Nearly k-th Partial Ternary Cubic *-Derivations On Non-Archimedean l-Fuzzy C^{*}-Ternary Algebras

Mohammad Ali Abolfathi

Sahand Communications in Mathematical Analysis

Print ISSN: 2322-5807
Online ISSN: 2423-3900
Volume: 19
Number: 3
Pages: 13-33
Sahand Commun. Math. Anal.
DOI: 10.22130/scma.2021.543926.1026

SCMA, P. O. Box 55181-83111, Maragheh, Iran

 http://scma.maragheh.ac.ir
Nearly $k-t h$ Partial Ternary Cubic $*$-Derivations On Non-Archimedean ℓ-Fuzzy C^{*}-Ternary Algebras

Mohammad Ali Abolfathi

Abstract

In this paper, we investigate approximations of the $k-t h$ partial ternary cubic derivations on non-Archimedean ℓ-fuzzy Banach ternary algebras and non-Archimedean ℓ-fuzzy C^{*}-ternary algebras. First, we study non-Archimedean and ℓ-fuzzy spaces, and then prove the stability of partial ternary cubic $*$-derivations on non-Archimedean ℓ-fuzzy C^{*}-ternary algebras. We therefore provide a link among different disciplines: fuzzy set theory, lattice theory, non-Archimedean spaces, and mathematical analysis.

1. Introduction

A classical equation in the theory of functional equations is the following: "when is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation?". If the problem accepts a solution, we say that the equation is stable. The first problem concerning group homomorphisms was raised by Ulam [43] in 1940. In the next year, Hyers [21] gave the first affirmative answer to the question of Ulam in context of Banach spaces. Subsequently, the result of Hyers was generalized by Aoki [3] for additive mappings and Rassias [35] proved a generalization of the Hayers' theorem for linear mappings by considering an unbounded Cauchy difference. Furthermore, in 1994, Găvrua[12] provided a further generalization of Rassias' theorem in which he replaced the bound $\varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function $\varphi(x, y)$. Recently, several stability results have been obtained for various equations and mappings with more general

2020 Mathematics Subject Classification. 39B52, 46L05, 47B48.
Key words and phrases. Partial ternary derivation, Cubic derivation, NonArchimedean ℓ-fuzzy algebra, C^{*}-ternary algebra, Hyers-Ulam-Rasias stability.

Received: 29 November 2021, Accepted: 04 April 2022.
domains and ranges by a number of authors [9, 20, 23, 31, 32]. We also refer the readers to books [7, 22, 36].

In 1897, Hensel [18] discovered the p-adic numbers as a number theoretical analogue of power series in complex analysis. The most important examples of non-Archimedean spaces are p-adic numbers. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: for all $x, y>0$, there exists an integer n such that $x<n y$. During the last three decades, the theory of non-Archimedean spaces has gained the interest of physicists for their research, in particular the problems that coming from quantum physics, p-adic strings and superstrings [28]. Although many results in the classical normed space theory have a non-Archimedean counterpart, their proofs are essentially different and require an entirely new kind of intuition. One may note that for $|n| \leq 1$ in each valuation field, every triangle is isosceles and there many be no unit vector in a non-Archimedean normed space. These facts show that the non-Archimedean framework is of special interest. It turned out that non-Archimedean spaces have many nice applications [15, 37, 42].

Let \mathbb{K} be a field. A non-Archimedean absolute value on \mathbb{K} is a function (valuation) $||:. \mathbb{K} \rightarrow \mathbb{R}$ such that, for any $a, b \in \mathbb{K},|a| \geq 0$ and equality holds if and only if $a=0,|a b|=|a||b|,|a+b| \leq \max \{|a|,|b|\}$ (the strict triangle inequality). Note that $|1|=|-1|=1$ and $|n| \leq 1$ for each integer n. A trivial example of a non-Archimedean valuation is the functional $|$.$| taking everything except for 0$ into 1 and $|0|=0$. We always assume, in addition, that $|$.$| is non-trivial, i.e., there exists an$ $a_{0} \in \mathbb{K}$ such that $\mid a_{0} \| \notin\{0,1\}$.

Let \mathcal{X} be a linear space over a scaler field \mathbb{K} with a non-Archimedean nontrivial valuation |.|. A $\|\|:. \mathcal{X} \rightarrow \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions: $\|x\|=0$ if and only if $x=0,\|r x\|=|r|\|x\|,\|x+y\| \leq \max \{\|x\|\|y\|\}$ (the strict triangle inequality (ultrametric) for all $x, y \in \mathcal{X}$. Then $(\mathcal{X},\|\|$.$) is called non-$ Archimedean normed space. From the fact that

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{i+1}-x_{i}\right\|: m \leq i \leq n-1\right\}, \quad(n>m) .
$$

holds, a sequence $\left\{x_{n}\right\}$ is a Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a non-Archimedean normed space. By a complete non-Archimedean space, we mean one in which every Cauchy sequence is convergent.

Fix a prime number p. For any nonzero rational number x, there exists a unique integer n_{x} such that $x=\frac{a}{b} p^{n_{x}}$, where a and b are integers not divisible by p. Then $|x|_{p}:=p^{-n_{x}}$ defines a non-Archimedean norm on \mathbb{Q}. The completion of \mathbb{Q} with respect to the metric $d(x, y)=|x-y|_{p}$ is denoted by \mathbb{Q}_{p}, and it is called the p-adic number field. In fact \mathbb{Q}_{p} is the
set of all formal series $x=\sum_{k \geq n}^{\infty} a^{k} p_{k}$, where $\left|a_{k}\right| \leq p-1$ are integers. The addition and multiplication between any two elements of \mathbb{Q}_{p} are defined naturally. The norm $\left|\sum_{k \geq n}^{\infty} a^{k} p_{k}\right|_{p}=p^{-n_{x}}$ is a non-Archimedean norm on \mathbb{Q}_{p} and it makes \mathbb{Q}_{p} a locally compact field [15, 37]. Note that if $p \geq 3$, then $\left|2^{n}\right|_{p}=1$ for each integer n.

On the other hand, the theory of fuzzy sets was introduced firstly by Zadeh in 1965 [45]. Fuzzy set theory is a powerful hand set for modeling uncertainty and vagueness in various problems arising in the field of science and engineering. After the pioneering work of Zadeh, there has been a great effort to obtain fuzzy analogues of classical theories. Among other fields, a progressive development is made in the field of fuzzy topology [2, 6, 13, 24, 26, 29, 44]. Goguen in [14] generalized the notion of a fuzzy subset of \mathcal{X} to that of an ℓ-fuzzy subset, namely a function from \mathcal{X} to a lattice L. One of the problems in ℓ-fuzzy topology is to obtain an appropriate concept of ℓ-fuzzy metric spaces and ℓ-fuzzy normed spaces. Saadati and Park [39], introduced and studied a notion of intuitionistic fuzzy metric(normed) spaces and then Deschrijver et al. and Saadati generalized the concept of intuitionistic fuzzy metric(normed) spaces and introduced and studied a notion of ℓ-fuzzy metric spaces and ℓ fuzzy normed spaces [8, 38]. In 2009, Mirmostafaee and Moslehian [30], proved the stability of Cauchy functional equation in non-Archimedean fuzzy spaces in the spirit of Hyers-Ulam-Rassias-Găvrua. In 2010, Shakeri, Saadati and Park [41] investigated the classical quadratic functional equation and proved the generalized Hyers -Ulam stability in the context of non-Archimedean ℓ-fuzzy normed spaces, (see also [1, 10]).

A triangular norm (shortly, t-norm) is a binary operation $\mathcal{T}:[0,1] \times[0,1] \rightarrow[0,1]$ which is commutative, associative, monotone and has 1 as the unit element. Basic examples are the Lukasiewicz t-norm $\mathcal{T}_{\mathcal{L}}, \mathcal{T}_{\mathcal{L}}(x, y)=\max \{x+y-1,0\}$ for all $x, y \in[0,1]$ and the t-norms $\mathcal{T}_{\mathcal{M}}(x, y)=\min \{x, y\}, \mathcal{T}_{\mathcal{M}}(x, y)=x y$ and

$$
\mathcal{T}_{\mathcal{D}}(x, y)= \begin{cases}\min \{x, y\}, & \text { if } \max \{x, y\}=1 \\ 0, & \text { otherwise }\end{cases}
$$

A t-norm \mathcal{T} is said to be of Hadžić-type (we denote by $\mathcal{T} \in \mathcal{H}$) if the family $\left(x_{\mathcal{T}}^{n}\right)_{n \in \mathbb{N}}$ is equicontinuous at $x=1$, where is defined by

$$
x_{\mathcal{T}}^{1}=x, \quad x_{\mathcal{T}}^{n}=\mathcal{T}\left(x_{\mathcal{T}}^{n-1}, x\right),
$$

for all $x \in[0,1]$ and $n \geq 2,16]$.
A t-norm \mathcal{T} can be extended (by associativity) in a unique way to an n-ary operation taking, for all $\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}$, the value
$\mathcal{T}\left(x_{1}, \ldots, x_{n}\right)$ defined by

$$
\mathcal{T}_{i=1}^{0} x_{i}=1, \quad \mathcal{T}_{i=1}^{n} x_{i}=\mathcal{T}\left(\mathcal{T}_{i=1}^{n-1} x_{i}, x_{n}\right)=\mathcal{T}\left(x_{1}, \ldots, x_{n}\right) .
$$

The t-norm \mathcal{T} can also be extended to a countable operation taking, for any sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in $[0,1]$, the value

$$
\mathcal{T}_{i=1}^{\infty} x_{i}=\lim _{n \rightarrow \infty} \mathcal{T}_{i=1}^{n} x_{i} .
$$

Proposition 1.1 ([17]).
(1) For $\mathcal{T} \geq \mathcal{T}_{\mathcal{L}}$ the following implication holds:

$$
\lim _{n \rightarrow \infty} \mathcal{T}_{i=1}^{\infty} x_{n+i}=1 \quad \Leftrightarrow \quad \sum_{n=1}^{\infty}\left(1-x_{n}\right)<\infty
$$

(2) If \mathcal{T} is of Hadžić-type, then

$$
\lim _{n \rightarrow \infty} \mathcal{T}_{i=1}^{\infty} x_{n+i}=1
$$

for every sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in $[0,1]$ such that $\lim _{n \rightarrow \infty} x_{n}=1$.
Let $\ell=\left(L, \leq_{L}\right)$ be a complete lattice and let U be a nonempty set called the universe. An ℓ-fuzzy set in U is defined as a mapping A : $U \rightarrow L$. For each u in $U, A(u)$ represents the degree (in L) to which u is an element of A.

A t-norm on $([0,1], \leq)$ can be straightforwardly extended to any lattice $\ell=\left(L, \leq_{L}\right)$. Let $\ell=\left(L, \leq_{L}\right)$ be a lattice. A t-norm on ℓ is a mapping $\mathcal{T}: L \times L \rightarrow L$ satisfying the following conditions:
(i) $\mathcal{T}\left(x, 1_{\ell}\right)=x \quad$ (boundary condition) $\quad(x \in L)$;
(ii) $\mathcal{T}(x, y)=\mathcal{T}(y, x) \quad$ (commutativity) $\quad(x, y \in L)$;
(iii) $\mathcal{T}(x, \mathcal{T}(y, z))=\mathcal{T}(\mathcal{T}(x, y), z) \quad$ (associativity) $\quad(x, y, z \in L)$;
(iv) If $x_{1} \leq_{L} y_{1}$ and $x_{2} \leq_{L} y_{2}$ then $\mathcal{T}\left(x_{1}, x_{2}\right) \leq_{L} \mathcal{T}\left(y_{1}, y_{2}\right)$
(monotonicity) $\quad\left(x_{1}, x_{2}, y_{1}, y_{2} \in L\right)$.
A t-norm T on ℓ is said to be continuous if, for any $x, y \in L$ and any sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ which converge to x and y respectively,

$$
\lim _{n \rightarrow \infty} \mathcal{T}\left(x_{n}, y_{n}\right)=\mathcal{T}(x, y)
$$

A t-norm \mathcal{T} can also be defined recursively as an $(n+1)$-ary operation by $\mathcal{T}^{1}=\mathcal{T}$ and

$$
\mathcal{T}^{n}\left(x_{1}, \ldots, x_{n+1}\right)=\mathcal{T}\left(\mathcal{T}^{n-1}\left(x_{1}, \ldots, x_{n}\right), x_{n+1}\right)
$$

for all $n \geq 2$ and $x_{i} \in L$.
A negator on ℓ is any decreasing mapping $\mathcal{N}: L \rightarrow L$ satisfying $\mathcal{N}\left(0_{\ell}\right)=1_{\ell}$ and $\mathcal{N}\left(1_{\ell}\right)=0_{\ell}$. If $\mathcal{N}(\mathcal{N}(x))=x$, for all $x \in L$, then \mathcal{N} is called a involutive negator. The negator \mathcal{N}_{s} on $([0,1], \leq)$ defined as $\mathcal{N}_{s}(x)=1-x$ for all $x \in[0,1]$ is called the standard negator on $([0,1], \leq)$. In this paper, the involutive negator \mathcal{N} is fixed.

Definition 1.2. A non-Archimedean ℓ-fuzzy normed space is a triple $(\mathcal{V}, \mathcal{P}, \mathcal{T})$, where \mathcal{V} is a vector space, \mathcal{T} is a continuous t-norm on L and \mathcal{P} is an ℓ-fuzzy set on $\mathcal{V} \times] 0,+\infty[$ satisfying the following conditions: for all $x, y \in V$ and $t, s \in] 0,+\infty[$,
(i) $0_{\ell}<_{L} \mathcal{P}(x, t)$;
(ii) $\mathcal{P}(x, t)=1_{\ell}$ for all $t>0$ if and only if $x=0$;
(iii) $\mathcal{P}(\alpha x, t)=\mathcal{P}\left(x, \frac{t}{|\alpha|}\right)$ for each $\alpha \neq 0$;
(iv) $\mathcal{T}(\mathcal{P}(x, t), \mathcal{P}(y, s)) \leq_{L} \mathcal{P}(x+y, \max \{t, s\})$;
(v) $\mathcal{P}(x,):.] o,+\infty[\rightarrow L$ is continuous.
(vi) $\lim _{t \rightarrow 0} \mathcal{P}(x, t)=0_{\ell}$ and $\lim _{t \rightarrow \infty} \mathcal{P}(x, t)=1_{\ell}$.

In this case, \mathcal{P} is called an non-Archimedean ℓ-fuzzy norm. Let $(\mathcal{A},\|\cdot\|)$ be a non-Archimedean normed linear space and

$$
\mathcal{P}(x, t)= \begin{cases}0, & t \leq\|x\|, \\ 1, & t>\|x\| .\end{cases}
$$

Then, the triple $(\mathcal{A}, \mathcal{P}, \min)$ is a non-Archimedean ℓ-fuzzy normed space in which $L=[0,1]$.

A sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ in a non-Archimedean ℓ-fuzzy normed space $(\mathcal{V}, \mathcal{P}, \mathcal{T})$ is called a Cauchy sequence if, for each $\varepsilon \in L \backslash\left\{0_{\ell}\right\}$ and $t>0$, there exists $n_{0} \in \mathbb{N}$ such that, for all $n, m \geq n_{0}, \mathcal{P}\left(x_{n}-x_{m}, t\right)>_{L} N(\varepsilon)$, where N is a negator on ℓ. A sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is said to be convergent to $x \in \mathcal{V}$ in the non-Archimedean ℓ-fuzzy normed space $(\mathcal{V}, \mathcal{P}, \mathcal{T})$ which is denoted by $x_{n} \rightarrow x$ if $\mathcal{P}\left(x_{n}-x, t\right) \rightarrow 1_{\ell}$ where $n \rightarrow \infty$ for all $t>0$. A non-Archimedean ℓ-fuzzy normed space $(\mathcal{V}, \mathcal{P}, \mathcal{T})$ is said be complete if and only if every Cauchy sequence in \mathcal{V} is convergent.
Definition 1.3. A non-Archimedean ℓ-fuzzy normed algebra $\left(\mathcal{A}, \mathcal{P}, \mathcal{T}, \mathcal{T}^{\prime}\right)$ is a non-Archimedean ℓ-fuzzy normed space $(\mathcal{A}, \mathcal{P}, \mathcal{T})$ with algebraic structure if

$$
\mathcal{P}(x y, t s) \geq_{L} \mathcal{T}^{\prime}(\mathcal{P}(x, t), \mathcal{P}(y, s)),
$$

for all $x, y \in \mathcal{A}$ and $t, s>0$, in which \mathcal{T}^{\prime} is a continuous t-norm.
Definition 1.4. Let $\left(\mathcal{A}, \mathcal{P}, \mathcal{T}, \mathcal{T}^{\prime}\right)$ be a non-Archimedean ℓ-fuzzy Banach algebra. An involution on \mathcal{A} is a mapping $x \rightarrow x^{*}$ from \mathcal{A} into \mathcal{A} satisfying the following conditions:
(i) $x^{* *}=x$ for all $x \in \mathcal{A}$,
(ii) $(\alpha x+\beta y)^{*}=\bar{\alpha} x^{*}+\bar{\beta} y^{*}$ for all $x, y \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$,
(iii) $(x y)^{*}=y^{*} x^{*}$ for all $x, y \in \mathcal{A}$.

If, in addition, $\mathcal{P}\left(x^{*} x, t s\right)=\mathcal{T}^{\prime}(\mathcal{P}(x, t), \mathcal{P}(x, s))$ for all $x \in \mathcal{A}$ and $t, s>0$, then \mathcal{A} is an non-Archimedean ℓ-fuzzy C^{*}-algebra.

Ternary algebraic operations have propounded originally in nineteenth century by several mathematicians such as Cayley [5] who introduced
the notion of cubic matrix which in turn was generalized by Kapranov, Gelfand and Zelevinskii in 1990 [25]. Their structures appeared more or less naturally in various domains of mathematical physics and data processing. The application of ternary algebra in supersymmetry is presented in [27] and in Yang-Baxter equation in [33]. Cubic analogue of Laplace and d'alembert equations have been considered for the first time by Himbert in [19, 27].

Let \mathcal{A} be a linear space over a complex field equipped with a mapping [] : $\mathcal{A} \times \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ (ternary product) with $(x, y, z) \rightarrow[x y z]$ that is linear in variables x, y, z and satisfies the associative identity, i.e., $[[x y z] v w]=[x[y z v] w]=[x y[z v w]]$ for all $x, y, z, v, w \in \mathcal{A}$. The pair $(\mathcal{A},[])$ is called a ternary algebra. The ternary algebra $(\mathcal{A},[])$ is called unital if it has an identity element, i.e. an element $e \in \mathcal{A}$ such that $[e e x]=[x e e]=x$ for every $x \in \mathcal{A}$. A $*$-ternary algebra is a ternary algebra together with a mapping $x \rightarrow x^{*}$ from \mathcal{A} into \mathcal{A} which satisfies $\left(x^{*}\right)^{*}=x,(\alpha x+\beta y)^{*}=\bar{\alpha} x^{*}+\bar{\beta} y^{*}$ and $[x y z]^{*}=\left[z^{*} y^{*} x^{*}\right]$ for all $x, y, z \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$. In the case that \mathcal{A} is unital and e is its unit, we assume that $e^{*}=e$.

If \mathcal{A} is a ternary algebra and there exists a norm $\|$.$\| on \mathcal{A}$ which satisfies $\|[x y z]\| \leq\|x\|\|y\|\|z\|$ for all $x, y, z \in \mathcal{A}$, then \mathcal{A} is called a normed ternary algebra. If \mathcal{A} is a unital ternary algebra with unit element e then $\|e\|=1$. By a Banach ternary algebra, we mean a normed ternary algebra with a complete norm $\|$.$\| . If \mathcal{A}$ is a ternary algebra, $x \in \mathcal{A}$ is called central if $[x y z]=[z x y]=[y z x]$ for all $y, z \in \mathcal{A}$. The set of central elements of \mathcal{A} is called the center of \mathcal{A} and is shown by $Z(\mathcal{A})$. If \mathcal{A} is *-normed ternary algebra and $Z(\mathcal{A})=0$, then we have $\left\|x^{*}\right\|=\|x\|$.

By a non-Archimedean Banach ternary algebra, we mean a complete non-Archimedean vector spaces \mathcal{A} equipped with a ternary product $(x, y, z) \rightarrow[x y z]$ of \mathcal{A}^{3} into \mathcal{A} which is \mathbb{K}-Linear in each variables and associative in the sense that $[x y[z v w]]=[x[y z v] w]=[[x y z] v w]$ and satisfies $\|[x y z]\| \leq\|x\|\|y\|\|z\|$ for $x, y, z, v, w \in \mathcal{A}$. A non-Archimedean C^{*} ternary algebra is a non-Archimedean Banach *-ternary algebra \mathcal{A} if $\left\|\left[x^{*} y x\right]\right\|=\|x\|^{2}\|y\|$ for all $x \in \mathcal{A}$ and $y \in Z(\mathcal{A})$.

Eshaghi and et. al. [11] introduced the concept of partial ternary derivation and proved the Hyers-Ulam-Rassias stability of partial ternary derivation in Banach ternary algebras. Recently, Arsalan and Inceboz [4] established the Hyers-Ulam-Rassias stability of the partial ternary derivation in Banach ternary algebras.

Definition 1.5. Let \mathcal{A} be a ternary algebra and $(\mathcal{A}, \mathcal{P}, \mathcal{T})$ be a nonArchimedean ℓ-fuzzy normed space. Then
(i) $\left(\mathcal{A}, \mathcal{P}, \mathcal{T}, \mathcal{T}^{\prime}\right)$ is called the non-Archimedean ℓ-fuzzy ternary normed algebra if

$$
\mathcal{P}([x y z], s t u) \geq_{L} \mathcal{T}^{\prime}\left(\mathcal{T}^{\prime}(\mathcal{P}(x, s), \mathcal{P}(y, t)), \mathcal{P}(z, u)\right)
$$

for all $x, y, z \in \mathcal{A}$ and all positive real numbers s, t and u.
(ii) A complete ternary non-Archimedean ℓ-fuzzy normed algebra is called a ternary non-Archimedean ℓ-fuzzy Banach algebra.

Let $\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}$ be normed ternary algebras over the complex field \mathbb{C} and let \mathcal{B} be the Banach ternary algebra over \mathbb{C}. The mapping \mathcal{D}_{k} is called $k-t h$ a partial ternary cubic $*$-derivation if

$$
\begin{aligned}
2 \mathcal{D}_{k} & \left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}+y_{k}, \ldots, x_{n}\right)+2 \mathcal{D}_{k}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}-y_{k}, \ldots, x_{n}\right) \\
= & \mathcal{D}_{k}\left(x_{1}, x_{2}, x_{3}, \ldots, 2 x_{k}+y_{k}, \ldots, x_{n}\right) \\
& +\mathcal{D}_{k}\left(x_{1}, x_{2}, x_{3}, \ldots, 2 x_{k}-y_{k}, \ldots, x_{n}\right) \\
& -12 \mathcal{D}_{k}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{k}, \ldots, x_{n}\right)
\end{aligned}
$$

and also there exists a mapping $\pi_{k}: \mathcal{A}_{k} \rightarrow \mathcal{B}$ such that

$$
\begin{aligned}
\mathcal{D}_{k}\left(x_{1}, \ldots,\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right)= & {\left[\pi_{k}\left(a_{k}\right) \pi_{k}\left(b_{k}\right) \mathcal{D}_{k}\left(x_{1}, \ldots, c_{k}, \ldots, x_{n}\right)\right] } \\
& +\left[\pi_{k}\left(a_{k}\right) \mathcal{D}_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) \pi_{k}\left(c_{k}\right)\right] \\
& +\left[\mathcal{D}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right) \pi_{k}\left(b_{k}\right) \pi_{k}\left(c_{k}\right)\right]
\end{aligned}
$$

and

$$
\mathcal{D}_{k}\left(x_{1}, \ldots, a_{k}^{*}, \ldots, x_{n}\right)=\left(\mathcal{D}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)\right)^{*}
$$

for all $a_{k}, b_{k}, c_{k} \in \mathcal{A}_{k}, x_{i} \in \mathcal{A}_{i}(i \neq k)$.
In 2002, Jun and Kim [23] introduced the following functional equation

$$
f(2 x+y)+f(2 x-y)=2(f(x+y)+f(x-y))+12 f(x),
$$

and established the general solution and the Hyers-Ulam stability for it (see also [34]). This functional equation is called cubic functional equation and every solution of cubic equation is said to be a cubic function. Obviously, the function $f(x)=x^{3}$ satisfies this functional equation.

In this paper, we prove the Hyers-Ulam-Rassias stability of $k-t h$ partial ternary cubic derivations on non-Archimedean ℓ-fuzzy Banach ternary algebras and non-Archimedean ℓ-fuzzy C^{*}-ternary algebras.

2. Stability of Partial Ternary Cubic Derivation on Non-Archimedean ℓ-fuzzy Banach Ternary Algebras

Let \mathbb{K} be a non-Archimedean field, \mathcal{X} be a vector space over \mathbb{K} and $(\mathcal{X}, \mathcal{P}, \mathcal{T})$ be a non-Archimedean ℓ-fuzzy Banach space over \mathbb{K}. Let Ψ_{i}
be an ℓ-fuzzy set on $\mathcal{X} \times \mathcal{X} \times \mathcal{X} \times[0, \infty)$ such that $\Psi_{i}(x, y, z,$.$) is non-$ decreasing, i.e.,

$$
\Psi_{i}(c x, c x, c x, t) \geq_{L} \Psi_{i}\left(x, x, x, \frac{t}{|c|}\right)
$$

and

$$
\lim _{t \rightarrow \infty} \Psi_{i}(x, y, z, t)=1_{\ell},
$$

for all $i=1,2,, 3, \ldots, n, x, y, z \in \mathcal{X}, t>0$ and $c \neq 0$.
Theorem 2.1. Let $\mathcal{G}_{k}: \mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n} \rightarrow \mathcal{B}$ be a mapping with $G_{k}\left(x_{1}, \ldots, 0_{k}, \ldots, x_{n}\right)=0_{\mathcal{B}}$. Assume that there exists an ℓ-fuzzy set Ψ_{k} on $\mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{3} \times[0, \infty)$ such that for some $\alpha \in(0, \infty)$ and some integer $\lambda \geq 2$ with $\left|2^{\lambda}\right|<\alpha$ which $|2| \neq 0$, we have

$$
\begin{equation*}
\Psi_{k}\left(2^{-\lambda} x_{k}, 2^{-\lambda} y_{k}, 2^{-\lambda} z_{k}, t\right) \geq_{L} \Psi_{k}\left(x_{k}, y_{k}, z_{k}, \alpha t\right) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \mathcal{T}_{j=l}^{\infty} M\left(x_{k}, \frac{\alpha^{j}}{|2|^{\lambda^{j}}} t\right)=1_{\ell} \tag{2.2}
\end{equation*}
$$

for all $x_{k}, y_{k}, z_{k} \in \mathcal{A}_{k}$ and $t>0$. Also assume that there exists a cubic mapping $\pi_{k}: \mathcal{A}_{k} \rightarrow \mathcal{B}$ satisfying

$$
\begin{align*}
\mathcal{P}\left(\mathcal{G}_{k}\right. & \left(x_{1}, \ldots, 2 a_{k}+b_{k}, \ldots, x_{n}\right)+\mathcal{G}_{k}\left(x_{1}, \ldots, 2 a_{k}-b_{k}, \ldots, x_{n}\right) \tag{2.3}\\
& -2 \mathcal{G}_{k}\left(x_{1}, \ldots, a_{k}+b_{k}, \ldots, x_{n}\right)-2 \mathcal{G}_{k}\left(x_{1}, \ldots, a_{k}-b_{k}, \ldots, x_{n}\right) \\
& \left.-12 \mathcal{G}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right), t\right) \\
\geq & \Psi_{k}\left(a_{k}, b_{k}, 0_{k}, t\right)
\end{align*}
$$

and

$$
\begin{align*}
& \mathcal{P}\left(\mathcal{G}_{k}\right.\left(x_{1}, \ldots,\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right)-\left[\pi_{k}\left(a_{k}\right) \pi_{k}\left(b_{k}\right) \mathcal{G}_{k}\left(x_{1}, \ldots, c_{k}, \ldots, x_{n}\right)\right] \tag{2.4}\\
&-\left[\pi_{k}\left(a_{k}\right) \mathcal{G}_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) \pi_{k}\left(c_{k}\right)\right] \\
&\left.\quad+\left[\mathcal{G}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right) \pi_{k}\left(b_{k}\right) \pi_{k}\left(c_{k}\right)\right], t\right) \\
& \geq_{L} \Psi_{k}\left(a_{k}, b_{k}, c_{k}, t\right)
\end{align*}
$$

for all $a_{k}, b_{k}, c_{k} \in \mathcal{A}_{k}, x_{i} \in \mathcal{A}_{i}(i \neq k)$ and $t>0$. Then there exists a unique k-th partial cubic derivation $\mathcal{D}_{k}: \mathcal{A}_{1} \times \cdots \times \mathcal{A}_{n} \rightarrow \mathcal{B}$ such that

$$
\begin{equation*}
\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \tag{2.5}
\end{equation*}
$$

$$
\geq_{L} \mathcal{T}_{j=1}^{\infty} M\left(x_{k}, \frac{\alpha^{j+1}}{|2|^{\lambda j}} t\right)
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$ where
$M\left(x_{k}, t\right):=\mathcal{T}\left(\Psi_{k}\left(x_{k}, 0_{k}, 0_{k}, t\right), \Psi_{k}\left(2 x_{k}, 0_{k}, 0_{k}, t\right), \ldots, \Psi_{k}\left(2^{\lambda-1} x_{k}, 0_{k}, 0_{k}, t\right)\right)$, for all $x_{k} \in \mathcal{A}_{k}$ and $t>0$.

Proof. One can use induction on j to show that

$$
\begin{align*}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j} x_{k}, \ldots, x_{n}\right)-2^{3 j} \mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \tag{2.6}\\
& \quad \geq_{L} M_{j}\left(x_{k}, t\right) \\
& \quad=\mathcal{T}\left(\Psi_{k}\left(x_{k}, 0_{k}, 0_{k}, t\right), \Psi_{k}\left(2 x_{k}, 0_{k}, 0_{k}, t\right), \ldots, \Psi_{k}\left(2^{j-1} x_{k}, 0_{k}, 0_{k}, t\right)\right),
\end{align*}
$$

for all $x_{i} \in \mathcal{A}_{i}, t>0$. Replacing $a_{k}=x_{k}$ and $b_{k}=0_{k}$ in (2.3), we have

$$
\begin{aligned}
& \mathcal{P}\left(2 \mathcal{G}_{k}\left(x_{1}, \ldots, 2 x_{k}, \ldots, x_{n}\right)-16 \mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad \geq_{L} \Psi_{k}\left(x_{k}, 0_{k}, 0_{k}, t\right),
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$. Hence

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, 2 x_{k}, \ldots, x_{n}\right)-8 \mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad \quad \geq_{L} \Psi_{k}\left(x_{k}, 0_{k}, 0_{k}, 2 t\right) \\
& \quad \geq_{L} \Psi_{k}\left(x_{k}, 0_{k}, 0_{k}, t\right)
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$. This proves (2.6) for $j=1$. Let (2.6) holds for some $j>1$. Substituting a_{k} by $2^{j} x_{k}$ and b_{k} by 0_{k} in (2.3), we get

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j+1} x_{k}, \ldots, x_{n}\right)-8 \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j} x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad \quad \geq_{L} \Psi_{k}\left(2^{j} x_{k}, 0_{k}, 0_{k}, t\right),
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$. Since $|8| \leq 1$, it follows that

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j+1} x_{k}, \ldots, x_{n}\right)-2^{3(j+1)} \mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \\
& \geq_{L} \mathcal{T}\left(\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j+1} x_{k}, \ldots, x_{n}\right)-2^{3} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j} x_{k}, \ldots, x_{n}\right), t\right)\right. \\
&\left., 2^{3} \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j+1} x_{k}, \ldots, x_{n}\right)-2^{3(j+1)} \mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right)\right) \\
&=\mathcal{T}\left(\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j+1} x_{k}, \ldots, x_{n}\right)-2^{3} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j} x_{k}, \ldots, x_{n}\right), t\right)\right. \\
&\left., \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j} x_{k}, \ldots, x_{n}\right)-2^{3 j} \mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), \frac{t}{|8|}\right)\right) \\
& \geq_{L} \mathcal{T}\left(\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j+1} x_{k}, \ldots, x_{n}\right)-2^{3} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j} x_{k}, \ldots, x_{n}\right), t\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
&\left., \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, 2^{j} x_{k}, \ldots, x_{n}\right)-2^{3 j} \mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right)\right) \\
& \geq_{L} \mathcal{T}\left(\Psi_{k}\left(2^{j} x_{k}, 0_{k}, 0_{k}, t\right), M_{j}\left(x_{k}, t\right)\right) \\
&= M_{j+1}\left(x_{k}, t\right),
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$. Therefore (2.6) holds for all $j \in \mathbb{N}$. In particular, we have

$$
\begin{align*}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, 2^{\lambda} x_{k}, \ldots, x_{n}\right)-2^{3 \lambda} \mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \tag{2.7}\\
& \quad \geq_{L} M\left(x_{k}, t\right),
\end{align*}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$. Replacing x_{k} by $2^{-\lambda(l+1)} x_{k}$ in (2.7) and using (2.1), we obtain

$$
\begin{align*}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda \lambda}}, \ldots, x_{n}\right)-2^{3 \lambda} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda(l+1)}}, \ldots, x_{n}\right), t\right) \tag{2.8}\\
& \quad \geq_{L} M\left(x_{k}, \alpha^{l+1} t\right),
\end{align*}
$$

for all $x_{i} \in \mathcal{A}_{i}, t>0$ and $l \geq 0$. The above relation implies that

$$
\begin{aligned}
& \mathcal{P}\left(\left(2^{3 \lambda}\right)^{l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda l}}, \ldots, x_{n}\right)-\left(2^{3 \lambda}\right)^{l+1} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda(l+1)}}, \ldots, x_{n}\right), t\right) \\
& \quad \geq_{L} M\left(x_{k}, \frac{\alpha^{l+1}}{\left|2^{3 \lambda} \lambda^{l}\right|} t\right) \\
& \quad \geq_{L} M\left(x_{k}, \frac{\alpha^{l+1}}{\mid{\left(2^{\lambda}\right)^{l} \mid}^{l}} t\right),
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}, t>0$ and $l \geq 0$. Therefore

$$
\begin{aligned}
& \mathcal{P}\left(\left(2^{3 \lambda}\right)^{l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda l}}, \ldots, x_{n}\right)-\left(2^{3 \lambda}\right)^{l+p} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda(l+p)}}, \ldots, x_{n}\right), t\right) \\
& \quad \geq_{L} \mathcal{T}_{j=l}^{l+p}\left(\left(2^{3 \lambda}\right)^{j} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda j}}, \ldots, x_{n}\right)\right. \\
& \left.\quad-\left(2^{3 \lambda}\right)^{j+p} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda(j+p)}}, \ldots, x_{n}\right), t\right) \\
& \quad \geq_{L} \mathcal{T}_{j=l}^{l+p} M\left(x_{k}, \frac{\alpha^{j+1}}{\left|\left(2^{\lambda}\right)^{j}\right|} t\right),
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}, t>0$ and $l \geq 0$. Since $\lim _{l \rightarrow \infty} \mathcal{T}_{j=l}^{l+p} M\left(x_{k}, \frac{\alpha^{j+1}}{\left|\left(2^{\lambda}\right)^{j}\right|} t\right)=1_{\ell}$, for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$, then the sequence

$$
\left\{\left(2^{3 \lambda}\right)^{l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda l}}, \ldots, x_{n}\right)\right\},
$$

is Cauchy in the non-Archimedean ℓ-fuzzy Banach space $(\mathcal{B}, \mathcal{P}, \mathcal{T})$. Hence, we can define a mapping $\mathcal{D}_{k}: \mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n} \rightarrow \mathcal{B}$ such that

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \mathcal{P}\left(\left(2^{3 \lambda}\right)^{l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda l}}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right)=1_{\ell} \tag{2.9}
\end{equation*}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$. For each $l \geq 1, x_{i} \in \mathcal{A}_{i}$ and $t>0$, we get

$$
\begin{aligned}
\mathcal{P}\left(\mathcal{G}_{k}\right. & \left.\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)-2^{3 \lambda l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{a_{k}}{2^{\lambda l}}, \ldots, x_{n}\right), t\right) \\
= & \mathcal{P}\left(\sum_{j=0}^{l-1} 2^{3 \lambda j} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{a_{k}}{2^{\lambda l}}, \ldots, x_{n}\right)\right. \\
& \left.-2^{3 \lambda(j+1)} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{a_{k}}{2^{\lambda(j+1)}}, \ldots, x_{n}\right), t\right) \\
\geq \geq_{L} & \mathcal{T}_{j=0}^{l-1}\left(\mathcal { P } \left(2^{3 \lambda j} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{a_{k}}{2^{\lambda l}}, \ldots, x_{n}\right)\right.\right. \\
& \left.\left.-2^{3 \lambda(j+1)} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{a_{k}}{2^{\lambda(j+1)}}, \ldots, x_{n}\right), t\right)\right) \\
\geq{ }_{L} & \mathcal{T}_{j=0}^{l-1} M\left(x_{k}, \frac{\alpha^{j+1}}{\left|2^{\lambda}\right|^{j}} t\right),
\end{aligned}
$$

and so

$$
\begin{align*}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right), t\right) \tag{2.10}\\
& \quad \geq_{L} \mathcal{T}\left(P\left(\mathcal{G}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)-2^{3 \lambda l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{a_{k}}{2^{\lambda l}}, \ldots, x_{n}\right), t\right)\right. \\
& \left.\quad, \mathcal{P}\left(2^{3 \lambda l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{a_{k}}{2^{\lambda l}}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right), t\right)\right) \\
& \quad \geq_{L} \mathcal{T}\left(\mathcal{T}_{j=0}^{l-1} M\left(x_{k}, \frac{\alpha^{j+1}}{\left|2^{\lambda \mid}\right|^{j}} t\right)\right. \\
& \left.\quad, \mathcal{P}\left(2^{3 \lambda l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{a_{k}}{2^{\lambda l}}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right), t\right)\right) .
\end{align*}
$$

By taking limit as $l \rightarrow \infty$ in (2.10), we obtain

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad \geq_{L} \mathcal{T}_{j=1}^{\infty} M\left(x_{k}, \frac{\alpha^{j+1}}{|2|^{\lambda j}} t\right),
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$. Now, replacing a_{k}, b_{k}, c_{k} with $2^{-\lambda l} a_{k}, 2^{-\lambda l} b_{k}$, $2^{-\lambda l} c_{k}$, respectively, in (2.4), we obtain

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, \frac{\left[a_{k} b_{k} c_{k}\right]}{2^{3 \lambda l}}, \ldots, x_{n}\right)-\left[\frac{\pi_{k}\left(a_{k}\right)}{2^{3 \lambda l}} \frac{\pi_{k} b_{k}}{2^{3 \lambda l}} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{c_{k}}{2^{\lambda l}}, \ldots, x_{n}\right)\right]\right. \\
& \quad-\left[\frac{\pi_{k}\left(a_{k}\right)}{2^{3 \lambda l}} \mathcal{D}_{k}\left(x_{1}, \ldots, \frac{b_{k}}{2^{\lambda l}}, \ldots, x_{n}\right) \frac{\pi_{k}\left(c_{k}\right)}{2^{3 \lambda l}}\right] \\
& \left.\quad-\left[\mathcal{D}_{k}\left(x_{1}, \ldots, \frac{a_{k}}{2^{\lambda l}}, \ldots, x_{n}\right) \frac{\pi_{k}\left(b_{k}\right)}{2^{3 \lambda l}} \frac{\pi_{k}\left(c_{k}\right)}{2^{3 \lambda l}}\right], t\right) \\
& \quad \geq_{L} \Psi_{k}\left(\frac{a_{k}}{2^{\lambda l}}, \frac{b_{k}}{2^{\lambda l}}, \frac{c_{k}}{2^{\lambda l}}, t\right),
\end{aligned}
$$

for all $a_{k}, b_{k}, c_{k} \in \mathcal{A}_{k}, x_{i} \in \mathcal{A}_{i}(i \neq k)$ and $t>0$. Hence

$$
\begin{aligned}
& \mathcal{P}\left(2^{9 \lambda l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{\left[a_{k} b_{k} c_{k}\right]}{2^{3 \lambda l}}, \ldots, x_{n}\right)\right. \\
&-2^{9 \lambda l}\left[\frac{\pi_{k}\left(a_{k}\right)}{2^{3 \lambda l}} \frac{\pi_{k}\left(b_{k}\right)}{2^{3 \lambda l}} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{c_{k}}{2^{2 l}}, \ldots, x_{n}\right)\right] \\
& \quad-2^{9 \lambda l}\left[\frac{\pi_{k}\left(a_{k}\right)}{2^{3 \lambda l}} \mathcal{D}_{k}\left(x_{1}, \ldots, \frac{b_{k}}{2^{\lambda l}}, \ldots, x_{n}\right) \frac{\pi_{k}\left(c_{k}\right)}{2^{3 \lambda l}}\right] \\
&\left.\quad-2^{9 \lambda m}\left[\mathcal{D}_{k}\left(x_{1}, \ldots, \frac{a_{k}}{2^{\lambda l}}, \ldots, x_{n}\right) \frac{\pi_{k}\left(b_{k}\right)}{2^{3 \lambda l}} \frac{\pi_{k}\left(c_{k}\right)}{2^{3 \lambda l}}\right], t\right) \\
& \quad \geq_{L} \Psi_{k}\left(\frac{a_{k}}{2^{\lambda l}}, \frac{b_{k}}{2^{\lambda l}}, \frac{c_{k}}{2^{\lambda l}}, \frac{t}{|2|^{9 \lambda l}}\right) \\
& \quad \geq_{L} \Psi_{k}\left(a_{k}, b_{k}, c_{k}, \frac{\alpha^{l}}{|2|^{\lambda l}} t\right),
\end{aligned}
$$

for all $a_{k}, b_{k}, c_{k} \in \mathcal{A}_{k}, x_{i} \in \mathcal{A}_{i}(i \neq k)$ and $t>0$.
By $\lim _{l \rightarrow \infty} \Psi_{k}\left(a_{k}, b_{k}, c_{k}, \frac{\alpha^{l}}{|2|^{\lambda}} t\right)=1_{\ell}$, we get
$\mathcal{D}_{k}\left(x_{1}, \ldots,\left[a_{k} b_{k} c_{k}\right], \ldots, x_{n}\right)=\left[\pi_{k}\left(a_{k}\right) \pi_{k}\left(b_{k}\right) \mathcal{D}_{k}\left(x_{1}, \ldots, c_{k}, \ldots, x_{n}\right)\right]$

$$
\begin{aligned}
& +\left[\pi_{k}\left(a_{k}\right) \mathcal{D}_{k}\left(x_{1}, \ldots, b_{k}, \ldots, x_{n}\right) \pi_{k}\left(c_{k}\right)\right] \\
& +\left[\mathcal{D}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right) \pi_{k}\left(b_{k}\right) \pi_{k}\left(c_{k}\right)\right]
\end{aligned}
$$

for all $a_{k}, b_{k}, c_{k} \in \mathcal{A}_{k}, x_{i} \in \mathcal{A}_{i}(i \neq k)$. As \mathcal{T} is continuous, form a well known result in ℓ-fuzzy (probabilistic) normed spaces [40], it follows that

$$
\lim _{l \rightarrow \infty} \mathcal{P}\left(8^{\lambda l} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{-\lambda l}\left(2 a_{k}+b_{k}\right), \ldots, x_{n}\right)\right.
$$

$$
\begin{aligned}
& +\left(8^{\lambda l} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{-\lambda l}\left(2 a_{k}-b_{k}\right), \ldots, x_{n}\right)\right) \\
& -2\left(8^{\lambda l} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{-\lambda l}\left(a_{k}+b_{k}\right), \ldots, x_{n}\right)\right) \\
& -2\left(8^{\lambda l} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{-\lambda l}\left(a_{k}-b_{k}\right), \ldots, x_{n}\right)\right) \\
& \left.-12\left(8^{\lambda l} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{-\lambda l} a_{k}, \ldots, x_{n}\right)\right), t\right) \\
= & \mathcal{P}\left(\mathcal{D}_{k}\left(x_{1}, \ldots,\left(2 a_{k}+b_{k}\right), \ldots, x_{n}\right)\right. \\
& +\mathcal{D}_{k}\left(x_{1}, \ldots,\left(2 a_{k}-b_{k}\right), \ldots, x_{n}\right) \\
& -2 \mathcal{D}_{k}\left(x_{1}, \ldots,\left(a_{k}+b_{k}\right), \ldots, x_{n}\right) \\
& -2 \mathcal{D}_{k}\left(x_{1}, \ldots,\left(a_{k}-b_{k}\right), \ldots, x_{n}\right) \\
& \left.-12 \mathcal{D}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right), t\right),
\end{aligned}
$$

for all $a_{k}, b_{k} \in \mathcal{A}_{k}, x_{i} \in \mathcal{A}_{i}(i \neq k, i=1.2, \ldots, n)$ and $t>0$. Replacing a_{k}, b_{k} by $2^{-\lambda l} a_{k}, 2^{-\lambda l} b_{k}$ in (2.3) and by (2.1), we get

$$
\begin{aligned}
& \mathcal{P}\left(8^{\lambda l} \mathcal{D}_{k}\left(x_{1}, \ldots, 2^{-\lambda l}\left(2 a_{k}+b_{k}\right), \ldots, x_{n}\right)\right. \\
&\left.+\left(8^{\lambda l} \mathcal{D}_{k}\left(x_{1}, \ldots, 2^{-\lambda l}\left(2 a_{k}-b_{k}\right), \ldots, x_{n}\right)\right)\right) \\
&-2\left(8^{\lambda l} \mathcal{D}_{k}\left(x_{1}, \ldots, 2^{-\lambda l}\left(a_{k}+b_{k}\right), \ldots, x_{n}\right)\right) \\
&-2\left(8^{\lambda l} \mathcal{D}_{k}\left(x_{1}, \ldots, 2^{-\lambda l}\left(a_{k}-b_{k}\right), \ldots, x_{n}\right)\right) \\
&\left.-12\left(8^{\lambda l} \mathcal{D}_{k}\left(x_{1}, \ldots, 2^{-\lambda l} a_{k}, \ldots, x_{n}\right)\right), t\right) \\
& \geq_{L} \Psi_{k}\left(2^{-\lambda l} a_{k}, 2^{-\lambda l} b_{k}, 0_{k}, t\right) \\
& \geq_{L} \Psi_{k}\left(a_{k}, b_{k}, 0_{k}, \frac{\alpha^{l}}{\left|2^{\lambda}\right|^{l}} t\right),
\end{aligned}
$$

for all $a_{k}, b_{k} \in \mathcal{A}_{k}, x_{i} \in \mathcal{A}_{i}(i \neq k, i=1,2, \ldots, n)$ and $t>0$. Since $\lim _{l \rightarrow \infty} \Psi_{k}\left(a_{k}, b_{k}, 0_{k}, \frac{\alpha^{l}}{\left|2^{\lambda}\right|^{t}} t\right)=1_{\ell}$, we infer that \mathcal{D} is a cubic mapping with respect to the $k-t h$ variable.

For the uniqueness of \mathcal{D}, let $\mathcal{D}_{k}^{\prime}: \mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n} \rightarrow \mathcal{B}$ be another $k-$ th partial ternary cubic derivation such that

$$
\begin{align*}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-\mathcal{D}_{k}^{\prime}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \tag{2.11}\\
& \quad \geq_{L} \mathcal{T}_{j=1}^{\infty} M\left(x_{k}, \frac{\alpha^{j+1}}{|2|^{\lambda j}} t\right),
\end{align*}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$. Then for each $l=1,2, \ldots, x_{i} \in \mathcal{A}_{i}$ and $t>0$, we have

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{D}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-\mathcal{D}_{k}^{\prime}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad \geq_{L} \mathcal{T}\left(\mathcal{P}\left(\mathcal{D}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-2^{3 \lambda l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda l}}, \ldots, x_{n}\right), t\right)\right. \\
& \left.\quad, \mathcal{P}\left(2^{3 \lambda l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda l}}, \ldots, x_{n}\right)-\mathcal{D}_{k}^{\prime}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right)\right),
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$. From (2.9), we conclude that $\mathcal{D}_{k}=\mathcal{D}_{k}^{\prime}$. This completes the proof.

Corollary 2.2. Let $(\mathcal{X}, \mathcal{P}, \mathcal{T})$ be a non-Archimedean ℓ-fuzzy Banach space over \mathbb{K} under a t-norm Hadžić-type $(\mathcal{T} \in \mathcal{H})$. Let $\mathcal{G}_{k}: \mathcal{A}_{1} \times \ldots \times$ $\mathcal{A}_{n} \rightarrow \mathcal{B}$ be a mapping with $\mathcal{G}_{k}\left(x_{1}, \ldots, 0_{k}, \ldots, x_{n}\right)=0_{\mathcal{B}}$. Assume that there exists an ℓ-fuzzy set Ψ_{k} on $\mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{3} \times[0, \infty$) satisfying (2.1) and (2.2) for some $\alpha \in(0, \infty)$ and some integer $\lambda \geq 2$ with $\left|2^{\lambda}\right|<\alpha$ which $|2| \neq 0$. Also assume that there exists a cubic mapping $\pi_{k}: \mathcal{A}_{k} \rightarrow \mathcal{B}$ satisfying (2.3) and (2.4). Then there exists a unique k-th partial cubic derivation $\mathcal{D}_{k}: \mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n} \rightarrow \mathcal{B}$ such that

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad \geq \ell \mathcal{T}_{j=1}^{\infty} M\left(x_{k}, \frac{\alpha^{j+1}}{|2|^{\lambda j}} t\right),
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$ where

$$
M\left(x_{k}, t:=\mathcal{T}\left(\Psi_{k}\left(x_{k}, 0_{k}, 0_{k}, t\right), \Psi_{k}\left(2 x_{k}, 0_{k}, 0_{k}, t\right), \ldots, \Psi_{k}\left(2^{\lambda-1} x_{k}, 0_{k}, 0_{k}, t\right)\right),\right.
$$

for all $x_{k} \in \mathcal{A}_{k}$ and $t>0$.
Proof. Since

$$
\lim _{n \rightarrow \infty} M\left(x, \frac{\alpha^{j+1}}{|2|^{\lambda j}} t\right)=1_{\ell}
$$

for all $x_{k} \in \mathcal{A}_{k}, t>0$ and \mathcal{T} is of Hadžićc-type, it follows from Proposition 1.1 that

$$
\lim _{n \rightarrow \infty} \mathcal{T}_{j=n}^{\infty} M\left(x, \frac{\alpha^{j+1}}{|2|^{\lambda j}} t\right)=1_{\ell}
$$

for all $x_{k} \in \mathcal{A}_{k}$ and $t>0$. Now, we get the conclusion by applying Theorem 2.1.

Similarly, we can obtain the following theorem.

Theorem 2.3. Let $\mathcal{G}_{k}: \mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n} \rightarrow \mathcal{B}$ be a mapping with

$$
\mathcal{G}_{k}\left(x_{1}, \ldots, 0_{k}, \ldots, x_{n}\right)=0_{\mathcal{B}}
$$

Assume that there exists an ℓ-fuzzy set Ψ_{k} on $\mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{3} \times[0, \infty)$ such that for some $\alpha \in(0, \infty)$ and for some integer $\lambda \geq 2$ with $\frac{1}{|2|^{6 \lambda}}<\alpha$ which $|2| \neq 0$, satisfies

$$
\begin{equation*}
\Psi\left(2^{\lambda} x_{k}, 2^{\lambda} y_{k}, 2^{\lambda} z_{k}, t\right) \geq_{\ell} \Psi_{k}\left(x_{k}, y_{k}, z_{k}, \frac{\alpha}{|2|^{3 \lambda}} t\right) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{T}_{j=n}^{\infty} M\left(x, \alpha^{j} t\right)=1_{\ell} \tag{2.13}
\end{equation*}
$$

for all $x_{k}, y_{k}, z_{k} \in \mathcal{A}_{k}$ and $t>0$. Also assume that there exists a cubic mapping $\pi_{k}: \mathcal{A}_{k} \rightarrow \mathcal{B}$ satisfying (2.3) and (2.4) for all $a_{k}, b_{k}, c_{k} \in$ $\mathcal{A}_{k}, x_{i} \in \mathcal{A}_{i}(i \neq k)$ and $t>0$. Then there exists a unique k-th partial cubic derivation $\mathcal{D}_{k}: \mathcal{A}_{1} \times \cdots \times \mathcal{A}_{n} \rightarrow \mathcal{B}$ such that

$$
\begin{align*}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \tag{2.14}\\
& \quad \geq_{L} \mathcal{T}_{j=1}^{\infty} M\left(x_{k}, \alpha^{j+1} t\right)
\end{align*}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$, where

$$
M\left(x_{k}, t\right):=\mathcal{T}\left(\Psi_{k}\left(\frac{x_{k}}{2}, 0_{k}, 0_{k}, t\right), \Psi_{k}\left(\frac{x_{k}}{4}, 0_{k}, 0_{k}, t\right), \ldots, \Psi_{k}\left(\frac{x_{k}}{2^{\lambda}}, 0_{k}, 0_{k}, t\right)\right)
$$

for all $x_{k} \in \mathcal{A}_{k}$ and $t>0$.
Proof. Replacing x_{k} by $\frac{x_{k}}{2}$ in (2.7), we obtain

$$
\begin{align*}
\mathcal{P}\left(\frac{1}{2^{3 \lambda}} \mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-2^{3 \lambda} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda}}, \ldots, x_{n}\right), t\right) \tag{2.15}\\
\geq_{L} \mathcal{T}\left(\Psi_{k}\left(\frac{x_{k}}{2}, 0_{k}, 0_{k},|2|^{3 \lambda} t\right), \Psi_{k}\left(\frac{x_{k}}{4}, 0_{k}, 0_{k},|2|^{3 \lambda} t\right)\right. \\
\left.\quad, \ldots, \Psi_{k}\left(\frac{x_{k}}{2^{\lambda}}, 0_{k}, 0_{k},|2|^{3 \lambda} t\right)\right) \\
\quad=M\left(x_{k},|2|^{3 \lambda} t\right) .
\end{align*}
$$

Replacing x_{k} by $2^{\lambda(l+1)} x_{k}$ in (2.15) and using (2.12), we have

$$
\begin{aligned}
& \mathcal{P}\left(\frac{1}{2^{3 \lambda}} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{\lambda(l+1)} x_{k}, \ldots, x_{n}\right)-\mathcal{G}_{k}\left(x_{1}, \ldots, 2^{\lambda l} x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad \geq_{L} \mathcal{T}\left(\Psi_{k}\left(\frac{x_{k}}{2}, 0_{k}, 0_{k},|2|^{3 \lambda} t\right), \Psi_{k}\left(\frac{x_{k}}{4}, 0_{k}, 0_{k},|2|^{3 \lambda} t\right)\right. \\
& \left.\quad, \ldots, \Psi_{k}\left(\frac{x_{k}}{2^{\lambda}}, 0_{k}, 0_{k},|2|^{3 \lambda} t\right)\right)
\end{aligned}
$$

$$
=M\left(x_{k}, \frac{\alpha^{l+1}}{|2|^{3 \lambda l}} t\right),
$$

for all $x_{i} \in \mathcal{A}_{i}, t>0$ and $l \geq 0$. Then, we have

$$
\begin{aligned}
& \mathcal{P}\left(\frac{1}{2^{3 \lambda(l+1)}} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{\lambda(l+1)} x_{k}, \ldots, x_{n}\right)-\frac{1}{2^{3 \lambda l}} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{\lambda l} x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad \geq_{L} M\left(x_{k}, \alpha^{l+1} t\right),
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}, t>0$ and $l \geq 0$. Hence

$$
\begin{aligned}
& \mathcal{P}\left(\frac{1}{2^{3 \lambda(l+1)}} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{\lambda(l+1)} x_{k}, \ldots, x_{n}\right)-\frac{1}{2^{3 \lambda l}} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{\lambda l} x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad \geq_{L} \mathcal{T}_{j=l}^{l+p} \mathcal{P}\left(\frac{1}{2^{3 \lambda(p+j)}} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{\lambda(p+j)} x_{k}, \ldots, x_{n}\right)\right. \\
& \left.\quad-\frac{1}{2^{3 \lambda j}} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{\lambda j} x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad \geq_{L} \mathcal{T}_{j=l}^{l+p} M\left(x_{k}, \alpha^{j+1} t\right) .
\end{aligned}
$$

By (2.13), the sequence $\left\{\frac{1}{2^{3 \lambda l}} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{\lambda l} x_{k}, \ldots, x_{n}\right)\right\}_{l \in \mathbb{N}}$ is Cauchy in \mathcal{B} and by the completeness of \mathcal{B}, this sequence is convergent. Hence, we can define the mapping $\mathcal{D}_{k}: \mathcal{A}_{1} \times \cdots \times \mathcal{A}_{n} \rightarrow \mathcal{B}$ by
$\lim _{l \rightarrow \infty} \mathcal{P}\left(\frac{1}{2^{3 \lambda l}} \mathcal{G}_{k}\left(x_{1}, \ldots, 2^{\lambda l} x_{k}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right)=1_{\ell}$, for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$. The rest of the proof is similar to the proof of Theorem 2.1.

3. Stability of Partial Ternary Cubic *-Derivation on Non-Archimedean ℓ-Fuzzy C^{*}-Ternary Algebras

A complex non-Archimedean ℓ-fuzzy $*$-Banach algebra ($\mathcal{B}, \mathcal{P}, \mathcal{T}, \mathcal{T}^{\prime}$), which has a ternary product $(x, y, z) \mapsto[x, y, z]$ of \mathcal{B}^{3} into \mathcal{B} is a nonArchimedean ℓ-fuzzy C^{*}-ternary algebra if the product is linear on each variable and
(i) $[x, y,[z, u, v]]=[a,[u, z, y], v]=[[x, y, z], u, v]$;
(ii) $\|[x, y, z]\| \leq\|x\|\|y\|\|z\|$;
(iii) $\|[x, x, x]\|=\|x\|^{3}$,
for all $x, y, z, u, v \in \mathcal{B}$.
If $\left(\mathcal{B}, \mathcal{P}, \mathcal{T}, \mathcal{T}^{\prime}\right)$ has the element e so that $x=[x, e, e]=[e, e, x]$ for all $x \in \mathcal{B}$, then e is called the unite element of the non-Archimedean ℓ-fuzzy C^{*}-ternary algebra. If for $x \in \mathcal{B}$, we have $[e, x, e]=x^{*}$, then $*$ is an involution on the C^{*}-ternary algebra.

In this section, assume that $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{n}$ are non-Archimedean ℓ fuzzy $*$-normed ternary algebras over \mathbb{C}, and \mathcal{B} is a non-Archimedean ℓ-fuzzy Banach C^{*}-ternary algebra.

Theorem 3.1. Let $\mathcal{G}_{k}: \mathcal{A}_{1} \times \cdots \times \mathcal{A}_{n} \rightarrow \mathcal{B}$ be a mapping with

$$
\mathcal{G}_{k}\left(x_{1}, \ldots, 0_{k}, \ldots, x_{n}\right)=0_{\mathcal{B}} .
$$

Suppose that there exists an ℓ-fuzzy set Ψ_{k} on $\mathcal{A}_{k} \times \mathcal{A}_{k} \times \mathcal{A}_{k} \times[0, \infty)$ and a cubic mapping $\pi_{k}: \mathcal{A}_{k} \rightarrow \mathcal{B}$ such that (2.1)-(2.4) hold. Also assume that

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, a_{k}^{*}, \ldots, x_{n}\right)-\mathcal{G}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)^{*}, t\right) \\
& \quad \quad \geq_{L} \Psi_{k}\left(a_{k}, 0_{k}, 0_{k}, t\right),
\end{aligned}
$$

for all $a_{k} \in \mathcal{A}_{k}, x_{i} \in \mathcal{A}_{i}(i \neq k)$ and $t>0$. Then there exists a unique k-th partial cubic $*$-derivation $\mathcal{D}_{k}: \mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n} \rightarrow \mathcal{B}$ such that

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad \geq_{L} \mathcal{T}_{j=1}^{\infty} M\left(x_{k}, \frac{\alpha^{j+1}}{|2|^{\lambda j}} t\right),
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$ where $M\left(x_{k}, t\right):=\mathcal{T}\left(\Psi_{k}\left(x_{k}, 0_{k}, 0_{k}, t\right), \Psi_{k}\left(2 x_{k}, 0_{k}, 0_{k}, t\right), \ldots, \Psi_{k}\left(2^{\lambda-1} x_{k}, 0_{k}, 0_{k}, t\right)\right)$ for all $x_{k} \in \mathcal{A}_{k}$ and $t>0$.
Proof. By a similar argument to that used the proof of theorem 2.1, there exists a unique k-th partial ternary cubic derivation $\mathcal{D}_{k}: \mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n} \rightarrow$ \mathcal{B} which satisfy (2.5), and

$$
\begin{aligned}
& \lim _{l \rightarrow \infty} \mathcal{P}\left(\left(2^{3 \lambda}\right)^{l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda m}}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad=1_{\ell}
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$. So, we have

$$
\begin{aligned}
\mathcal{P}\left(\mathcal{D}_{k}\right. & \left.\left(x_{1}, \ldots, a_{k}^{*}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)^{*}, t\right) \\
= & \lim _{l \rightarrow \infty} \mathcal{P}\left(\left(2^{3 \lambda}\right)^{l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}^{*}}{2^{\lambda m}}, \ldots, x_{n}\right)\right. \\
& \left.-\left(2^{3 \lambda}\right)^{l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda l}}, \ldots, x_{n}\right)^{*}, t\right) \\
= & \lim _{l \rightarrow \infty} \mathcal{P}\left(\left(2^{3 \lambda}\right)^{l} \mathcal{G}_{k}\left(x_{1}, \ldots,\left(\frac{x_{k}}{2^{\lambda l}}\right)^{*}, \ldots, x_{n}\right)\right. \\
& \left.-\left(2^{3 \lambda}\right)^{l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda l}}, \ldots, x_{n}\right)^{*}, t\right) \\
\geq & \lim _{l \rightarrow \infty} \Psi_{k}\left(a_{k}, 0_{k}, 0_{k}, \frac{\alpha^{l}}{\left|2^{\lambda}\right|^{l}} t\right) \\
= & 1_{\ell}
\end{aligned}
$$

for all $x_{k} \in \mathcal{A}_{k}, x_{i} \in \mathcal{A}_{i}(i \neq k)$ and $t>0$.
Corollary 3.2. Let $(\mathcal{X}, \mathcal{P}, \mathcal{T})$ be a non-Archimedean ℓ-fuzzy Banach space over \mathbb{K} under a t-norm Hadžić-type $(\mathcal{T} \in \mathcal{H})$. Let $\mathcal{G}_{k}: \mathcal{A}_{1} \times \cdots \times$ $\mathcal{A}_{n} \rightarrow \mathcal{B}$ be a mapping with $G_{k}\left(x_{1}, \ldots, 0_{k}, \ldots, x_{n}\right)=0_{\mathcal{B}}$. Suppose that there exists an ℓ-fuzzy set Ψ_{k} on $\mathcal{A}_{k} \times \mathcal{A}_{k} \times \mathcal{A}_{k} \times[0, \infty)$ and a cubic mapping $\pi_{k}: \mathcal{A}_{k} \rightarrow \mathcal{B}$ such that (2.1)-(2.4) hold. Also assume that

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, x_{2}, x_{3}, \ldots, a_{k}^{*}, \ldots, x_{n}\right)-\mathcal{G}_{k}\left(x_{1}, \ldots, a_{k}, \ldots, x_{n}\right)^{*}, t\right) \\
& \quad \geq_{\ell} \Psi_{k}\left(a_{k}, 0_{k}, 0_{k}, t\right)
\end{aligned}
$$

for all $a_{k} \in \mathcal{A}_{k}, x_{i} \in \mathcal{A}_{i}(i \neq k)$ and $t>0$. Then there exists a unique k-th partial cubic $*$-derivatio $\mathcal{D}_{k}: \mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n} \rightarrow \mathcal{B}$ such that

$$
\begin{aligned}
& \mathcal{P}\left(\mathcal{G}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right)-\mathcal{D}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) \\
& \quad \geq_{\ell} \mathcal{T}_{j=1}^{\infty} M\left(x_{k}, \frac{\alpha^{j+1}}{|2|^{a j}} t\right)
\end{aligned}
$$

for all $x_{i} \in \mathcal{A}_{i}$ and $t>0$ where
$M\left(x_{k}, t\right):=\mathcal{T}\left(\Psi_{k}\left(x_{k}, 0_{k}, 0_{k}, t\right), \Psi_{k}\left(2 x_{k}, 0_{k}, 0_{k}, t\right), \ldots, \Psi_{k}\left(2^{\lambda-1} x_{k}, 0_{k}, 0_{k}, t\right)\right)$
for all $x_{k} \in \mathcal{A}_{k}$ and $t>0$.
Proof. we get the conclusion by applying Proposition 1.1 and Theorem 3.1.

References

1. M.A. Abolfathi, A. Ebadian and R. Aghalary, Stability of mixed additive-quadratic Jensen type functional equation in nonArchimedean ℓ-fuzzy normed spaces, Ann. Univ. Ferrara Sez. VII Sci. Mat., 60(2) (2014), pp. 307-319.
2. M. Amini and R. Saadati, Topics in fuzzy metric space, J. Fuzzy. Math., 4 (2003), pp. 765-768.
3. T. Aoki, On the stability of linear trasformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), pp. 64-66.
4. B. Arsalan and H. Inceboz, Nearly k-th Partial Ternary Quadratic *-Derivations, Kyungpook Math. J., 55 (2015), pp. 893-907.
5. A. Cayley, On the 34 concomitants of the ternary cubic, Am. J. Math., 4 (1981), pp. 1-15.
6. S.C. Cheng and J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), pp. 429-436.
7. P. Czerwik, Functional Equations and Inequalities in Several Variable, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
8. G. Deschrijver, D. O'Regan, R. Saadati and S.M. Vaezpour, ℓ fuzzy Euclidean normed spaces and compactness, Chaos Solitions Fractals, 42 (2009), pp. 40-45.
9. A. Ebadian, R. Aghalary and M.A. Abolfathi, On approximate dectic mappings in non-Archimedean spaces: a fixed point approah, Int. J. Nonlinear Anal. Appl., 5(2) (2014), pp. 111--122.
10. A. Ebadian, N. Ghobadipour, B. Savadkouhi and M. Eshaghi Gordji, of a mixed type cubic and quartic functional equation in non-Archimedean ℓ-fuzzy normed spaces, Thai J. Math., 9 (2011), pp. 243-259.
11. M. Eshaghi, M.B. Savadkouhi, M. Bidkham, C. park and J.R. Lee, Nearly partial derivations on Banach ternary algebras, J. Math. Stat., 6 (4) (2010) pp. 454-461.
12. P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of the approximately additive mappings, J. Math. Anal. Appl., 184 (1994), pp. 431-436.
13. A. George and p. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst., 64 (1994), pp. 395-399.
14. J.A. Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967), pp. 145-174.
15. F.Q. Gouvêa, p-Adic Numbers. An Introduction, Springer-Verlag, Berlin, 1997.
16. O. Hadžić and E. Pap, Fixed point Theory in Probabilistic Metric Spaces, Kluwer Academic, Dordrecht, 2001.
17. O. Hadžić, E. Pap and M. Budincević, Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetica, 38 (2002), pp. 363-381.
18. K. Hensel, Über eine neue Begundung der Theorie der algebraischen Zahlen, Jahresbericht der Deutschen Mathematiker-Vereinigung, 6 (1897), pp. 83-88.
19. A. Himbert, Comptes Rendus del'Acad. Sci., Paris, (1985).
20. N.E. Hoseinzadeh, A. Bodaghi and M.R. Mardanbeigi, Almost Multi-Cubic Mappings and a Fixed point Application, Sahand Commun. Math. Anal., 17 (3) (2020), pp. 131-142.
21. D.H. Hyers, On the Stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), pp. 222-224.
22. D.H. Hyers, G. Isac and Th.M. Rssias, Stability of Functional Equation in Several Variables, Birkhäuse, Basel, 1998.
23. K. Jun and H. Kim, The gegeralized Hyers-Ulam-Rassias stability of cubic functional equation, J. Math. Anal. Appl., 274 (2002), pp. 867-878.
24. O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Set Syst., 12 (3) (1984), pp. 1-7.
25. M. Kapranov, IM. Gelfand and A. Zelevinskii, Discrimininants, Reesultants and Multidimensional Determinants(Modern Bikhäuser Classics), Berlin, (1994).
26. A.K. Katsaras, Fuzzy topological vector spaces, Fuzzy Set Syst., 12 (1984), pp. 143-154.
27. R. Kerner, The cubic chessboard: Geometry and physics, Class. Quantum Grav., 14 (1997), pp. A203-A225 .
28. A. Khrennikov, Non-Archimedean Analysis: Quantu Paradoxes, Dynamical Systems and Biological Models, Math. Appl., vol.427, Kluwer Academic publisher Dordrecht, 1997.
29. S.V. Krishna and K.K.M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Set Syst., 63 (1994) 207-217.
30. A.K. Mirmostafaee and M.S. Moslehian, Stability of additive mapping in non Archimedean fuzzy normed spaces, Fuzzy Set Syst., 160 (2009), 1643-1652.
31. A. Najati, B. Noori and M.B. Moghimi, On Approximation of Some Mixed Functional Equations, Sahand Commun. Math. Anal., 18 (1) (2021), pp. 35-46.
32. M. Nazarianpoor and G. Sadeghi, On the stability of the Pexiderized cubic functionalequation in multi-normed spaces, Sahand Commun. Math. Anal., 9 (1) (2018), pp. 45-83.
33. S. Okabo, Triple products and Yang-Baxter equation I, II. Octonionic and quaternionic triple systems, J. Math. Phys., 34(7) (1993), 3273-3291 and 3291-3315.
34. K.H. Park and Y.S. Jung, Stability of a cubic functional equation on groups, Bull. Korean Math. Soc., 41 (2004) 347-357.
35. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978) 297-300.
36. Th.M. Rassias, Functional Equation, Inequalities and Applications, KLuwer Academic publishers Co., Dordrecht, Boston, London, 2003.
37. A.M. Robert, A Course in p-Adic Analysis,(Graduate Texts in Mathematics), Vol.198, Springer-Verlag, New York, 2000.
38. R. Saadati, On the ℓ-fuzzy topological spaces, Chaos Solitions Fractals, 37 (2008), pp. 1419-1426.
39. R. Saadati and J. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitions Fractals, 27 (2006), pp. 331-344.
40. B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, North Holand, New York, 1983.
41. S. Shakeri, R. Saadati and C. Park, Stability of the functional equations in non- Archimedean ℓ-fuzzy normed spaces, Int. J. Nonlinear Anal. Appl., 1(2) (2010), pp. 72-83.
42. N. Shilkret, Non-Archimedian Banach algebras, Ph.D. thesis, Polytechnic University, 1968.
43. S.M. Ulam, Problem in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
44. J.Z. Xiao and X.H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Set Syst., 133 (2003) pp. 389-399.
45. L.A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965) pp. 338-353.

Department of Mathematics, Faculty of Science, Urmia University, P.O.Box 165, Urmia, Iran.

Email address: m.abolfathi@urmia.ac.ir

