contractions with application to integral equations, Abstr. Appl. Anal., (2013), Article ID 575869, 11pp.

[18] N. Hussain, A.R. Khan, and R.P. Agarwal, Krasnoselskii and Ky Fan type fixed point theorems in ordered Banach spaces, J. Nonlinear Convex Anal., 11 (2010) 475-489.

[19] N. Hussain, M.A. Kutbi, and P. Salimi, Best proximity point results for modified α-ψ-proximal rational contractions, Abstr. Appl. Anal., (2013), Article ID 927457, 14 pp.

[20] M. Jleli  and B. Samet, Best proximity points for α-ψ-proximal contractive type mappings and applications, Bull. Sci. Math.,(in press) Doi:10.1016/j.bulsci.2013.02.003.

[21] I. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika., 11 (1975) 336-344.

[22] E. Karapi nar and I.M. Erhan, Best proximity point on different type contractions, Appl. Math. Inform. Sci., 5 (2011) 558-569.

[23] D. Mihet, Fuzzy ψ-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets Syst., 159 (2008) 739-744.

[24] C. Mongkolkeha, Y.J. Cho, and P.  Kumam, Best proximity points for generalized proximal $C$-contraction mappings in metric spaces with partial orders, J. Inequal. Appl., 94 (2013).

[25] C. Mongkolkeha, Y.J. Cho, and P.  Kumam, Best proximity points for Geraghty's proximal contraction mappings, Fixed Point Theory Appl., 180 (2013).

[26] A.C.M. Ran and M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc., 132 (2003) 1435-1443.

[27] B.D. Ripley, Pattern Recognition and Neural Networks, Cambridge University Press, 1996.

[28] P. Salimi, A. Latif, and N. Hussain, Modified $alpha$-$psi$-contractive mappings with applications, Fixed Point Theory Appl., 151 (2013).

[29] P. Salimi, C. Vetro, and P. Vetro, Some new fixed point results in non-Archimedean fuzzy metric spaces, Nonlinear Anal. Model. Control., 18 (2013) 344-358.

[30] B. Samet, C. Vetro, and P. Vetro, Fixed point theorem for σ-ψ contractive type mappings, Nonlinear Anal., 75 (2012) 2154-2165.

[31] B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960) 314-334.

[32] B.W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman & Hall, London, 1996.

[33] T. Suzuki, M. Kikkawa, and C. Vetro, The existence of best proximity points in metric spaces with the property (UC), Nonlinear Anal., 71 (2009) 2918-2926.

[34] C. Vetro, Best proximity points: convergence and existence theorems for $p$-cyclic mappings, Nonlinear Anal., 73 (2010) 2283-2291.

[35] C. Vetro, Fixed points in weak non-Archimedean fuzzy metric spaces, Fuzzy Sets Syst., 162 (2011) 84-90.

[36] C. Vetro and P. Vetro, Common fixed points for discontinuous mappings in fuzzy metric spaces, Rend. del Circolo Mat. di Palermo., 57 (2008) 295-303.

[37] C. Vetro and P. Salimi, Best proximity point results in non-Archimedean fuzzy metric spaces, Fuzzy Inf. Eng., 4 (2013) 417-429.