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Nearly k − th Partial Ternary Cubic ∗-Derivations On
Non-Archimedean ℓ-Fuzzy C∗-Ternary Algebras

Mohammad Ali Abolfathi

Abstract. In this paper, we investigate approximations of the
k−th partial ternary cubic derivations on non-Archimedean ℓ-fuzzy
Banach ternary algebras and non-Archimedean ℓ-fuzzy C∗-ternary
algebras. First, we study non-Archimedean and ℓ-fuzzy spaces, and
then prove the stability of partial ternary cubic ∗-derivations on
non-Archimedean ℓ-fuzzy C∗-ternary algebras. We therefore pro-
vide a link among different disciplines: fuzzy set theory, lattice
theory, non-Archimedean spaces, and mathematical analysis.

1. Introduction

A classical equation in the theory of functional equations is the fol-
lowing: ”when is it true that a function which approximately satisfies
a functional equation must be close to an exact solution of the equa-
tion?”. If the problem accepts a solution, we say that the equation is
stable. The first problem concerning group homomorphisms was raised
by Ulam [43] in 1940. In the next year, Hyers [21] gave the first af-
firmative answer to the question of Ulam in context of Banach spaces.
Subsequently, the result of Hyers was generalized by Aoki [3] for additive
mappings and Rassias [35] proved a generalization of the Hayers’ theo-
rem for linear mappings by considering an unbounded Cauchy difference.
Furthermore, in 1994, Gǎvrua[12] provided a further generalization of
Rassias’ theorem in which he replaced the bound ε(‖x‖p + ‖y‖p) by a
general control function φ (x, y). Recently, several stability results have
been obtained for various equations and mappings with more general
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14 M. A. ABOLFATHI

domains and ranges by a number of authors [9, 20, 23, 31, 32]. We also
refer the readers to books [7, 22, 36].

In 1897, Hensel [18] discovered the p-adic numbers as a number the-
oretical analogue of power series in complex analysis. The most impor-
tant examples of non-Archimedean spaces are p-adic numbers. A key
property of p-adic numbers is that they do not satisfy the Archimedean
axiom: for all x, y > 0, there exists an integer n such that x < ny.
During the last three decades, the theory of non-Archimedean spaces
has gained the interest of physicists for their research, in particular the
problems that coming from quantum physics, p-adic strings and super-
strings [28]. Although many results in the classical normed space theory
have a non-Archimedean counterpart, their proofs are essentially differ-
ent and require an entirely new kind of intuition. One may note that
for |n| ≤ 1 in each valuation field, every triangle is isosceles and there
many be no unit vector in a non-Archimedean normed space. These
facts show that the non-Archimedean framework is of special interest.
It turned out that non-Archimedean spaces have many nice applications
[15, 37, 42].

Let K be a field. A non-Archimedean absolute value on K is a function
(valuation) |.| : K → R such that, for any a, b ∈ K, |a| ≥ 0 and equality
holds if and only if a = 0, |ab| = |a| |b|, |a+ b| ≤ max {|a| , |b|} (the
strict triangle inequality). Note that |1| = |−1| = 1 and |n| ≤ 1 for
each integer n. A trivial example of a non-Archimedean valuation is
the functional |.| taking everything except for 0 into 1 and |0| = 0. We
always assume, in addition, that |.| is non-trivial, i.e., there exists an
a0 ∈ K such that |a0‖ /∈ {0, 1} .

Let X be a linear space over a scaler field K with a non-Archimedean
nontrivial valuation |.|. A ‖ . ‖ : X → R is a non-Archimedean norm
(valuation) if it satisfies the following conditions: ‖x‖ = 0 if and only
if x = 0, ‖rx‖ = |r| ‖x‖, ‖x+ y‖ ≤ max {‖x‖ ‖y‖} (the strict triangle
inequality (ultrametric) for all x, y ∈ X . Then (X , ‖ . ‖) is called non-
Archimedean normed space. From the fact that

‖xn − xm‖ ≤ max {‖xi+1 − xi‖ : m ≤ i ≤ n− 1} , (n > m).

holds, a sequence {xn} is a Cauchy if and only if {xn+1 − xn} con-
verges to zero in a non-Archimedean normed space. By a complete
non-Archimedean space, we mean one in which every Cauchy sequence
is convergent.

Fix a prime number p. For any nonzero rational number x, there exists
a unique integer nx such that x = a

bp
nx , where a and b are integers not

divisible by p. Then |x|p := p−nx defines a non-Archimedean norm on
Q. The completion of Q with respect to the metric d(x, y) = |x− y|p is
denoted by Qp, and it is called the p-adic number field. In fact Qp is the
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set of all formal series x =
∞∑
k≥n

akpk, where |ak| ≤ p−1 are integers. The

addition and multiplication between any two elements of Qp are defined

naturally. The norm
∣∣∣∣∣ ∞∑
k≥n

akpk

∣∣∣∣∣
p

= p−nx is a non-Archimedean norm on

Qp and it makes Qp a locally compact field [15, 37]. Note that if p ≥ 3,
then |2n|p = 1 for each integer n.

On the other hand, the theory of fuzzy sets was introduced firstly by
Zadeh in 1965 [45]. Fuzzy set theory is a powerful hand set for model-
ing uncertainty and vagueness in various problems arising in the field of
science and engineering. After the pioneering work of Zadeh, there has
been a great effort to obtain fuzzy analogues of classical theories. Among
other fields, a progressive development is made in the field of fuzzy topol-
ogy [2, 6, 13, 24, 26, 29, 44]. Goguen in [14] generalized the notion of a
fuzzy subset of X to that of an ℓ-fuzzy subset, namely a function from
X to a lattice L. One of the problems in ℓ-fuzzy topology is to obtain an
appropriate concept of ℓ-fuzzy metric spaces and ℓ-fuzzy normed spaces.
Saadati and Park [39], introduced and studied a notion of intuitionistic
fuzzy metric(normed) spaces and then Deschrijver et al. and Saadati
generalized the concept of intuitionistic fuzzy metric(normed) spaces
and introduced and studied a notion of ℓ-fuzzy metric spaces and ℓ-
fuzzy normed spaces [8, 38]. In 2009, Mirmostafaee and Moslehian [30],
proved the stability of Cauchy functional equation in non-Archimedean
fuzzy spaces in the spirit of Hyers-Ulam-Rassias-Gǎvrua. In 2010, Shak-
eri, Saadati and Park [41] investigated the classical quadratic functional
equation and proved the generalized Hyers -Ulam stability in the context
of non-Archimedean ℓ-fuzzy normed spaces, (see also[1, 10]).

A triangular norm (shortly, t-norm) is a binary operation
T : [0, 1] × [0, 1] → [0, 1] which is commutative, associative, monotone
and has 1 as the unit element. Basic examples are the Lukasiewicz
t-norm TL, TL(x, y) = max {x+ y − 1, 0} for all x, y ∈ [0, 1] and the
t-norms TM(x, y) = min {x, y} , TM (x, y) = xy and

TD(x, y) =
{

min{x, y},
0,

if max {x, y} = 1,
otherwise.

A t-norm T is said to be of Hadžić-type (we denote by T ∈ H) if the
family (xnT )n∈N is equicontinuous at x = 1, where is defined by

x1T = x, xnT = T
(
xn−1
T , x

)
,

for all x ∈ [0, 1] and n ≥ 2, [16].
A t-norm T can be extended (by associativity) in a unique way

to an n-ary operation taking, for all (x1, . . . , xn) ∈ [0, 1]n, the value
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T (x1, . . . , xn) defined by
T 0
i=1xi = 1, T n

i=1xi = T
(
T n−1
i=1 xi, xn

)
= T (x1, . . . , xn) .

The t-norm T can also be extended to a countable operation taking, for
any sequence {xn}n∈N in [0, 1], the value

T ∞
i=1xi = lim

n→∞
T n
i=1xi.

Proposition 1.1 ([17]). (1) For T ≥ TL the following implication
holds:

lim
n→∞

T ∞
i=1xn+i = 1 ⇔

∞∑
n=1

(1− xn) < ∞.

(2) If T is of Hadžić-type, then
lim
n→∞

T ∞
i=1xn+i = 1,

for every sequence {xn}n∈N in [0, 1] such that lim
n→∞

xn = 1.

Let ℓ = (L,≤L) be a complete lattice and let U be a nonempty set
called the universe. An ℓ-fuzzy set in U is defined as a mapping A :
U → L. For each u in U , A (u) represents the degree (in L) to which u
is an element of A.

A t-norm on ([0, 1],≤) can be straightforwardly extended to any lat-
tice ℓ = (L,≤L). Let ℓ = (L,≤L) be a lattice. A t-norm on ℓ is a
mapping T : L× L → L satisfying the following conditions:

(i) T (x, 1ℓ) = x (boundary condition) (x ∈ L) ;
(ii) T (x, y) = T (y, x) (commutativity) (x, y ∈ L) ;
(iii) T (x, T (y, z)) = T (T (x, y), z) (associativity) (x, y, z ∈ L) ;
(iv) Ifx1 ≤L y1 and x2 ≤L y2thenT (x1, x2) ≤L T (y1, y2)

(monotonicity) (x1, x2, y1, y2 ∈ L) .

A t-norm T on ℓ is said to be continuous if, for any x, y ∈ L and any
sequences {xn} and {yn} which converge to x and y respectively,

lim
n→∞

T (xn, yn) = T (x, y) .

A t-norm T can also be defined recursively as an (n+ 1)-ary operation
by T 1 = T and

T n (x1, . . . , xn+1) = T
(
T n−1 (x1, . . . , xn) , xn+1

)
,

for all n ≥ 2 and xi ∈ L.
A negator on ℓ is any decreasing mapping N : L → L satisfying

N (0ℓ) = 1ℓ and N (1ℓ) = 0ℓ. If N (N (x)) = x, for all x ∈ L, then
N is called a involutive negator. The negator Ns on ([0, 1] ,≤) defined
as Ns(x) = 1 − x for all x ∈ [0, 1] is called the standard negator on
([0, 1] ,≤) . In this paper, the involutive negator N is fixed.
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Definition 1.2. A non-Archimedean ℓ-fuzzy normed space is a triple
(V,P, T ) , where V is a vector space, T is a continuous t-norm on L and
P is an ℓ-fuzzy set on V×]0,+∞[ satisfying the following conditions: for
all x, y ∈ V and t, s ∈]0,+∞[,

(i) 0ℓ <L P (x, t) ;
(ii) P (x, t) = 1ℓ for all t > 0 if and only if x = 0;

(iii) P (αx, t) = P
(
x, t

|α|

)
for each α 6= 0;

(iv) T (P (x, t) ,P (y, s)) ≤L P (x+ y,max {t, s}) ;
(v) P (x, .) :]o,+∞[→ L is continuous.
(vi) lim

t→0
P (x, t) = 0ℓ and lim

t→∞
P (x, t) = 1ℓ.

In this case, P is called an non-Archimedean ℓ-fuzzy norm. Let
(A, ‖.‖) be a non-Archimedean normed linear space and

P(x, t) =

{
0,
1,

t ≤ ‖x‖ ,
t > ‖x‖ .

Then, the triple (A,P,min) is a non-Archimedean ℓ-fuzzy normed space
in which L = [0, 1] .

A sequence {xn}n∈N in a non-Archimedean ℓ-fuzzy normed space
(V,P, T ) is called a Cauchy sequence if, for each ε ∈ L \ {0ℓ} and t > 0,
there exists n0 ∈ N such that, for all n,m ≥ n0, P(xn − xm, t) >L N(ε),
where N is a negator on ℓ. A sequence {xn}n∈N is said to be convergent
to x ∈ V in the non-Archimedean ℓ-fuzzy normed space (V,P, T ) which
is denoted by xn → x if P (xn − x, t) → 1ℓ where n → ∞ for all t > 0.
A non-Archimedean ℓ-fuzzy normed space (V,P, T ) is said be complete
if and only if every Cauchy sequence in V is convergent.
Definition 1.3. A non-Archimedean ℓ-fuzzy normed algebra (A,P, T , T ′)
is a non-Archimedean ℓ-fuzzy normed space (A,P, T ) with algebraic
structure if

P (xy, ts) ≥L T ′ (P (x, t) ,P (y, s)) ,

for all x, y ∈ A and t, s > 0, in which T ′ is a continuous t-norm.
Definition 1.4. Let (A,P, T , T ′) be a non-Archimedean ℓ-fuzzy Ba-
nach algebra. An involution on A is a mapping x → x∗ from A into A
satisfying the following conditions:

(i) x∗∗ = x for all x ∈ A,
(ii) (αx+ βy)∗ = αx∗ + βy∗ for all x, y ∈ A and α, β ∈ C,
(iii) (xy)∗ = y∗x∗ for all x, y ∈ A.

If, in addition, P (x∗x, ts) = T ′ (P (x, t) ,P (x, s)) for all x ∈ A and
t, s > 0, then A is an non-Archimedean ℓ-fuzzy C∗-algebra.

Ternary algebraic operations have propounded originally in nineteenth
century by several mathematicians such as Cayley [5] who introduced
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the notion of cubic matrix which in turn was generalized by Kapranov,
Gelfand and Zelevinskii in 1990 [25]. Their structures appeared more
or less naturally in various domains of mathematical physics and data
processing. The application of ternary algebra in supersymmetry is pre-
sented in [27] and in Yang-Baxter equation in [33]. Cubic analogue of
Laplace and d’alembert equations have been considered for the first time
by Himbert in [19, 27].

Let A be a linear space over a complex field equipped with a mapping
[ ] : A × A × A → A (ternary product) with (x, y, z) → [xyz] that
is linear in variables x, y, z and satisfies the associative identity, i.e.,
[[xyz] vw] = [x [yzv]w] = [xy [zvw]] for all x, y, z, v, w ∈ A. The pair
(A, [ ]) is called a ternary algebra. The ternary algebra (A, [ ]) is
called unital if it has an identity element, i.e. an element e ∈ A such
that [eex] = [xee] = x for every x ∈ A. A ∗-ternary algebra is a
ternary algebra together with a mapping x → x∗ from A into A which
satisfies (x∗)∗ = x, (αx+ βy)∗ = αx∗+βy∗ and [xyz]∗ = [z∗y∗x∗] for all
x, y, z ∈ A and α, β ∈ C. In the case that A is unital and e is its unit,
we assume that e∗ = e.

If A is a ternary algebra and there exists a norm ‖.‖ on A which sat-
isfies ‖[xyz]‖ ≤ ‖x‖ ‖y‖ ‖z‖ for all x, y, z ∈ A, then A is called a normed
ternary algebra. If A is a unital ternary algebra with unit element e
then ‖e‖ = 1. By a Banach ternary algebra, we mean a normed ternary
algebra with a complete norm ‖.‖ . If A is a ternary algebra, x ∈ A is
called central if [xyz] = [zxy] = [yzx] for all y, z ∈ A. The set of central
elements of A is called the center of A and is shown by Z (A). If A is
∗-normed ternary algebra and Z (A) = 0, then we have ‖x∗‖ = ‖x‖ .

By a non-Archimedean Banach ternary algebra, we mean a com-
plete non-Archimedean vector spaces A equipped with a ternary product
(x, y, z) → [xyz] of A3 into A which is K-Linear in each variables and
associative in the sense that [xy [zvw]] = [x [yzv]w] = [[xyz] vw] and
satisfies ‖[xyz]‖ ≤ ‖x‖ ‖y‖ ‖z‖ for x, y, z, v, w ∈ A. A non-Archimedean
C∗ternary algebra is a non-Archimedean Banach ∗-ternary algebra A if
‖[x∗yx]‖ = ‖x‖2 ‖y‖ for all x ∈ A and y ∈ Z (A).

Eshaghi and et. al. [11] introduced the concept of partial ternary
derivation and proved the Hyers-Ulam-Rassias stability of partial ternary
derivation in Banach ternary algebras. Recently, Arsalan and Inceboz
[4] established the Hyers-Ulam-Rassias stability of the partial ternary
derivation in Banach ternary algebras.

Definition 1.5. Let A be a ternary algebra and (A,P, T ) be a non-
Archimedean ℓ-fuzzy normed space. Then
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(i) (A,P, T , T ′) is called the non-Archimedean ℓ-fuzzy ternary
normed algebra if

P ([xyz] , stu) ≥L T ′(T ′ (P (x, s) ,P (y, t)) ,P (z, u)
)
,

for all x, y, z ∈ A and all positive real numbers s, t and u.
(ii) A complete ternary non-Archimedean ℓ-fuzzy normed algebra

is called a ternary non-Archimedean ℓ-fuzzy Banach algebra.

Let A1, . . . ,An be normed ternary algebras over the complex field C
and let B be the Banach ternary algebra over C. The mapping Dk is
called k − th a partial ternary cubic ∗-derivation if

2Dk(x1, x2, x3, . . . , xk + yk, . . . , xn) + 2Dk (x1, x2, x3, . . . , xk − yk, . . . , xn)

= Dk (x1, x2, x3, . . . , 2xk + yk, . . . , xn)

+Dk (x1, x2, x3, . . . , 2xk − yk, ..., xn)

− 12Dk (x1, x2, x3, . . . , xk, . . . , xn) ,

and also there exists a mapping πk : Ak → B such that

Dk (x1, . . . , [akbkck] , . . . , xn) = [πk (ak)πk (bk)Dk (x1, . . . , ck, . . . , xn)]

+ [πk(ak)Dk (x1, . . . , bk, . . . , xn)πk(ck)]

+ [Dk (x1, . . . , ak, . . . , xn)πk(bk)πk(ck)] ,

and
Dk (x1, . . . , a

∗
k, . . . , xn) = (Dk (x1, . . . , ak, . . . , xn))

∗ ,

for all ak, bk, ck ∈ Ak, xi ∈ Ai(i 6= k).
In 2002, Jun and Kim [23] introduced the following functional equa-

tion

f (2x+ y) + f (2x− y) = 2 (f (x+ y) + f (x− y)) + 12f (x) ,

and established the general solution and the Hyers-Ulam stability for it
(see also [34]). This functional equation is called cubic functional equa-
tion and every solution of cubic equation is said to be a cubic function.
Obviously, the function f(x) = x3 satisfies this functional equation.

In this paper, we prove the Hyers-Ulam-Rassias stability of k − th
partial ternary cubic derivations on non-Archimedean ℓ-fuzzy Banach
ternary algebras and non-Archimedean ℓ-fuzzy C∗-ternary algebras.

2. Stability of Partial Ternary Cubic Derivation on
Non-Archimedean ℓ-fuzzy Banach Ternary Algebras

Let K be a non-Archimedean field, X be a vector space over K and
(X ,P, T ) be a non-Archimedean ℓ-fuzzy Banach space over K. Let Ψi
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be an ℓ-fuzzy set on X × X × X × [0,∞) such that Ψi(x, y, z, .) is non-
decreasing, i.e.,

Ψi (cx, cx, cx, t) ≥L Ψi

(
x, x, x,

t

|c|

)
,

and
lim
t→∞

Ψi (x, y, z, t) = 1ℓ,

for all i = 1, 2, , 3, . . . , n, x, y, z ∈ X , t > 0 and c 6= 0.

Theorem 2.1. Let Gk : A1 × . . .×An → B be a mapping with
Gk (x1, . . . , 0k, . . . , xn) = 0B. Assume that there exists an ℓ-fuzzy set Ψk

on A1×A2×A3× [0,∞) such that for some α ∈ (0,∞) and some integer
λ ≥ 2 with

∣∣2λ∣∣ < α which |2| 6= 0, we have

(2.1) Ψk

(
2−λxk, 2

−λyk, 2
−λzk, t

)
≥L Ψk (xk, yk, zk, αt) ,

and

(2.2) lim
l→∞

T ∞
j=lM

(
xk,

αj

|2|λj
t

)
= 1ℓ,

for all xk, yk, zk ∈ Ak and t > 0. Also assume that there exists a cubic
mapping πk : Ak → B satisfying

P
(
Gk (x1, . . . , 2ak + bk, . . . , xn) + Gk (x1, . . . , 2ak − bk, . . . , xn)

(2.3)

− 2Gk (x1, . . . , ak + bk, . . . , xn)− 2Gk (x1, . . . , ak − bk, . . . , xn)

− 12Gk (x1, . . . , ak, . . . , xn) , t
)

≥L Ψk (ak, bk, 0k, t) ,

and

P
(
Gk (x1, . . . , [akbkck] , . . . , xn)− [πk(ak)πk(bk)Gk (x1, . . . , ck, . . . , xn)]

(2.4)

− [πk(ak)Gk (x1, . . . , bk, . . . , xn)πk(ck)]

+ [Gk (x1, . . . , ak, . . . , xn)πk(bk)πk(ck)] , t
)

≥L Ψk (ak, bk, ck, t) ,

for all ak, bk, ck ∈ Ak, xi ∈ Ai(i 6= k) and t > 0. Then there exists a
unique k-th partial cubic derivation Dk : A1 × · · · × An → B such that

P (Gk (x1, . . . , xk, . . . , xn)−Dk (x1, . . . , xk, . . . , xn) , t)(2.5)
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≥L T ∞
j=1M

(
xk,

αj+1

|2|λj
t

)
,

for all xi ∈ Ai and t > 0 where
M (xk, t) := T

(
Ψk (xk, 0k, 0k, t) ,Ψk (2xk, 0k, 0k, t) , . . . ,Ψk

(
2λ−1xk, 0k, 0k, t

))
,

for all xk ∈ Ak and t > 0.

Proof. One can use induction on j to show that

P
(
Gk

(
x1, . . . , 2

jxk, . . . , xn
)
− 23jGk (x1, . . . , xk, . . . , xn) , t

)(2.6)

≥L Mj (xk, t)

= T
(
Ψk (xk, 0k, 0k, t) ,Ψk (2xk, 0k, 0k, t) , . . . ,Ψk

(
2j−1xk, 0k, 0k, t

))
,

for all xi ∈ Ai, t > 0. Replacing ak = xk and bk = 0k in (2.3), we have
P (2Gk (x1, . . . , 2xk, . . . , xn)− 16Gk (x1, . . . , xk, . . . , xn) , t)

≥L Ψk (xk, 0k, 0k, t) ,

for all xi ∈ Ai and t > 0. Hence
P (Gk (x1, . . . , 2xk, . . . , xn)− 8Gk (x1, . . . , xk, . . . , xn) , t)

≥L Ψk (xk, 0k, 0k, 2t)

≥L Ψk (xk, 0k, 0k, t) ,

for all xi ∈ Ai and t > 0. This proves (2.6) for j = 1. Let (2.6) holds
for some j > 1. Substituting ak by 2jxk and bk by 0k in (2.3), we get

P
(
Gk

(
x1, . . . , 2

j+1xk, . . . , xn
)
− 8Gk

(
x1, . . . , 2

jxk, . . . , xn
)
, t
)

≥L Ψk

(
2jxk, 0k, 0k, t

)
,

for all xi ∈ Ai and t > 0. Since |8| ≤ 1, it follows that

P
(
Gk

(
x1, . . . , 2

j+1xk, . . . , xn
)
− 23(j+1)Gk (x1, . . . , xk, . . . , xn) , t

)
≥L T

(
P
(
Gk

(
x1, . . . , 2

j+1xk, . . . , xn
)
− 23Gk

(
x1, . . . , 2

jxk, . . . , xn
)
, t
)

, 23P
(
Gk

(
x1, . . . , 2

j+1xk, . . . , xn
)
− 23(j+1)Gk (x1, . . . , xk, . . . , xn) , t

))
= T

(
P
(
Gk

(
x1, . . . , 2

j+1xk, . . . , xn
)
− 23Gk

(
x1, . . . , 2

jxk, . . . , xn
)
, t
)

,P
(
Gk

(
x1, . . . , 2

jxk, . . . , xn
)
− 23jGk (x1, . . . , xk, . . . , xn) ,

t

|8|

))
≥L T

(
P
(
Gk

(
x1, . . . , 2

j+1xk, . . . , xn
)
− 23Gk

(
x1, . . . , 2

jxk, . . . , xn
)
, t
)
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,P
(
Gk

(
x1, . . . , 2

jxk, . . . , xn
)
− 23jGk (x1, . . . , xk, . . . , xn) , t

) )
≥L T

(
Ψk

(
2jxk, 0k, 0k, t

)
,Mj (xk, t)

)
= Mj+1 (xk, t) ,

for all xi ∈ Ai and t > 0. Therefore (2.6) holds for all j ∈ N. In
particular, we have

P
(
Gk

(
x1, . . . , 2

λxk, . . . , xn

)
− 23λGk (x1, . . . , xk, . . . , xn) , t

)
(2.7)

≥L M (xk, t) ,

for all xi ∈ Ai and t > 0. Replacing xk by 2−λ(l+1)xk in (2.7) and using
(2.1), we obtain

P
(
Gk

(
x1, . . . ,

xk
2λλ

, . . . , xn

)
− 23λGk

(
x1, . . . ,

xk
2λ(l+1)

, . . . , xn

)
, t
)(2.8)

≥L M
(
xk, α

l+1t
)
,

for all xi ∈ Ai, t > 0 and l ≥ 0. The above relation implies that

P
((

23λ
)l Gk

(
x1, . . . ,

xk

2λl
, . . . , xn

)
−
(
23λ
)l+1 Gk

(
x1, . . . ,

xk

2λ(l+1)
, . . . , xn

)
, t
)

≥L M

(
xk,

αl+1

|(23λ)l|
t

)
≥L M

(
xk,

αl+1

|(2λ)l|
t

)
,

for all xi ∈ Ai, t > 0 and l ≥ 0. Therefore

P
((

23λ
)l Gk

(
x1, ...,

xk

2λl
, . . . , xn

)
−
(
23λ
)l+p Gk

(
x1, . . . ,

xk

2λ(l+p)
, . . . , xn

)
, t
)

≥L T l+p
j=l

((
23λ
)j Gk

(
x1, . . . ,

xk

2λj
, . . . , xn

)
−
(
23λ
)j+p Gk

(
x1, . . . ,

xk

2λ(j+p)
, . . . , xn

)
, t

)

≥L T l+p
j=l M

xk,
αj+1∣∣∣(2λ)j∣∣∣ t

 ,

for all xi ∈ Ai, t > 0 and l ≥ 0. Since lim
l→∞

T l+p
j=l M

(
xk,

αj+1

|(2λ)j| t
)
= 1ℓ,

for all xi ∈ Ai and t > 0, then the sequence{
(23λ)lGk

(
x1, . . . ,

xk
2λl

, . . . , xn

)}
,
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is Cauchy in the non-Archimedean ℓ-fuzzy Banach space (B,P, T ) . Hence,
we can define a mapping Dk : A1 × . . .×An → B such that
(2.9)

lim
l→∞

P
((

23λ
)l

Gk

(
x1, . . . ,

xk
2λl

, . . . , xn

)
−Dk (x1, . . . , xk, . . . , xn) , t

)
= 1ℓ,

for all xi ∈ Ai and t > 0. For each l ≥ 1,xi ∈ Ai and t > 0, we get

P
(
Gk (x1, . . . , ak, . . . , xn)− 23λlGk

(
x1, . . . ,

ak
2λl

, . . . , xn

)
, t
)

= P

(
l−1∑
j=0

23λjGk

(
x1, . . . ,

ak
2λl

, . . . , xn

)

− 23λ(j+1)Gk

(
x1, . . . ,

ak
2λ(j+1)

, . . . , xn

)
, t

)

≥L T l−1
j=0

(
P

(
23λjGk

(
x1, . . . ,

ak
2λl

, . . . , xn

)
− 23λ(j+1)Gk

(
x1, . . . ,

ak
2λ(j+1)

, . . . , xn

)
, t

))

≥L T l−1
j=0M

(
xk,

αj+1

|2λ|j
t

)
,

and so

P
(
Gk (x1, . . . , ak, . . . , xn)−Dk (x1, . . . , ak, . . . , xn) , t

)(2.10)

≥L T
(
P
(
Gk (x1, . . . , ak, . . . , xn)− 23λlGk

(
x1, . . . ,

ak
2λl

, . . . , xn

)
, t
)

,P
(
23λlGk

(
x1, . . . ,

ak
2λl

, . . . , xn

)
−Dk (x1, . . . , ak, . . . , xn) , t

))
≥L T

(
T l−1
j=0M

(
xk,

αj+1

|2λ|j
t

)
,P
(
23λlGk

(
x1, . . . ,

ak
2λl

, . . . , xn

)
−Dk (x1, . . . , ak, . . . , xn) , t

))
.

By taking limit as l → ∞ in (2.10), we obtain

P (Gk (x1, . . . , xk, . . . , xn)−Dk (x1, . . . , xk, . . . , xn) , t)

≥L T ∞
j=1M

(
xk,

αj+1

|2|λj
t

)
,
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for all xi ∈ Ai and t > 0. Now, replacing ak, bk, ck with 2−λlak, 2
−λlbk,

2−λlck, respectively, in (2.4), we obtain

P

(
Gk

(
x1, . . . ,

[akbkck]

23λl
, . . . , xn

)
−
[
πk(ak)

23λl
πkbk
23λl

Gk

(
x1, . . . ,

ck
2λl

, . . . , xn

)]
−
[
πk(ak)

23λl
Dk

(
x1, . . . ,

bk
2λl

, . . . , xn

)
πk(ck)

23λl

]
−
[
Dk

(
x1, . . . ,

ak
2λl

, . . . , xn

) πk(bk)

23λl
πk(ck)

23λl

]
, t

)

≥L Ψk

(
ak
2λl

,
bk
2λl

,
ck
2λl

, t

)
,

for all ak, bk, ck ∈ Ak, xi ∈ Ai(i 6= k) and t > 0. Hence

P

(
29λlGk

(
x1, . . . ,

[akbkck]

23λl
, . . . , xn

)
− 29λl

[
πk (ak)

23λl
πk (bk)

23λl
Gk

(
x1, . . . ,

ck
2λl

, . . . , xn

)]
− 29λl

[
πk (ak)

23λl
Dk

(
x1, . . . ,

bk
2λl

, . . . , xn

)
πk (ck)

23λl

]
− 29λm

[
Dk

(
x1, . . . ,

ak
2λl

, . . . , xn

) πk (bk)

23λl
πk (ck)

23λl

]
, t

)

≥L Ψk

(
ak
2λl

,
bk
2λl

,
ck
2λl

,
t

|2|9λl

)

≥L Ψk

(
ak, bk, ck,

αl

|2|λl
t

)
,

for all ak, bk, ck ∈ Ak, xi ∈ Ai(i 6= k) and t > 0.

By lim
l→∞

Ψk(ak, bk, ck,
αl

|2|λl
t) = 1ℓ, we get

Dk (x1, . . . , [akbkck] , . . . , xn) = [πk (ak)πk (bk)Dk (x1, . . . , ck, . . . , xn)]

+ [πk (ak)Dk (x1, . . . , bk, . . . , xn)πk (ck)]

+ [Dk (x1, . . . , ak, . . . , xn)πk (bk)πk (ck)] ,

for all ak, bk, ck ∈ Ak, xi ∈ Ai(i 6= k). As T is continuous, form a well
known result in ℓ-fuzzy (probabilistic) normed spaces [40], it follows that

lim
l→∞

P

(
8λlGk

(
x1, . . . , 2

−λl(2ak + bk), . . . , xn

)
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+
(
8λlGk

(
x1, . . . , 2

−λl(2ak − bk), . . . , xn

))
− 2

(
8λlGk

(
x1, ..., 2

−λl(ak + bk), . . . , xn

))
− 2

(
8λlGk

(
x1, . . . , 2

−λl(ak − bk), . . . , xn

))
− 12

(
8λlGk

(
x1, . . . , 2

−λlak, . . . , xn

))
, t

)
= P

(
Dk (x1, . . . , (2ak + bk), . . . , xn)

+Dk (x1, . . . , (2ak − bk), . . . , xn)

− 2Dk (x1, . . . , (ak + bk), . . . , xn)

− 2Dk (x1, . . . , (ak − bk), . . . , xn)

− 12Dk (x1, . . . , ak, . . . , xn) , t
)
,

for all ak, bk ∈ Ak, xi ∈ Ai(i 6= k, i = 1, 2, ..., n) and t > 0. Replacing
ak, bk by 2−λlak, 2

−λlbk in (2.3) and by (2.1), we get

P
(
8λlDk

(
x1, . . . , 2

−λl(2ak + bk), . . . , xn

)
+
(
8λlDk

(
x1, . . . , 2

−λl(2ak − bk), . . . , xn

)))
− 2

(
8λlDk

(
x1, . . . , 2

−λl(ak + bk), . . . , xn

))
− 2

(
8λlDk

(
x1, . . . , 2

−λl(ak − bk), ..., xn

))
− 12

(
8λlDk

(
x1, . . . , 2

−λlak, . . . , xn

))
, t
)

≥L Ψk

(
2−λlak, 2

−λlbk, 0k, t
)

≥L Ψk

(
ak, bk, 0k,

αl

|2λ|l
t

)
,

for all ak, bk ∈ Ak, xi ∈ Ai(i 6= k, i = 1, 2, . . . , n) and t > 0. Since

lim
l→∞

Ψk

(
ak, bk, 0k,

αl

|2λ|l
t

)
= 1ℓ, we infer that D is a cubic mapping

with respect to the k − th variable.
For the uniqueness of D, let D′

k : A1× . . .×An → B be another k− th
partial ternary cubic derivation such that

P
(
Gk (x1, . . . , xk, . . . , xn)−D′

k (x1, . . . , xk, . . . , xn) , t
)

(2.11)

≥L T ∞
j=1M

(
xk,

αj+1

|2|λj
t

)
,
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for all xi ∈ Ai and t > 0. Then for each l = 1, 2, . . . , xi ∈ Ai and t > 0,
we have

P
(
Dk (x1, . . . , xk, . . . , xn)−D′

k (x1, . . . , xk, . . . , xn) , t
)

≥L T

(
P
(
Dk (x1, . . . , xk, . . . , xn)− 23λlGk

(
x1, . . . ,

xk
2λl

, . . . , xn

)
, t
)

,P
(
23λlGk

(
x1, . . . ,

xk
2λl

, . . . , xn

)
−D′

k (x1, . . . , xk, . . . , xn) , t
))

,

for all xi ∈ Ai and t > 0. From (2.9), we conclude that Dk = D′
k. This

completes the proof. □

Corollary 2.2. Let (X ,P, T ) be a non-Archimedean ℓ-fuzzy Banach
space over K under a t-norm Hadžić-type (T ∈ H). Let Gk : A1 × . . .×
An → B be a mapping with Gk (x1, . . . , 0k, . . . , xn) = 0B. Assume that
there exists an ℓ-fuzzy set Ψk on A1×A2×A3×[0,∞) satisfying (2.1) and
(2.2) for some α ∈ (0,∞) and some integer λ ≥ 2 with

∣∣2λ∣∣ < α which
|2| 6= 0 . Also assume that there exists a cubic mapping πk : Ak → B
satisfying (2.3) and (2.4). Then there exists a unique k-th partial cubic
derivation Dk : A1 × . . .×An → B such that

P (Gk (x1, . . . , xk, . . . , xn)−Dk (x1, . . . , xk, . . . , xn) , t)

≥ℓ T ∞
j=1M

(
xk,

αj+1

|2|λj
t

)
,

for all xi ∈ Ai and t > 0 where
M(xk, t := T

(
Ψk (xk, 0k, 0k, t) ,Ψk (2xk, 0k, 0k, t) , . . . ,Ψk

(
2λ−1xk, 0k, 0k, t

))
,

for all xk ∈ Ak and t > 0.

Proof. Since

lim
n→∞

M

(
x,

αj+1

|2|λj
t

)
= 1ℓ,

for all xk ∈ Ak, t > 0 and T is of Hadžić-type, it follows from Proposition
1.1 that

lim
n→∞

T ∞
j=nM

(
x,

αj+1

|2|λj
t

)
= 1ℓ,

for all xk ∈ Ak and t > 0. Now, we get the conclusion by applying
Theorem 2.1. □

Similarly, we can obtain the following theorem.
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Theorem 2.3. Let Gk : A1 × ...×An → B be a mapping with

Gk (x1, . . . , 0k, . . . , xn) = 0B.

Assume that there exists an ℓ-fuzzy set Ψk on A1 × A2 × A3 × [0,∞)
such that for some α ∈ (0,∞) and for some integer λ ≥ 2 with 1

|2|6λ
< α

which |2| 6= 0, satisfies

(2.12) Ψ
(
2λxk, 2

λyk, 2
λzk, t

)
≥ℓ Ψk

(
xk, yk, zk,

α

|2|3λ
t

)
,

and

(2.13) lim
n→∞

T ∞
j=nM

(
x, αjt

)
= 1ℓ,

for all xk, yk, zk ∈ Ak and t > 0. Also assume that there exists a cubic
mapping πk : Ak → B satisfying (2.3) and (2.4) for all ak, bk, ck ∈
Ak, xi ∈ Ai(i 6= k) and t > 0. Then there exists a unique k-th partial
cubic derivation Dk : A1 × · · · × An → B such that

P (Gk (x1, . . . , xk, . . . , xn)−Dk (x1, . . . , xk, . . . , xn) , t)(2.14)
≥L T ∞

j=1M
(
xk, α

j+1t
)
,

for all xi ∈ Ai and t > 0, where

M(xk, t) := T
(
Ψk

(xk

2
, 0k, 0k, t

)
,Ψk

(xk

4
, 0k, 0k, t

)
, . . . ,Ψk

(xk

2λ
, 0k, 0k, t

))
,

for all xk ∈ Ak and t > 0.

Proof. Replacing xk by xk
2 in (2.7), we obtain

P
(

1

23λ
Gk (x1, . . . , xk, . . . , xn)− 23λGk

(
x1, . . . ,

xk
2λ

, . . . , xn

)
, t

)
(2.15)

≥L T
(
Ψk

(xk
2
, 0k, 0k, |2|3λ t

)
,Ψk

(xk
4
, 0k, 0k, |2|3λt

)
, . . . ,Ψk

(xk
2λ

, 0k, 0k, |2|3λ t
))

= M
(
xk, |2|3λ t

)
.

Replacing xk by 2λ(l+1)xk in (2.15) and using (2.12), we have

P
(

1

23λ
Gk

(
x1, . . . , 2

λ(l+1)xk, . . . , xn

)
− Gk

(
x1, . . . , 2

λlxk, . . . , xn

)
, t

)
≥L T

(
Ψk

(xk
2
, 0k, 0k, |2|3λ t

)
,Ψk(

xk
4
, 0k, 0k, |2|3λ t)

, . . . ,Ψk

(xk
2λ

, 0k, 0k, |2|3λ t
))
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= M

(
xk,

αl+1

|2|3λl
t

)
,

for all xi ∈ Ai, t > 0 and l ≥ 0. Then, we have

P
( 1

23λ(l+1)
Gk

(
x1, . . . , 2

λ(l+1)xk, . . . , xn

)
− 1

23λl
Gk

(
x1, . . . , 2

λlxk, . . . , xn

)
, t
)

≥L M
(
xk, α

l+1t
)
,

for all xi ∈ Ai, t > 0 and l ≥ 0. Hence

P
(

1

23λ(l+1)
Gk

(
x1, . . . , 2

λ(l+1)xk, . . . , xn

)
− 1

23λl
Gk

(
x1, . . . , 2

λlxk, . . . , xn

)
, t

)
≥L T l+p

j=l P
(

1

23λ(p+j)
Gk

(
x1, . . . , 2

λ(p+j)xk, . . . , xn

)
− 1

23λj
Gk

(
x1, . . . , 2

λjxk, . . . , xn

)
, t

)
≥L T l+p

j=l M
(
xk, α

j+1t
)
.

By (2.13), the sequence
{

1
23λl

Gk

(
x1, . . . , 2

λlxk, . . . , xn
)}

l∈N is Cauchy
in B and by the completeness of B, this sequence is convergent. Hence,
we can define the mapping Dk : A1 × · · · × An → B by

lim
l→∞

P
(

1

23λl
Gk

(
x1, . . . , 2

λlxk, . . . , xn

)
−Dk (x1, . . . , xk, . . . , xn) , t

)
= 1ℓ,

for all xi ∈ Ai and t > 0. The rest of the proof is similar to the proof of
Theorem 2.1. □

3. Stability of Partial Ternary Cubic ∗-Derivation on
Non-Archimedean ℓ-Fuzzy C∗-Ternary Algebras

A complex non-Archimedean ℓ-fuzzy ∗-Banach algebra (B,P, T , T ′),
which has a ternary product (x, y, z) 7→ [x, y, z] of B3 into B is a non-
Archimedean ℓ-fuzzy C∗-ternary algebra if the product is linear on each
variable and

(i) [x, y, [z, u, v]] = [a, [u, z, y] , v] = [[x, y, z] , u, v] ;
(ii) ‖[x, y, z]‖ ≤ ‖x‖ ‖y‖ ‖z‖ ;
(iii) ‖[x, x, x]‖ = ‖x‖3 ,

for all x, y, z, u, v ∈ B.
If (B,P, T , T ′) has the element e so that x = [x, e, e] = [e, e, x] for

all x ∈ B, then e is called the unite element of the non-Archimedean
ℓ-fuzzy C∗-ternary algebra. If for x ∈ B, we have [e, x, e] = x∗, then ∗ is
an involution on the C∗-ternary algebra.

In this section, assume that A1,A2, ...,An are non-Archimedean ℓ-
fuzzy ∗-normed ternary algebras over C, and B is a non-Archimedean
ℓ-fuzzy Banach C∗-ternary algebra.
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Theorem 3.1. Let Gk : A1 × · · · × An → B be a mapping with
Gk(x1, . . . , 0k, . . . , xn) = 0B.

Suppose that there exists an ℓ-fuzzy set Ψk on Ak×Ak×Ak× [0,∞) and
a cubic mapping πk : Ak → B such that (2.1)-(2.4) hold. Also assume
that

P (Gk (x1, . . . , a
∗
k, . . . , xn)− Gk (x1, . . . , ak, . . . , xn)

∗ , t)

≥L Ψk (ak, 0k, 0k, t) ,

for all ak ∈ Ak, xi ∈ Ai(i 6= k) and t > 0. Then there exists a unique
k-th partial cubic ∗-derivation Dk : A1 × . . .×An → B such that

P (Gk (x1, . . . , xk, . . . , xn)−Dk (x1, . . . , xk, . . . , xn) , t)

≥L T ∞
j=1M

(
xk,

αj+1

|2|λj
t

)
,

for all xi ∈ Ai and t > 0 where
M(xk, t) := T

(
Ψk (xk, 0k, 0k, t) ,Ψk (2xk, 0k, 0k, t) , . . . ,Ψk

(
2λ−1xk, 0k, 0k, t

))
for all xk ∈ Ak and t > 0.

Proof. By a similar argument to that used the proof of theorem 2.1, there
exists a unique k−th partial ternary cubic derivation Dk : A1×...×An →
B which satisfy (2.5), and

lim
l→∞

P
((

23λ
)l

Gk

(
x1, . . . ,

xk
2λm

, . . . , xn

)
−Dk (x1, . . . , xk, . . . , xn) , t

)
= 1ℓ,

for all xi ∈ Ai and t > 0. So, we have
P (Dk (x1, . . . , a

∗
k, . . . , xn)−Dk (x1, . . . , ak, . . . , xn)

∗ , t)

= lim
l→∞

P
((

23λ
)l

Gk

(
x1, . . . ,

x∗k
2λm

, . . . , xn

)
−
(
23λ
)l

Gk

(
x1, . . . ,

xk
2λl

, . . . , xn

)∗
, t

)
= lim

l→∞
P
((

23λ
)l

Gk

(
x1, . . . ,

( xk
2λl

)∗
, . . . , xn

)
−
(
23λ
)l

Gk

(
x1, . . . ,

xk
2λl

, . . . , xn

)∗
, t

)
≥L lim

l→∞
Ψk

(
ak, 0k, 0k,

αl

|2λ|l
t

)
= 1ℓ,
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for all xk ∈ Ak, xi ∈ Ai(i 6= k) and t > 0. □

Corollary 3.2. Let (X ,P, T ) be a non-Archimedean ℓ-fuzzy Banach
space over K under a t-norm Hadžić-type (T ∈ H). Let Gk : A1 × · · · ×
An → B be a mapping with Gk (x1, . . . , 0k, . . . , xn) = 0B. Suppose that
there exists an ℓ-fuzzy set Ψk on Ak × Ak × Ak × [0,∞) and a cubic
mapping πk : Ak → B such that (2.1)-(2.4) hold. Also assume that

P (Gk (x1, x2, x3, . . . , a
∗
k, . . . , xn)− Gk (x1, . . . , ak, . . . , xn)

∗ , t)

≥ℓ Ψk (ak, 0k, 0k, t)

for all ak ∈ Ak, xi ∈ Ai(i 6= k) and t > 0. Then there exists a unique
k-th partial cubic ∗-derivatio Dk : A1 × . . .×An → B such that

P (Gk (x1, . . . , xk, . . . , xn)−Dk (x1, . . . , xk, . . . , xn) , t)

≥ℓ T ∞
j=1M

(
xk,

αj+1

|2|aj
t

)
for all xi ∈ Ai and t > 0 where
M (xk, t) := T

(
Ψk (xk, 0k, 0k, t) ,Ψk (2xk, 0k, 0k, t) , . . . ,Ψk

(
2λ−1xk, 0k, 0k, t

))
for all xk ∈ Ak and t > 0.

Proof. we get the conclusion by applying Proposition 1.1 and Theorem
3.1. □
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