Nearly k-th Partial Ternary Cubic *-Derivations On Non-Archimedean *l*-Fuzzy *C**-Ternary Algebras

Mohammad Ali Abolfathi

Sahand Communications in Mathematical Analysis

Print ISSN: 2322-5807 Online ISSN: 2423-3900 Volume: 19 Number: 3 Pages: 13-33

Sahand Commun. Math. Anal. DOI: 10.22130/scma.2021.543926.1026 Volume 19, No. 3, September 2022

Print ISSN 2322-5807 Online ISSN 2423-3900

Sahand Communications

in

Mathematical Analysis

SCMA, P. O. Box 55181-83111, Maragheh, Iran http://scma.maragheh.ac.ir

Sahand Communications in Mathematical Analysis (SCMA) Vol. 19 No. 3 (2022), 13-33 http://scma.maragheh.ac.ir DOI: 10.22130/scma.2021.543926.1026

Nearly k - th Partial Ternary Cubic *-Derivations On Non-Archimedean ℓ -Fuzzy C^* -Ternary Algebras

Mohammad Ali Abolfathi

ABSTRACT. In this paper, we investigate approximations of the k-th partial ternary cubic derivations on non-Archimedean ℓ -fuzzy Banach ternary algebras and non-Archimedean ℓ -fuzzy C^* -ternary algebras. First, we study non-Archimedean and ℓ -fuzzy spaces, and then prove the stability of partial ternary cubic *-derivations on non-Archimedean ℓ -fuzzy C^* -ternary algebras. We therefore provide a link among different disciplines: fuzzy set theory, lattice theory, non-Archimedean spaces, and mathematical analysis.

1. INTRODUCTION

A classical equation in the theory of functional equations is the following: "when is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation?". If the problem accepts a solution, we say that the equation is stable. The first problem concerning group homomorphisms was raised by Ulam [43] in 1940. In the next year, Hyers [21] gave the first affirmative answer to the question of Ulam in context of Banach spaces. Subsequently, the result of Hyers was generalized by Aoki [3] for additive mappings and Rassias [35] proved a generalization of the Hayers' theorem for linear mappings by considering an unbounded Cauchy difference. Furthermore, in 1994, Găvrua[12] provided a further generalization of Rassias' theorem in which he replaced the bound $\varepsilon(||x||^p + ||y||^p)$ by a general control function $\varphi(x, y)$. Recently, several stability results have been obtained for various equations and mappings with more general

²⁰²⁰ Mathematics Subject Classification. 39B52, 46L05, 47B48.

Key words and phrases. Partial ternary derivation, Cubic derivation, Non-Archimedean ℓ -fuzzy algebra, C^* -ternary algebra, Hyers-Ulam-Rasias stability.

Received: 29 November 2021, Accepted: 04 April 2022.

domains and ranges by a number of authors [9, 20, 23, 31, 32]. We also refer the readers to books [7, 22, 36].

In 1897, Hensel [18] discovered the p-adic numbers as a number theoretical analogue of power series in complex analysis. The most important examples of non-Archimedean spaces are *p*-adic numbers. A key property of *p*-adic numbers is that they do not satisfy the Archimedean axiom: for all x, y > 0, there exists an integer n such that x < ny. During the last three decades, the theory of non-Archimedean spaces has gained the interest of physicists for their research, in particular the problems that coming from quantum physics, *p*-adic strings and superstrings [28]. Although many results in the classical normed space theory have a non-Archimedean counterpart, their proofs are essentially different and require an entirely new kind of intuition. One may note that for $|n| \leq 1$ in each valuation field, every triangle is isosceles and there many be no unit vector in a non-Archimedean normed space. These facts show that the non-Archimedean framework is of special interest. It turned out that non-Archimedean spaces have many nice applications [15, 37, 42].

Let \mathbb{K} be a field. A non-Archimedean absolute value on \mathbb{K} is a function (valuation) $|.|: \mathbb{K} \to \mathbb{R}$ such that, for any $a, b \in \mathbb{K}$, $|a| \ge 0$ and equality holds if and only if a = 0, |ab| = |a| |b|, $|a + b| \le \max\{|a|, |b|\}$ (the strict triangle inequality). Note that |1| = |-1| = 1 and $|n| \le 1$ for each integer n. A trivial example of a non-Archimedean valuation is the functional |.| taking everything except for 0 into 1 and |0| = 0. We always assume, in addition, that |.| is non-trivial, i.e., there exists an $a_0 \in \mathbb{K}$ such that $|a_0| \notin \{0, 1\}$.

Let \mathcal{X} be a linear space over a scalar field \mathbb{K} with a non-Archimedean nontrivial valuation |.|. A $|| . || : \mathcal{X} \to \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions: ||x|| = 0 if and only if x = 0, ||rx|| = |r| ||x||, $||x + y|| \le \max\{||x|| ||y||\}$ (the strict triangle inequality (ultrametric) for all $x, y \in \mathcal{X}$. Then $(\mathcal{X}, || . ||)$ is called non-Archimedean normed space. From the fact that

$$||x_n - x_m|| \le \max\{||x_{i+1} - x_i|| : m \le i \le n - 1\}, (n > m).$$

holds, a sequence $\{x_n\}$ is a Cauchy if and only if $\{x_{n+1} - x_n\}$ converges to zero in a non-Archimedean normed space. By a complete non-Archimedean space, we mean one in which every Cauchy sequence is convergent.

Fix a prime number p. For any nonzero rational number x, there exists a unique integer n_x such that $x = \frac{a}{b}p^{n_x}$, where a and b are integers not divisible by p. Then $|x|_p := p^{-n_x}$ defines a non-Archimedean norm on \mathbb{Q} . The completion of \mathbb{Q} with respect to the metric $d(x, y) = |x - y|_p$ is denoted by \mathbb{Q}_p , and it is called the p-adic number field. In fact \mathbb{Q}_p is the set of all formal series $x = \sum_{k\geq n}^{\infty} a^k p_k$, where $|a_k| \leq p-1$ are integers. The addition and multiplication between any two elements of \mathbb{Q}_p are defined naturally. The norm $\left|\sum_{k\geq n}^{\infty} a^k p_k\right|_p = p^{-n_x}$ is a non-Archimedean norm on \mathbb{Q}_p and it makes \mathbb{Q}_p a locally compact field [15, 37]. Note that if $p \geq 3$, then $|2^n|_p = 1$ for each integer n.

On the other hand, the theory of fuzzy sets was introduced firstly by Zadeh in 1965 [45]. Fuzzy set theory is a powerful hand set for modeling uncertainty and vagueness in various problems arising in the field of science and engineering. After the pioneering work of Zadeh, there has been a great effort to obtain fuzzy analogues of classical theories. Among other fields, a progressive development is made in the field of fuzzy topology [2, 6, 13, 24, 26, 29, 44]. Goguen in [14] generalized the notion of a fuzzy subset of \mathcal{X} to that of an ℓ -fuzzy subset, namely a function from \mathcal{X} to a lattice L. One of the problems in ℓ -fuzzy topology is to obtain an appropriate concept of ℓ -fuzzy metric spaces and ℓ -fuzzy normed spaces. Saadati and Park [39], introduced and studied a notion of intuitionistic fuzzy metric(normed) spaces and then Deschrijver et al. and Saadati generalized the concept of intuitionistic fuzzy metric(normed) spaces and introduced and studied a notion of ℓ -fuzzy metric spaces and ℓ fuzzy normed spaces [8, 38]. In 2009, Mirmostafaee and Moslehian [30], proved the stability of Cauchy functional equation in non-Archimedean fuzzy spaces in the spirit of Hyers-Ulam-Rassias-Găvrua. In 2010, Shakeri, Saadati and Park [41] investigated the classical quadratic functional equation and proved the generalized Hyers -Ulam stability in the context of non-Archimedean ℓ -fuzzy normed spaces, (see also [1, 10]).

A triangular norm (shortly, *t*-norm) is a binary operation $\mathcal{T}: [0,1] \times [0,1] \rightarrow [0,1]$ which is commutative, associative, monotone and has 1 as the unit element. Basic examples are the Lukasiewicz t-norm $\mathcal{T}_{\mathcal{L}}, \mathcal{T}_{\mathcal{L}}(x,y) = \max\{x+y-1,0\}$ for all $x, y \in [0,1]$ and the t-norms $\mathcal{T}_{\mathcal{M}}(x,y) = \min\{x,y\}, \mathcal{T}_{\mathcal{M}}(x,y) = xy$ and

$$\mathcal{T}_{\mathcal{D}}(x,y) = \begin{cases} \min\{x,y\}, & \text{if } \max\{x,y\} = 1, \\ 0, & \text{otherwise.} \end{cases}$$

A *t*-norm \mathcal{T} is said to be of Had $\check{z}i\acute{c}$ -type (we denote by $\mathcal{T} \in \mathcal{H}$) if the family $(x^n_{\mathcal{T}})_{n \in \mathbb{N}}$ is equicontinuous at x = 1, where is defined by

$$x_{\mathcal{T}}^{1} = x, \qquad x_{\mathcal{T}}^{n} = \mathcal{T}\left(x_{\mathcal{T}}^{n-1}, x\right),$$

for all $x \in [0, 1]$ and $n \ge 2$, [16].

A t-norm \mathcal{T} can be extended (by associativity) in a unique way to an *n*-ary operation taking, for all $(x_1, \ldots, x_n) \in [0, 1]^n$, the value $\mathcal{T}(x_1,\ldots,x_n)$ defined by

$$\mathcal{T}_{i=1}^{0}x_{i}=1, \qquad \mathcal{T}_{i=1}^{n}x_{i}=\mathcal{T}\left(\mathcal{T}_{i=1}^{n-1}x_{i}, x_{n}\right)=\mathcal{T}\left(x_{1}, \ldots, x_{n}\right).$$

The *t*-norm \mathcal{T} can also be extended to a countable operation taking, for any sequence $\{x_n\}_{n \in \mathbb{N}}$ in [0, 1], the value

$$\mathcal{T}_{i=1}^{\infty} x_i = \lim_{n \to \infty} \mathcal{T}_{i=1}^n x_i.$$

Proposition 1.1 ([17]). (1) For $\mathcal{T} \geq \mathcal{T}_{\mathcal{L}}$ the following implication holds:

$$\lim_{n \to \infty} \mathcal{T}_{i=1}^{\infty} x_{n+i} = 1 \quad \Leftrightarrow \quad \sum_{n=1}^{\infty} (1 - x_n) < \infty.$$

(2) If \mathcal{T} is of Hadžić-type, then

$$\lim_{n \to \infty} \mathcal{T}_{i=1}^{\infty} x_{n+i} = 1,$$

for every sequence $\{x_n\}_{n\in\mathbb{N}}$ in [0,1] such that $\lim_{n\to\infty} x_n = 1$.

Let $\ell = (L, \leq_L)$ be a complete lattice and let U be a nonempty set called the universe. An ℓ -fuzzy set in U is defined as a mapping A: $U \to L$. For each u in U, A(u) represents the degree (in L) to which uis an element of A.

A *t*-norm on $([0,1], \leq)$ can be straightforwardly extended to any lattice $\ell = (L, \leq_L)$. Let $\ell = (L, \leq_L)$ be a lattice. A *t*-norm on ℓ is a mapping $\mathcal{T} : L \times L \to L$ satisfying the following conditions:

- (i) $\mathcal{T}(x, 1_{\ell}) = x$ (boundary condition) $(x \in L);$
- (ii) $\mathcal{T}(x,y) = \mathcal{T}(y,x)$ (commutativity) $(x,y \in L);$
- (iii) $\mathcal{T}(x, \mathcal{T}(y, z)) = \mathcal{T}(\mathcal{T}(x, y), z)$ (associativity) $(x, y, z \in L);$
- (iv) $Ifx_1 \leq_L y_1$ and $x_2 \leq_L y_2$ then $\mathcal{T}(x_1, x_2) \leq_L \mathcal{T}(y_1, y_2)$ (monotonicity) $(x_1, x_2, y_1, y_2 \in L)$.

A *t*-norm T on ℓ is said to be continuous if, for any $x, y \in L$ and any sequences $\{x_n\}$ and $\{y_n\}$ which converge to x and y respectively,

$$\lim_{n \to \infty} \mathcal{T}(x_n, y_n) = \mathcal{T}(x, y) \,.$$

A t-norm \mathcal{T} can also be defined recursively as an (n + 1)-ary operation by $\mathcal{T}^1 = \mathcal{T}$ and

$$\mathcal{T}^{n}(x_{1},\ldots,x_{n+1})=\mathcal{T}\left(\mathcal{T}^{n-1}(x_{1},\ldots,x_{n}),x_{n+1}\right),$$

for all $n \geq 2$ and $x_i \in L$.

A negator on ℓ is any decreasing mapping $\mathcal{N} : L \to L$ satisfying $\mathcal{N}(0_{\ell}) = 1_{\ell}$ and $\mathcal{N}(1_{\ell}) = 0_{\ell}$. If $\mathcal{N}(\mathcal{N}(x)) = x$, for all $x \in L$, then \mathcal{N} is called a involutive negator. The negator \mathcal{N}_s on $([0,1], \leq)$ defined as $\mathcal{N}_s(x) = 1 - x$ for all $x \in [0,1]$ is called the standard negator on $([0,1], \leq)$. In this paper, the involutive negator \mathcal{N} is fixed.

Definition 1.2. A non-Archimedean ℓ -fuzzy normed space is a triple $(\mathcal{V}, \mathcal{P}, \mathcal{T})$, where \mathcal{V} is a vector space, \mathcal{T} is a continuous *t*-norm on *L* and \mathcal{P} is an ℓ -fuzzy set on $\mathcal{V} \times]0, +\infty[$ satisfying the following conditions: for all $x, y \in V$ and $t, s \in]0, +\infty[$,

- (i) $0_{\ell} <_L \mathcal{P}(x,t)$;
- (ii) $\mathcal{P}(x,t) = 1_{\ell}$ for all t > 0 if and only if x = 0;
- (iii) $\mathcal{P}(\alpha x, t) = \mathcal{P}\left(x, \frac{t}{|\alpha|}\right)$ for each $\alpha \neq 0$;
- (iv) $\mathcal{T}(\mathcal{P}(x,t),\mathcal{P}(y,s)) \leq_L \mathcal{P}(x+y,\max\{t,s\});$
- (v) $\mathcal{P}(x, .) :]o, +\infty[\rightarrow L \text{ is continuous.}$
- (vi) $\lim_{t\to 0} \mathcal{P}(x,t) = 0_{\ell}$ and $\lim_{t\to\infty} \mathcal{P}(x,t) = 1_{\ell}$.

In this case, \mathcal{P} is called an non-Archimedean ℓ -fuzzy norm. Let $(\mathcal{A}, \|.\|)$ be a non-Archimedean normed linear space and

$$\mathcal{P}(x,t) = \begin{cases} 0, & t \le ||x||, \\ 1, & t > ||x||. \end{cases}$$

Then, the triple $(\mathcal{A}, \mathcal{P}, \min)$ is a non-Archimedean ℓ -fuzzy normed space in which L = [0, 1].

A sequence $\{x_n\}_{n\in\mathbb{N}}$ in a non-Archimedean ℓ -fuzzy normed space $(\mathcal{V}, \mathcal{P}, \mathcal{T})$ is called a Cauchy sequence if, for each $\varepsilon \in L \setminus \{0_\ell\}$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that, for all $n, m \ge n_0, \mathcal{P}(x_n - x_m, t) >_L N(\varepsilon)$, where N is a negator on ℓ . A sequence $\{x_n\}_{n\in\mathbb{N}}$ is said to be convergent to $x \in \mathcal{V}$ in the non-Archimedean ℓ -fuzzy normed space $(\mathcal{V}, \mathcal{P}, \mathcal{T})$ which is denoted by $x_n \to x$ if $\mathcal{P}(x_n - x, t) \to 1_\ell$ where $n \to \infty$ for all t > 0. A non-Archimedean ℓ -fuzzy normed space $(\mathcal{V}, \mathcal{P}, \mathcal{T})$ is said be complete if and only if every Cauchy sequence in \mathcal{V} is convergent.

Definition 1.3. A non-Archimedean ℓ -fuzzy normed algebra $(\mathcal{A}, \mathcal{P}, \mathcal{T}, \mathcal{T}')$ is a non-Archimedean ℓ -fuzzy normed space $(\mathcal{A}, \mathcal{P}, \mathcal{T})$ with algebraic structure if

 $\mathcal{P}(xy,ts) \geq_{L} \mathcal{T}'(\mathcal{P}(x,t),\mathcal{P}(y,s)),$

for all $x, y \in \mathcal{A}$ and t, s > 0, in which \mathcal{T}' is a continuous t-norm.

Definition 1.4. Let $(\mathcal{A}, \mathcal{P}, \mathcal{T}, \mathcal{T}')$ be a non-Archimedean ℓ -fuzzy Banach algebra. An involution on \mathcal{A} is a mapping $x \to x^*$ from \mathcal{A} into \mathcal{A} satisfying the following conditions:

- (i) $x^{**} = x$ for all $x \in \mathcal{A}$,
- (ii) $(\alpha x + \beta y)^* = \overline{\alpha} x^* + \overline{\beta} y^*$ for all $x, y \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$,
- (iii) $(xy)^* = y^*x^*$ for all $x, y \in \mathcal{A}$.

If, in addition, $\mathcal{P}(x^*x, ts) = \mathcal{T}'(\mathcal{P}(x, t), \mathcal{P}(x, s))$ for all $x \in \mathcal{A}$ and t, s > 0, then \mathcal{A} is an non-Archimedean ℓ -fuzzy C^* -algebra.

Ternary algebraic operations have propounded originally in nineteenth century by several mathematicians such as Cayley [5] who introduced the notion of cubic matrix which in turn was generalized by Kapranov, Gelfand and Zelevinskii in 1990 [25]. Their structures appeared more or less naturally in various domains of mathematical physics and data processing. The application of ternary algebra in supersymmetry is presented in [27] and in Yang-Baxter equation in [33]. Cubic analogue of Laplace and d'alembert equations have been considered for the first time by Himbert in [19, 27].

Let \mathcal{A} be a linear space over a complex field equipped with a mapping $[]: \mathcal{A} \times \mathcal{A} \times \mathcal{A} \to \mathcal{A}$ (ternary product) with $(x, y, z) \to [xyz]$ that is linear in variables x, y, z and satisfies the associative identity, i.e., [[xyz]vw] = [x [yzv]w] = [xy [zvw]] for all $x, y, z, v, w \in \mathcal{A}$. The pair $(\mathcal{A}, [])$ is called a ternary algebra. The ternary algebra $(\mathcal{A}, [])$ is called unital if it has an identity element, i.e. an element $e \in \mathcal{A}$ such that [eex] = [xee] = x for every $x \in \mathcal{A}$. A *-ternary algebra is a ternary algebra together with a mapping $x \to x^*$ from \mathcal{A} into \mathcal{A} which satisfies $(x^*)^* = x, (\alpha x + \beta y)^* = \overline{\alpha}x^* + \overline{\beta}y^*$ and $[xyz]^* = [z^*y^*x^*]$ for all $x, y, z \in \mathcal{A}$ and $\alpha, \beta \in \mathbb{C}$. In the case that \mathcal{A} is unital and e is its unit, we assume that $e^* = e$.

If \mathcal{A} is a ternary algebra and there exists a norm $\|.\|$ on \mathcal{A} which satisfies $\|[xyz]\| \leq \|x\| \|y\| \|z\|$ for all $x, y, z \in \mathcal{A}$, then \mathcal{A} is called a normed ternary algebra. If \mathcal{A} is a unital ternary algebra with unit element ethen $\|e\| = 1$. By a Banach ternary algebra, we mean a normed ternary algebra with a complete norm $\|.\|$. If \mathcal{A} is a ternary algebra, $x \in \mathcal{A}$ is called central if [xyz] = [zxy] = [yzx] for all $y, z \in \mathcal{A}$. The set of central elements of \mathcal{A} is called the center of \mathcal{A} and is shown by $Z(\mathcal{A})$. If \mathcal{A} is *-normed ternary algebra and $Z(\mathcal{A}) = 0$, then we have $\|x^*\| = \|x\|$.

By a non-Archimedean Banach ternary algebra, we mean a complete non-Archimedean vector spaces \mathcal{A} equipped with a ternary product $(x, y, z) \rightarrow [xyz]$ of \mathcal{A}^3 into \mathcal{A} which is \mathbb{K} -Linear in each variables and associative in the sense that [xy[zvw]] = [x[yzv]w] = [[xyz]vw] and satisfies $||[xyz]|| \leq ||x|| ||y|| ||z||$ for $x, y, z, v, w \in \mathcal{A}$. A non-Archimedean C^* ternary algebra is a non-Archimedean Banach *-ternary algebra \mathcal{A} if $||[x^*yx]|| = ||x||^2 ||y||$ for all $x \in \mathcal{A}$ and $y \in Z(\mathcal{A})$.

Eshaghi and et. al. [11] introduced the concept of partial ternary derivation and proved the Hyers-Ulam-Rassias stability of partial ternary derivation in Banach ternary algebras. Recently, Arsalan and Inceboz [4] established the Hyers-Ulam-Rassias stability of the partial ternary derivation in Banach ternary algebras.

Definition 1.5. Let \mathcal{A} be a ternary algebra and $(\mathcal{A}, \mathcal{P}, \mathcal{T})$ be a non-Archimedean ℓ -fuzzy normed space. Then

(i) $(\mathcal{A}, \mathcal{P}, \mathcal{T}, \mathcal{T}')$ is called the non-Archimedean ℓ -fuzzy ternary normed algebra if

$$\mathcal{P}\left(\left[xyz\right],stu\right) \geq_{L} \mathcal{T}'\left(\mathcal{T}'\left(\mathcal{P}\left(x,s\right),\mathcal{P}\left(y,t\right)\right),\mathcal{P}\left(z,u\right)\right),$$

for all $x, y, z \in \mathcal{A}$ and all positive real numbers s, t and u.

 (ii) A complete ternary non-Archimedean ℓ-fuzzy normed algebra is called a ternary non-Archimedean ℓ-fuzzy Banach algebra.

Let $\mathcal{A}_1, \ldots, \mathcal{A}_n$ be normed ternary algebras over the complex field \mathbb{C} and let \mathcal{B} be the Banach ternary algebra over \mathbb{C} . The mapping \mathcal{D}_k is called k - th a partial ternary cubic *-derivation if

$$\begin{aligned} 2\mathcal{D}_k(x_1, x_2, x_3, \dots, x_k + y_k, \dots, x_n) + 2\mathcal{D}_k(x_1, x_2, x_3, \dots, x_k - y_k, \dots, x_n) \\ &= \mathcal{D}_k(x_1, x_2, x_3, \dots, 2x_k + y_k, \dots, x_n) \\ &+ \mathcal{D}_k(x_1, x_2, x_3, \dots, 2x_k - y_k, \dots, x_n) \\ &- 12\mathcal{D}_k(x_1, x_2, x_3, \dots, x_k, \dots, x_n), \end{aligned}$$

and also there exists a mapping $\pi_k : \mathcal{A}_k \to \mathcal{B}$ such that

$$\mathcal{D}_{k}(x_{1},\ldots,\left[a_{k}b_{k}c_{k}\right],\ldots,x_{n}) = \left[\pi_{k}(a_{k})\pi_{k}(b_{k})\mathcal{D}_{k}(x_{1},\ldots,c_{k},\ldots,x_{n})\right]$$
$$+ \left[\pi_{k}(a_{k})\mathcal{D}_{k}(x_{1},\ldots,b_{k},\ldots,x_{n})\pi_{k}(c_{k})\right]$$
$$+ \left[\mathcal{D}_{k}(x_{1},\ldots,a_{k},\ldots,x_{n})\pi_{k}(b_{k})\pi_{k}(c_{k})\right],$$

and

$$\mathcal{D}_k(x_1,\ldots,a_k^*,\ldots,x_n) = \left(\mathcal{D}_k(x_1,\ldots,a_k,\ldots,x_n)\right)^*,$$

for all $a_k, b_k, c_k \in \mathcal{A}_k, x_i \in \mathcal{A}_i (i \neq k)$.

In 2002, Jun and Kim [23] introduced the following functional equation

$$f(2x + y) + f(2x - y) = 2(f(x + y) + f(x - y)) + 12f(x)$$

and established the general solution and the Hyers-Ulam stability for it (see also [34]). This functional equation is called cubic functional equation and every solution of cubic equation is said to be a cubic function. Obviously, the function $f(x) = x^3$ satisfies this functional equation.

In this paper, we prove the Hyers-Ulam-Rassias stability of k - th partial ternary cubic derivations on non-Archimedean ℓ -fuzzy Banach ternary algebras and non-Archimedean ℓ -fuzzy C^* -ternary algebras.

2. STABILITY OF PARTIAL TERNARY CUBIC DERIVATION ON NON-ARCHIMEDEAN *l*-FUZZY BANACH TERNARY ALGEBRAS

Let \mathbb{K} be a non-Archimedean field, \mathcal{X} be a vector space over \mathbb{K} and $(\mathcal{X}, \mathcal{P}, \mathcal{T})$ be a non-Archimedean ℓ -fuzzy Banach space over \mathbb{K} . Let Ψ_i

be an ℓ -fuzzy set on $\mathcal{X} \times \mathcal{X} \times \mathcal{X} \times [0, \infty)$ such that $\Psi_i(x, y, z, .)$ is nondecreasing, i.e.,

$$\Psi_i(cx, cx, cx, t) \ge_L \Psi_i\left(x, x, x, \frac{t}{|c|}\right),$$

and

$$\lim_{t\to\infty}\Psi_i\left(x,y,z,t\right)=1_\ell,$$

for all $i = 1, 2, 3, ..., n, x, y, z \in \mathcal{X}, t > 0$ and $c \neq 0$.

Theorem 2.1. Let $\mathcal{G}_k : \mathcal{A}_1 \times \ldots \times \mathcal{A}_n \to \mathcal{B}$ be a mapping with $G_k(x_1, \ldots, 0_k, \ldots, x_n) = 0_{\mathcal{B}}$. Assume that there exists an ℓ -fuzzy set Ψ_k on $\mathcal{A}_1 \times \mathcal{A}_2 \times \mathcal{A}_3 \times [0, \infty)$ such that for some $\alpha \in (0, \infty)$ and some integer $\lambda \geq 2$ with $|2^{\lambda}| < \alpha$ which $|2| \neq 0$, we have

(2.1)
$$\Psi_k\left(2^{-\lambda}x_k, 2^{-\lambda}y_k, 2^{-\lambda}z_k, t\right) \ge_L \Psi_k\left(x_k, y_k, z_k, \alpha t\right),$$

and

(2.2)
$$\lim_{l \to \infty} \mathcal{T}_{j=l}^{\infty} M\left(x_k, \frac{\alpha^j}{|2|^{\lambda_j}} t\right) = 1_\ell,$$

for all $x_k, y_k, z_k \in \mathcal{A}_k$ and t > 0. Also assume that there exists a cubic mapping $\pi_k : \mathcal{A}_k \to \mathcal{B}$ satisfying

(2.3)

$$\mathcal{P}\Big(\mathcal{G}_{k}(x_{1},\ldots,2a_{k}+b_{k},\ldots,x_{n})+\mathcal{G}_{k}(x_{1},\ldots,2a_{k}-b_{k},\ldots,x_{n}) \\ -2\mathcal{G}_{k}(x_{1},\ldots,a_{k}+b_{k},\ldots,x_{n})-2\mathcal{G}_{k}(x_{1},\ldots,a_{k}-b_{k},\ldots,x_{n}) \\ -12\mathcal{G}_{k}(x_{1},\ldots,a_{k},\ldots,x_{n}),t\Big) \\ \geq_{L}\Psi_{k}(a_{k},b_{k},0_{k},t),$$

and

(2.4)

$$\mathcal{P}\Big(\mathcal{G}_{k}(x_{1},\ldots,[a_{k}b_{k}c_{k}],\ldots,x_{n})-[\pi_{k}(a_{k})\pi_{k}(b_{k})\mathcal{G}_{k}(x_{1},\ldots,c_{k},\ldots,x_{n})] \\ -[\pi_{k}(a_{k})\mathcal{G}_{k}(x_{1},\ldots,b_{k},\ldots,x_{n})\pi_{k}(c_{k})] \\ +[\mathcal{G}_{k}(x_{1},\ldots,a_{k},\ldots,x_{n})\pi_{k}(b_{k})\pi_{k}(c_{k})],t\Big) \\ \geq_{L}\Psi_{k}(a_{k},b_{k},c_{k},t),$$

for all $a_k, b_k, c_k \in \mathcal{A}_k, x_i \in \mathcal{A}_i (i \neq k)$ and t > 0. Then there exists a unique k-th partial cubic derivation $\mathcal{D}_k : \mathcal{A}_1 \times \cdots \times \mathcal{A}_n \to \mathcal{B}$ such that

(2.5)
$$\mathcal{P}\left(\mathcal{G}_k\left(x_1,\ldots,x_k,\ldots,x_n\right)-\mathcal{D}_k\left(x_1,\ldots,x_k,\ldots,x_n\right),t\right)$$

$$\geq_L \mathcal{T}_{j=1}^{\infty} M\left(x_k, \frac{\alpha^{j+1}}{|2|^{\lambda j}}t\right),$$

for all $x_i \in \mathcal{A}_i$ and t > 0 where

$$M(x_k,t) := \mathcal{T}\left(\Psi_k(x_k, 0_k, 0_k, t), \Psi_k(2x_k, 0_k, 0_k, t), \dots, \Psi_k(2^{\lambda-1}x_k, 0_k, 0_k, t)\right),$$

for all $x_k \in \mathcal{A}_k$ and $t > 0$.

Proof. One can use induction on j to show that (2.6)

$$\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,2^{j}x_{k},\ldots,x_{n}\right)-2^{3j}\mathcal{G}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right),t\right)$$

$$\geq_{L} M_{j}\left(x_{k},t\right)$$

$$=\mathcal{T}\left(\Psi_{k}\left(x_{k},0_{k},0_{k},t\right),\Psi_{k}\left(2x_{k},0_{k},0_{k},t\right),\ldots,\Psi_{k}\left(2^{j-1}x_{k},0_{k},0_{k},t\right)\right),$$

for all $x_i \in \mathcal{A}_i$, t > 0. Replacing $a_k = x_k$ and $b_k = 0_k$ in (2.3), we have

$$\mathcal{P}\left(2\mathcal{G}_k\left(x_1,\ldots,2x_k,\ldots,x_n\right) - 16\mathcal{G}_k\left(x_1,\ldots,x_k,\ldots,x_n\right),t\right)$$

$$\geq_L \Psi_k\left(x_k,0_k,0_k,t\right),$$

for all $x_i \in \mathcal{A}_i$ and t > 0. Hence

$$\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,2x_{k},\ldots,x_{n}\right)-8\mathcal{G}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right),t\right)$$
$$\geq_{L}\Psi_{k}\left(x_{k},0_{k},0_{k},2t\right)$$
$$\geq_{L}\Psi_{k}\left(x_{k},0_{k},0_{k},t\right),$$

for all $x_i \in \mathcal{A}_i$ and t > 0. This proves (2.6) for j = 1. Let (2.6) holds for some j > 1. Substituting a_k by $2^j x_k$ and b_k by 0_k in (2.3), we get

$$\mathcal{P}\left(\mathcal{G}_k\left(x_1,\ldots,2^{j+1}x_k,\ldots,x_n\right) - 8\mathcal{G}_k\left(x_1,\ldots,2^jx_k,\ldots,x_n\right),t\right)$$

$$\geq_L \Psi_k\left(2^jx_k,0_k,0_k,t\right),$$

for all $x_i \in \mathcal{A}_i$ and t > 0. Since $|8| \leq 1$, it follows that

$$\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,2^{j+1}x_{k},\ldots,x_{n}\right)-2^{3(j+1)}\mathcal{G}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right),t\right) \\ \geq_{L} \mathcal{T}\left(\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,2^{j+1}x_{k},\ldots,x_{n}\right)-2^{3}\mathcal{G}_{k}\left(x_{1},\ldots,2^{j}x_{k},\ldots,x_{n}\right),t\right) \\ ,2^{3}\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,2^{j+1}x_{k},\ldots,x_{n}\right)-2^{3(j+1)}\mathcal{G}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right),t\right)\right) \\ = \mathcal{T}\left(\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,2^{j+1}x_{k},\ldots,x_{n}\right)-2^{3}\mathcal{G}_{k}\left(x_{1},\ldots,2^{j}x_{k},\ldots,x_{n}\right),t\right) \\ ,\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,2^{j}x_{k},\ldots,x_{n}\right)-2^{3j}\mathcal{G}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right),\frac{t}{|8|}\right)\right) \\ \geq_{L} \mathcal{T}\left(\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,2^{j+1}x_{k},\ldots,x_{n}\right)-2^{3}\mathcal{G}_{k}\left(x_{1},\ldots,2^{j}x_{k},\ldots,x_{n}\right),t\right)\right) \\ \end{array}$$

M. A. ABOLFATHI

$$\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,2^{j}x_{k},\ldots,x_{n}\right)-2^{3j}\mathcal{G}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right),t\right)\right)$$

$$\geq_{L}\mathcal{T}\left(\Psi_{k}\left(2^{j}x_{k},0_{k},0_{k},t\right),M_{j}\left(x_{k},t\right)\right)$$

$$=M_{j+1}\left(x_{k},t\right),$$

for all $x_i \in \mathcal{A}_i$ and t > 0. Therefore (2.6) holds for all $j \in \mathbb{N}$. In particular, we have

(2.7)
$$\mathcal{P}\left(\mathcal{G}_k\left(x_1,\ldots,2^{\lambda}x_k,\ldots,x_n\right)-2^{3\lambda}\mathcal{G}_k\left(x_1,\ldots,x_k,\ldots,x_n\right),t\right)$$
$$\geq_L M\left(x_k,t\right),$$

for all $x_i \in \mathcal{A}_i$ and t > 0. Replacing x_k by $2^{-\lambda(l+1)}x_k$ in (2.7) and using (2.1), we obtain

(2.8)

$$\mathcal{P}\left(\mathcal{G}_k\left(x_1,\ldots,\frac{x_k}{2^{\lambda\lambda}},\ldots,x_n\right) - 2^{3\lambda}\mathcal{G}_k\left(x_1,\ldots,\frac{x_k}{2^{\lambda(l+1)}},\ldots,x_n\right),t\right)$$

$$\geq_L M\left(x_k,\alpha^{l+1}t\right),$$

for all $x_i \in \mathcal{A}_i$, t > 0 and $l \ge 0$. The above relation implies that

$$\mathcal{P}\left(\left(2^{3\lambda}\right)^{l}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{x_{k}}{2^{\lambda l}},\ldots,x_{n}\right)-\left(2^{3\lambda}\right)^{l+1}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{x_{k}}{2^{\lambda(l+1)}},\ldots,x_{n}\right),t\right)$$
$$\geq_{L}M\left(x_{k},\frac{\alpha^{l+1}}{\left|(2^{3\lambda})^{l}\right|}t\right)$$
$$\geq_{L}M\left(x_{k},\frac{\alpha^{l+1}}{\left|(2^{\lambda})^{l}\right|}t\right),$$

for all $x_i \in \mathcal{A}_i, t > 0$ and $l \ge 0$. Therefore

$$\mathcal{P}\left(\left(2^{3\lambda}\right)^{l}\mathcal{G}_{k}\left(x_{1},...,\frac{x_{k}}{2^{\lambda l}},...,x_{n}\right)-\left(2^{3\lambda}\right)^{l+p}\mathcal{G}_{k}\left(x_{1},...,\frac{x_{k}}{2^{\lambda(l+p)}},...,x_{n}\right),t\right)$$

$$\geq_{L}\mathcal{T}_{j=l}^{l+p}\left(\left(2^{3\lambda}\right)^{j}\mathcal{G}_{k}\left(x_{1},...,\frac{x_{k}}{2^{\lambda j}},...,x_{n}\right)\right)$$

$$-\left(2^{3\lambda}\right)^{j+p}\mathcal{G}_{k}\left(x_{1},...,\frac{x_{k}}{2^{\lambda(j+p)}},...,x_{n}\right),t\right)$$

$$\geq_{L}\mathcal{T}_{j=l}^{l+p}M\left(x_{k},\frac{\alpha^{j+1}}{\left|\left(2^{\lambda}\right)^{j}\right|}t\right),$$

for all $x_i \in \mathcal{A}_i$, t > 0 and $l \ge 0$. Since $\lim_{l \to \infty} \mathcal{T}_{j=l}^{l+p} M\left(x_k, \frac{\alpha^{j+1}}{\lfloor (2^{\lambda})^j \rfloor} t\right) = 1_{\ell}$, for all $x_i \in \mathcal{A}_i$ and t > 0, then the sequence

$$\left\{ (2^{3\lambda})^l \mathcal{G}_k\left(x_1,\ldots,\frac{x_k}{2^{\lambda l}},\ldots,x_n\right) \right\},\,$$

is Cauchy in the non-Archimedean ℓ -fuzzy Banach space $(\mathcal{B}, \mathcal{P}, \mathcal{T})$. Hence, we can define a mapping $\mathcal{D}_k : \mathcal{A}_1 \times \ldots \times \mathcal{A}_n \to \mathcal{B}$ such that (2.9)

$$\lim_{l \to \infty} \mathcal{P}\left(\left(2^{3\lambda}\right)^{l} \mathcal{G}_{k}\left(x_{1}, \ldots, \frac{x_{k}}{2^{\lambda l}}, \ldots, x_{n}\right) - \mathcal{D}_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right), t\right) = 1_{\ell},$$

)

for all $x_i \in \mathcal{A}_i$ and t > 0. For each $l \ge 1, x_i \in \mathcal{A}_i$ and t > 0, we get

$$\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,a_{k},\ldots,x_{n}\right)-2^{3\lambda l}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{a_{k}}{2^{\lambda l}},\ldots,x_{n}\right),t\right)$$

$$=\mathcal{P}\left(\sum_{j=0}^{l-1}2^{3\lambda j}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{a_{k}}{2^{\lambda l}},\ldots,x_{n}\right)\right)$$

$$-2^{3\lambda(j+1)}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{a_{k}}{2^{\lambda(j+1)}},\ldots,x_{n}\right),t\right)$$

$$\geq_{L}\mathcal{T}_{j=0}^{l-1}\left(\mathcal{P}\left(2^{3\lambda j}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{a_{k}}{2^{\lambda l}},\ldots,x_{n}\right)\right)$$

$$-2^{3\lambda(j+1)}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{a_{k}}{2^{\lambda(j+1)}},\ldots,x_{n}\right),t\right)\right)$$

$$\geq_{L}\mathcal{T}_{j=0}^{l-1}M\left(x_{k},\frac{\alpha^{j+1}}{|2^{\lambda}|^{j}}t\right),$$

and so (2.10)

$$\mathcal{P}\Big(\mathcal{G}_{k}\left(x_{1},\ldots,a_{k},\ldots,x_{n}\right)-\mathcal{D}_{k}\left(x_{1},\ldots,a_{k},\ldots,x_{n}\right),t\Big)$$

$$\geq_{L}\mathcal{T}\Big(P\Big(\mathcal{G}_{k}\left(x_{1},\ldots,a_{k},\ldots,x_{n}\right)-2^{3\lambda l}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{a_{k}}{2^{\lambda l}},\ldots,x_{n}\right),t\Big)$$

$$,\mathcal{P}\left(2^{3\lambda l}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{a_{k}}{2^{\lambda l}},\ldots,x_{n}\right)-\mathcal{D}_{k}\left(x_{1},\ldots,a_{k},\ldots,x_{n}\right),t\Big)\Big)$$

$$\geq_{L}\mathcal{T}\Big(\mathcal{T}_{j=0}^{l-1}M\left(x_{k},\frac{\alpha^{j+1}}{|2^{\lambda}|^{j}}t\right)$$

$$,\mathcal{P}\left(2^{3\lambda l}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{a_{k}}{2^{\lambda l}},\ldots,x_{n}\right)-\mathcal{D}_{k}\left(x_{1},\ldots,a_{k},\ldots,x_{n}\right),t\Big)\Big).$$

By taking limit as $l \to \infty$ in (2.10), we obtain

$$\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right)-\mathcal{D}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right),t\right)$$
$$\geq_{L}\mathcal{T}_{j=1}^{\infty}M\left(x_{k},\frac{\alpha^{j+1}}{|2|^{\lambda_{j}}}t\right),$$

for all $x_i \in \mathcal{A}_i$ and t > 0. Now, replacing a_k, b_k, c_k with $2^{-\lambda l}a_k, 2^{-\lambda l}b_k$, $2^{-\lambda l}c_k$, respectively, in (2.4), we obtain

$$\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,\frac{[a_{k}b_{k}c_{k}]}{2^{3\lambda l}},\ldots,x_{n}\right)-\left[\frac{\pi_{k}(a_{k})}{2^{3\lambda l}}\frac{\pi_{k}b_{k}}{2^{3\lambda l}}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{c_{k}}{2^{\lambda l}},\ldots,x_{n}\right)\right]\right.\\\left.-\left[\frac{\pi_{k}(a_{k})}{2^{3\lambda l}}\mathcal{D}_{k}\left(x_{1},\ldots,\frac{b_{k}}{2^{\lambda l}},\ldots,x_{n}\right)\frac{\pi_{k}(c_{k})}{2^{3\lambda l}}\right]\right.\\\left.-\left[\mathcal{D}_{k}\left(x_{1},\ldots,\frac{a_{k}}{2^{\lambda l}},\ldots,x_{n}\right)\frac{\pi_{k}(b_{k})}{2^{3\lambda l}}\frac{\pi_{k}(c_{k})}{2^{3\lambda l}}\right],t\right)\right.\\\geq_{L}\Psi_{k}\left(\frac{a_{k}}{2^{\lambda l}},\frac{b_{k}}{2^{\lambda l}},\frac{c_{k}}{2^{\lambda l}},t\right),$$

for all $a_k, b_k, c_k \in \mathcal{A}_k, x_i \in \mathcal{A}_i (i \neq k)$ and t > 0. Hence

$$\mathcal{P}\left(2^{9\lambda l}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{[a_{k}b_{k}c_{k}]}{2^{3\lambda l}},\ldots,x_{n}\right)\right) \\ -2^{9\lambda l}\left[\frac{\pi_{k}\left(a_{k}\right)}{2^{3\lambda l}}\frac{\pi_{k}\left(b_{k}\right)}{2^{3\lambda l}}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{c_{k}}{2^{\lambda l}},\ldots,x_{n}\right)\right] \\ -2^{9\lambda l}\left[\frac{\pi_{k}\left(a_{k}\right)}{2^{3\lambda l}}\mathcal{D}_{k}\left(x_{1},\ldots,\frac{b_{k}}{2^{\lambda l}},\ldots,x_{n}\right)\frac{\pi_{k}\left(c_{k}\right)}{2^{3\lambda l}}\right] \\ -2^{9\lambda m}\left[\mathcal{D}_{k}\left(x_{1},\ldots,\frac{a_{k}}{2^{\lambda l}},\ldots,x_{n}\right)\frac{\pi_{k}\left(b_{k}\right)}{2^{3\lambda l}}\frac{\pi_{k}\left(c_{k}\right)}{2^{3\lambda l}}\right],t\right) \\ \geq_{L}\Psi_{k}\left(\frac{a_{k}}{2^{\lambda l}},\frac{b_{k}}{2^{\lambda l}},\frac{c_{k}}{2^{\lambda l}},\frac{t}{|2|^{9\lambda l}}\right) \\ \geq_{L}\Psi_{k}\left(a_{k},b_{k},c_{k},\frac{\alpha^{l}}{|2|^{\lambda l}}t\right),$$

for all $a_k, b_k, c_k \in \mathcal{A}_k, x_i \in \mathcal{A}_i (i \neq k)$ and t > 0. By $\lim_{l \to \infty} \Psi_k(a_k, b_k, c_k, \frac{\alpha^l}{|2|^{\lambda l}}t) = 1_\ell$, we get

$$\mathcal{D}_{k}(x_{1},\ldots,\left[a_{k}b_{k}c_{k}\right],\ldots,x_{n}) = \left[\pi_{k}(a_{k})\pi_{k}(b_{k})\mathcal{D}_{k}(x_{1},\ldots,c_{k},\ldots,x_{n})\right]$$
$$+ \left[\pi_{k}(a_{k})\mathcal{D}_{k}(x_{1},\ldots,b_{k},\ldots,x_{n})\pi_{k}(c_{k})\right]$$
$$+ \left[\mathcal{D}_{k}(x_{1},\ldots,a_{k},\ldots,x_{n})\pi_{k}(b_{k})\pi_{k}(c_{k})\right],$$

for all $a_k, b_k, c_k \in \mathcal{A}_k, x_i \in \mathcal{A}_i (i \neq k)$. As \mathcal{T} is continuous, form a well known result in ℓ -fuzzy (probabilistic) normed spaces [40], it follows that

$$\lim_{l\to\infty}\mathcal{P}\bigg(8^{\lambda l}\mathcal{G}_k\left(x_1,\ldots,2^{-\lambda l}(2a_k+b_k),\ldots,x_n\right)\bigg)$$

$$+ \left(8^{\lambda l}\mathcal{G}_{k}\left(x_{1}, \dots, 2^{-\lambda l}(2a_{k} - b_{k}), \dots, x_{n}\right)\right) \\ - 2\left(8^{\lambda l}\mathcal{G}_{k}\left(x_{1}, \dots, 2^{-\lambda l}(a_{k} + b_{k}), \dots, x_{n}\right)\right) \\ - 2\left(8^{\lambda l}\mathcal{G}_{k}\left(x_{1}, \dots, 2^{-\lambda l}(a_{k} - b_{k}), \dots, x_{n}\right)\right) \\ - 12\left(8^{\lambda l}\mathcal{G}_{k}\left(x_{1}, \dots, 2^{-\lambda l}a_{k}, \dots, x_{n}\right)\right), t\right) \\ = \mathcal{P}\Big(\mathcal{D}_{k}\left(x_{1}, \dots, (2a_{k} + b_{k}), \dots, x_{n}\right) \\ + \mathcal{D}_{k}\left(x_{1}, \dots, (2a_{k} - b_{k}), \dots, x_{n}\right) \\ - 2\mathcal{D}_{k}\left(x_{1}, \dots, (a_{k} + b_{k}), \dots, x_{n}\right) \\ - 2\mathcal{D}_{k}\left(x_{1}, \dots, (a_{k} - b_{k}), \dots, x_{n}\right) \\ - 12\mathcal{D}_{k}\left(x_{1}, \dots, (a_{k}, \dots, x_{n}), t\right),$$

for all $a_k, b_k \in \mathcal{A}_k, x_i \in \mathcal{A}_i (i \neq k, i = 1, 2, ..., n)$ and t > 0. Replacing a_k, b_k by $2^{-\lambda l}a_k, 2^{-\lambda l}b_k$ in (2.3) and by (2.1), we get

$$\mathcal{P}\left(8^{\lambda l}\mathcal{D}_{k}\left(x_{1},\ldots,2^{-\lambda l}(2a_{k}+b_{k}),\ldots,x_{n}\right)\right.\\\left.+\left(8^{\lambda l}\mathcal{D}_{k}\left(x_{1},\ldots,2^{-\lambda l}(2a_{k}-b_{k}),\ldots,x_{n}\right)\right)\right)\right.\\\left.-2\left(8^{\lambda l}\mathcal{D}_{k}\left(x_{1},\ldots,2^{-\lambda l}(a_{k}+b_{k}),\ldots,x_{n}\right)\right)\right.\\\left.-2\left(8^{\lambda l}\mathcal{D}_{k}\left(x_{1},\ldots,2^{-\lambda l}(a_{k}-b_{k}),\ldots,x_{n}\right)\right)\right.\\\left.-12\left(8^{\lambda l}\mathcal{D}_{k}\left(x_{1},\ldots,2^{-\lambda l}a_{k},\ldots,x_{n}\right)\right),t\right)\right.\\\left.\geq_{L}\Psi_{k}\left(2^{-\lambda l}a_{k},2^{-\lambda l}b_{k},0_{k},t\right)\right.\\\left.\geq_{L}\Psi_{k}\left(a_{k},b_{k},0_{k},\frac{\alpha^{l}}{\left|2^{\lambda}\right|^{l}}t\right),$$

for all $a_k, b_k \in \mathcal{A}_k, x_i \in \mathcal{A}_i (i \neq k, i = 1, 2, ..., n)$ and t > 0. Since $\lim_{l \to \infty} \Psi_k \left(a_k, b_k, 0_k, \frac{\alpha^l}{|2^\lambda|^l} t \right) = 1_\ell$, we infer that \mathcal{D} is a cubic mapping with respect to the k - th variable.

For the uniqueness of \mathcal{D} , let $\mathcal{D}'_k : \mathcal{A}_1 \times \ldots \times \mathcal{A}_n \to \mathcal{B}$ be another k-th partial ternary cubic derivation such that

(2.11)
$$\mathcal{P}\left(\mathcal{G}_k\left(x_1,\ldots,x_k,\ldots,x_n\right) - \mathcal{D}'_k\left(x_1,\ldots,x_k,\ldots,x_n\right),t\right)$$
$$\geq_L \mathcal{T}_{j=1}^{\infty} M\left(x_k,\frac{\alpha^{j+1}}{|2|^{\lambda_j}}t\right),$$

for all $x_i \in \mathcal{A}_i$ and t > 0. Then for each $l = 1, 2, \ldots, x_i \in \mathcal{A}_i$ and t > 0, we have

$$\mathcal{P}\left(\mathcal{D}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right)-\mathcal{D}_{k}'\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right),t\right)$$

$$\geq_{L}\mathcal{T}\left(\mathcal{P}\left(\mathcal{D}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right)-2^{3\lambda l}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{x_{k}}{2^{\lambda l}},\ldots,x_{n}\right),t\right)$$

$$,\mathcal{P}\left(2^{3\lambda l}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{x_{k}}{2^{\lambda l}},\ldots,x_{n}\right)-\mathcal{D}_{k}'\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right),t\right)\right),$$

for all $x_i \in \mathcal{A}_i$ and t > 0. From (2.9), we conclude that $\mathcal{D}_k = \mathcal{D}'_k$. This completes the proof.

Corollary 2.2. Let $(\mathcal{X}, \mathcal{P}, \mathcal{T})$ be a non-Archimedean ℓ -fuzzy Banach space over \mathbb{K} under a t-norm Hadžić-type $(\mathcal{T} \in \mathcal{H})$. Let $\mathcal{G}_k : \mathcal{A}_1 \times \ldots \times \mathcal{A}_n \to \mathcal{B}$ be a mapping with $\mathcal{G}_k(x_1, \ldots, 0_k, \ldots, x_n) = 0_{\mathcal{B}}$. Assume that there exists an ℓ -fuzzy set Ψ_k on $\mathcal{A}_1 \times \mathcal{A}_2 \times \mathcal{A}_3 \times [0, \infty)$ satisfying (2.1) and (2.2) for some $\alpha \in (0, \infty)$ and some integer $\lambda \geq 2$ with $|2^{\lambda}| < \alpha$ which $|2| \neq 0$. Also assume that there exists a cubic mapping $\pi_k : \mathcal{A}_k \to \mathcal{B}$ satisfying (2.3) and (2.4). Then there exists a unique k-th partial cubic derivation $\mathcal{D}_k : \mathcal{A}_1 \times \ldots \times \mathcal{A}_n \to \mathcal{B}$ such that

$$\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right)-\mathcal{D}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right),t\right)$$
$$\geq_{\ell}\mathcal{T}_{j=1}^{\infty}M\left(x_{k},\frac{\alpha^{j+1}}{\left|2\right|^{\lambda_{j}}}t\right),$$

for all $x_i \in \mathcal{A}_i$ and t > 0 where

 $M(x_k, t) := \mathcal{T}\left(\Psi_k(x_k, 0_k, 0_k, t), \Psi_k(2x_k, 0_k, 0_k, t), \dots, \Psi_k(2^{\lambda - 1}x_k, 0_k, 0_k, t)\right),$ for all $x_k \in \mathcal{A}_k$ and t > 0.

Proof. Since

$$\lim_{n \to \infty} M\left(x, \frac{\alpha^{j+1}}{|2|^{\lambda j}}t\right) = 1_{\ell},$$

for all $x_k \in \mathcal{A}_k$, t > 0 and \mathcal{T} is of Hadžić-type, it follows from Proposition 1.1 that

$$\lim_{n \to \infty} \mathcal{T}_{j=n}^{\infty} M\left(x, \frac{\alpha^{j+1}}{|2|^{\lambda_j}}t\right) = 1_{\ell},$$

for all $x_k \in \mathcal{A}_k$ and t > 0. Now, we get the conclusion by applying Theorem 2.1.

Similarly, we can obtain the following theorem.

Theorem 2.3. Let $\mathcal{G}_k : \mathcal{A}_1 \times ... \times \mathcal{A}_n \to \mathcal{B}$ be a mapping with

$$\mathcal{G}_k(x_1,\ldots,0_k,\ldots,x_n)=0_{\mathcal{B}}.$$

Assume that there exists an ℓ -fuzzy set Ψ_k on $\mathcal{A}_1 \times \mathcal{A}_2 \times \mathcal{A}_3 \times [0, \infty)$ such that for some $\alpha \in (0, \infty)$ and for some integer $\lambda \geq 2$ with $\frac{1}{|2|^{6\lambda}} < \alpha$ which $|2| \neq 0$, satisfies

(2.12)
$$\Psi\left(2^{\lambda}x_{k},2^{\lambda}y_{k},2^{\lambda}z_{k},t\right) \geq_{\ell} \Psi_{k}\left(x_{k},y_{k},z_{k},\frac{\alpha}{\left|2\right|^{3\lambda}}t\right),$$

and

(2.13)
$$\lim_{n \to \infty} \mathcal{T}_{j=n}^{\infty} M\left(x, \alpha^{j} t\right) = 1_{\ell},$$

for all $x_k, y_k, z_k \in \mathcal{A}_k$ and t > 0. Also assume that there exists a cubic mapping $\pi_k : \mathcal{A}_k \to \mathcal{B}$ satisfying (2.3) and (2.4) for all $a_k, b_k, c_k \in \mathcal{A}_k, x_i \in \mathcal{A}_i (i \neq k)$ and t > 0. Then there exists a unique k-th partial cubic derivation $\mathcal{D}_k : \mathcal{A}_1 \times \cdots \times \mathcal{A}_n \to \mathcal{B}$ such that

(2.14)
$$\mathcal{P}\left(\mathcal{G}_k\left(x_1,\ldots,x_k,\ldots,x_n\right) - \mathcal{D}_k\left(x_1,\ldots,x_k,\ldots,x_n\right),t\right)$$
$$\geq_L \mathcal{T}_{j=1}^{\infty} M\left(x_k,\alpha^{j+1}t\right),$$

for all $x_i \in \mathcal{A}_i$ and t > 0, where

$$M(x_k,t) := \mathcal{T}\Big(\Psi_k\left(\frac{x_k}{2}, 0_k, 0_k, t\right), \Psi_k\left(\frac{x_k}{4}, 0_k, 0_k, t\right), \dots, \Psi_k\left(\frac{x_k}{2^{\lambda}}, 0_k, 0_k, t\right)\Big),$$

for all $x_k \in \mathcal{A}_k$ and $t > 0$.

Proof. Replacing x_k by $\frac{x_k}{2}$ in (2.7), we obtain

$$(2.15) \mathcal{P}\left(\frac{1}{2^{3\lambda}}\mathcal{G}_k\left(x_1,\ldots,x_k,\ldots,x_n\right) - 2^{3\lambda}\mathcal{G}_k\left(x_1,\ldots,\frac{x_k}{2^{\lambda}},\ldots,x_n\right),t\right)$$
$$\geq_L \mathcal{T}\left(\Psi_k\left(\frac{x_k}{2},0_k,0_k,|2|^{3\lambda}t\right),\Psi_k\left(\frac{x_k}{4},0_k,0_k,|2|^{3\lambda}t\right),\ldots,\Psi_k\left(\frac{x_k}{2^{\lambda}},0_k,0_k,|2|^{3\lambda}t\right)\right)$$
$$=M\left(x_k,|2|^{3\lambda}t\right).$$

Replacing x_k by $2^{\lambda(l+1)}x_k$ in (2.15) and using (2.12), we have

$$\mathcal{P}\left(\frac{1}{2^{3\lambda}}\mathcal{G}_k\left(x_1,\ldots,2^{\lambda(l+1)}x_k,\ldots,x_n\right) - \mathcal{G}_k\left(x_1,\ldots,2^{\lambda l}x_k,\ldots,x_n\right),t\right)$$

$$\geq_L \mathcal{T}\left(\Psi_k\left(\frac{x_k}{2},0_k,0_k,|2|^{3\lambda}t\right),\Psi_k\left(\frac{x_k}{4},0_k,0_k,|2|^{3\lambda}t\right)$$

$$,\ldots,\Psi_k\left(\frac{x_k}{2^{\lambda}},0_k,0_k,|2|^{3\lambda}t\right)\right)$$

$$= M\left(x_k, \frac{\alpha^{l+1}}{|2|^{3\lambda l}}t\right),$$

for all $x_i \in \mathcal{A}_i$, t > 0 and $l \ge 0$. Then, we have

$$\mathcal{P}\left(\frac{1}{2^{3\lambda(l+1)}}\mathcal{G}_k\left(x_1,\ldots,2^{\lambda(l+1)}x_k,\ldots,x_n\right) - \frac{1}{2^{3\lambda l}}\mathcal{G}_k\left(x_1,\ldots,2^{\lambda l}x_k,\ldots,x_n\right),t\right)$$

$$\geq_L M\left(x_k,\alpha^{l+1}t\right),$$

for all $x_i \in \mathcal{A}_i, t > 0$ and $l \ge 0$. Hence

$$\mathcal{P}\left(\frac{1}{2^{3\lambda(l+1)}}\mathcal{G}_{k}\left(x_{1},\ldots,2^{\lambda(l+1)}x_{k},\ldots,x_{n}\right)-\frac{1}{2^{3\lambda l}}\mathcal{G}_{k}\left(x_{1},\ldots,2^{\lambda l}x_{k},\ldots,x_{n}\right),t\right)$$

$$\geq_{L}\mathcal{T}_{j=l}^{l+p}\mathcal{P}\left(\frac{1}{2^{3\lambda(p+j)}}\mathcal{G}_{k}\left(x_{1},\ldots,2^{\lambda(p+j)}x_{k},\ldots,x_{n}\right)\right)$$

$$-\frac{1}{2^{3\lambda j}}\mathcal{G}_{k}\left(x_{1},\ldots,2^{\lambda j}x_{k},\ldots,x_{n}\right),t\right)$$

$$\geq_{L}\mathcal{T}_{j=l}^{l+p}M\left(x_{k},\alpha^{j+1}t\right).$$

By (2.13), the sequence $\left\{\frac{1}{2^{3\lambda l}}\mathcal{G}_k\left(x_1,\ldots,2^{\lambda l}x_k,\ldots,x_n\right)\right\}_{l\in\mathbb{N}}$ is Cauchy in \mathcal{B} and by the completeness of \mathcal{B} , this sequence is convergent. Hence, we can define the mapping $\mathcal{D}_k : \mathcal{A}_1 \times \cdots \times \mathcal{A}_n \to \mathcal{B}$ by

$$\lim_{l \to \infty} \mathcal{P}\left(\frac{1}{2^{3\lambda l}}\mathcal{G}_k\left(x_1, \dots, 2^{\lambda l}x_k, \dots, x_n\right) - \mathcal{D}_k\left(x_1, \dots, x_k, \dots, x_n\right), t\right) = 1_{\ell},$$

for all $x_i \in \mathcal{A}_i$ and t > 0. The rest of the proof is similar to the proof of Theorem 2.1.

3. STABILITY OF PARTIAL TERNARY CUBIC *-DERIVATION ON Non-Archimedean ℓ -Fuzzy C*-Ternary Algebras

A complex non-Archimedean ℓ -fuzzy *-Banach algebra $(\mathcal{B}, \mathcal{P}, \mathcal{T}, \mathcal{T}')$, which has a ternary product $(x, y, z) \mapsto [x, y, z]$ of \mathcal{B}^3 into \mathcal{B} is a non-Archimedean ℓ -fuzzy C^{*}-ternary algebra if the product is linear on each variable and

- (i) [x, y, [z, u, v]] = [a, [u, z, y], v] = [[x, y, z], u, v];
- (ii) $||[x, y, z]|| \le ||x|| ||y|| ||z||;$ (iii) $||[x, x, x]|| = ||x||^3,$

for all $x, y, z, u, v \in \mathcal{B}$.

If $(\mathcal{B}, \mathcal{P}, \mathcal{T}, \mathcal{T}')$ has the element e so that x = [x, e, e] = [e, e, x] for all $x \in \mathcal{B}$, then e is called the unite element of the non-Archimedean ℓ -fuzzy C*-ternary algebra. If for $x \in \mathcal{B}$, we have $[e, x, e] = x^*$, then * is an involution on the C^* -ternary algebra.

In this section, assume that $\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_n$ are non-Archimedean ℓ fuzzy *-normed ternary algebras over \mathbb{C} , and \mathcal{B} is a non-Archimedean ℓ -fuzzy Banach C^{*}-ternary algebra.

Theorem 3.1. Let $\mathcal{G}_k : \mathcal{A}_1 \times \cdots \times \mathcal{A}_n \to \mathcal{B}$ be a mapping with

$$\mathcal{G}_k(x_1,\ldots,0_k,\ldots,x_n)=0_{\mathcal{B}}.$$

Suppose that there exists an ℓ -fuzzy set Ψ_k on $\mathcal{A}_k \times \mathcal{A}_k \times \mathcal{A}_k \times [0, \infty)$ and a cubic mapping $\pi_k : \mathcal{A}_k \to \mathcal{B}$ such that (2.1)-(2.4) hold. Also assume that

$$\mathcal{P}\left(\mathcal{G}_k\left(x_1,\ldots,a_k^*,\ldots,x_n\right)-\mathcal{G}_k\left(x_1,\ldots,a_k,\ldots,x_n\right)^*,t\right)\\\geq_L\Psi_k\left(a_k,0_k,0_k,t\right),$$

for all $a_k \in \mathcal{A}_k, x_i \in \mathcal{A}_i (i \neq k)$ and t > 0. Then there exists a unique k-th partial cubic *-derivation $\mathcal{D}_k : \mathcal{A}_1 \times \ldots \times \mathcal{A}_n \to \mathcal{B}$ such that

$$\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right)-\mathcal{D}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right),t\right)$$
$$\geq_{L}\mathcal{T}_{j=1}^{\infty}M\left(x_{k},\frac{\alpha^{j+1}}{|2|^{\lambda j}}t\right),$$

for all $x_i \in \mathcal{A}_i$ and t > 0 where

 $M(x_k,t) := \mathcal{T}\left(\Psi_k(x_k, 0_k, 0_k, t), \Psi_k(2x_k, 0_k, 0_k, t), \dots, \Psi_k(2^{\lambda-1}x_k, 0_k, 0_k, t)\right)$ for all $x_k \in \mathcal{A}_k$ and t > 0.

Proof. By a similar argument to that used the proof of theorem 2.1, there exists a unique k-th partial ternary cubic derivation $\mathcal{D}_k : \mathcal{A}_1 \times \ldots \times \mathcal{A}_n \to \mathcal{B}$ which satisfy (2.5), and

$$\lim_{l \to \infty} \mathcal{P}\left(\left(2^{3\lambda}\right)^{l} \mathcal{G}_{k}\left(x_{1}, \dots, \frac{x_{k}}{2^{\lambda m}}, \dots, x_{n}\right) - \mathcal{D}_{k}\left(x_{1}, \dots, x_{k}, \dots, x_{n}\right), t\right)$$
$$= 1_{\ell},$$

for all $x_i \in \mathcal{A}_i$ and t > 0. So, we have

$$\mathcal{P}\left(\mathcal{D}_{k}\left(x_{1},\ldots,a_{k}^{*},\ldots,x_{n}\right)-\mathcal{D}_{k}\left(x_{1},\ldots,a_{k},\ldots,x_{n}\right)^{*},t\right)$$

$$=\lim_{l\to\infty}\mathcal{P}\left(\left(2^{3\lambda}\right)^{l}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{x_{k}^{*}}{2^{\lambda m}},\ldots,x_{n}\right)$$

$$-\left(2^{3\lambda}\right)^{l}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{x_{k}}{2^{\lambda l}},\ldots,x_{n}\right)^{*},t\right)$$

$$=\lim_{l\to\infty}\mathcal{P}\left(\left(2^{3\lambda}\right)^{l}\mathcal{G}_{k}\left(x_{1},\ldots,\left(\frac{x_{k}}{2^{\lambda l}}\right)^{*},\ldots,x_{n}\right)$$

$$-\left(2^{3\lambda}\right)^{l}\mathcal{G}_{k}\left(x_{1},\ldots,\frac{x_{k}}{2^{\lambda l}},\ldots,x_{n}\right)^{*},t\right)$$

$$\geq_{L}\lim_{l\to\infty}\Psi_{k}\left(a_{k},0_{k},0_{k},\frac{\alpha^{l}}{|2^{\lambda}|^{l}}t\right)$$

$$=1_{\ell},$$

for all $x_k \in \mathcal{A}_k, x_i \in \mathcal{A}_i (i \neq k)$ and t > 0.

Corollary 3.2. Let $(\mathcal{X}, \mathcal{P}, \mathcal{T})$ be a non-Archimedean ℓ -fuzzy Banach space over \mathbb{K} under a t-norm Hadžić-type $(\mathcal{T} \in \mathcal{H})$. Let $\mathcal{G}_k : \mathcal{A}_1 \times \cdots \times \mathcal{A}_n \to \mathcal{B}$ be a mapping with $G_k(x_1, \ldots, 0_k, \ldots, x_n) = 0_{\mathcal{B}}$. Suppose that there exists an ℓ -fuzzy set Ψ_k on $\mathcal{A}_k \times \mathcal{A}_k \times \mathcal{A}_k \times [0, \infty)$ and a cubic mapping $\pi_k : \mathcal{A}_k \to \mathcal{B}$ such that (2.1)-(2.4) hold. Also assume that

$$\mathcal{P}\left(\mathcal{G}_k\left(x_1, x_2, x_3, \dots, a_k^*, \dots, x_n\right) - \mathcal{G}_k\left(x_1, \dots, a_k, \dots, x_n\right)^*, t\right)$$

$$\geq_{\ell} \Psi_k\left(a_k, 0_k, 0_k, t\right)$$

for all $a_k \in \mathcal{A}_k, x_i \in \mathcal{A}_i (i \neq k)$ and t > 0. Then there exists a unique k-th partial cubic *-derivatio $\mathcal{D}_k : \mathcal{A}_1 \times \ldots \times \mathcal{A}_n \to \mathcal{B}$ such that

$$\mathcal{P}\left(\mathcal{G}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right)-\mathcal{D}_{k}\left(x_{1},\ldots,x_{k},\ldots,x_{n}\right),t\right)$$
$$\geq_{\ell}\mathcal{T}_{j=1}^{\infty}M\left(x_{k},\frac{\alpha^{j+1}}{\left|2\right|^{a_{j}}}t\right)$$

for all $x_i \in \mathcal{A}_i$ and t > 0 where

 $M(x_{k},t) := \mathcal{T}\left(\Psi_{k}(x_{k},0_{k},0_{k},t),\Psi_{k}(2x_{k},0_{k},0_{k},t),\dots,\Psi_{k}(2^{\lambda-1}x_{k},0_{k},0_{k},t)\right)$ for all $x_{k} \in \mathcal{A}_{k}$ and t > 0.

Proof. we get the conclusion by applying Proposition 1.1 and Theorem 3.1. $\hfill \Box$

References

- M.A. Abolfathi, A. Ebadian and R. Aghalary, Stability of mixed additive-quadratic Jensen type functional equation in non-Archimedean *l*-fuzzy normed spaces, Ann. Univ. Ferrara Sez. VII Sci. Mat., 60(2) (2014), pp. 307-319.
- M. Amini and R. Saadati, *Topics in fuzzy metric space*, J. Fuzzy. Math., 4 (2003), pp. 765-768.
- T. Aoki, On the stability of linear trasformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), pp. 64-66.
- 4. B. Arsalan and H. Inceboz, *Nearly k-th Partial Ternary Quadratic* *-Derivations, Kyungpook Math. J., 55 (2015), pp. 893-907.
- A. Cayley, On the 34 concomitants of the ternary cubic, Am. J. Math., 4 (1981), pp. 1-15.
- S.C. Cheng and J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), pp. 429-436.

- P. Czerwik, Functional Equations and Inequalities in Several Variable, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
- G. Deschrijver, D. O'Regan, R. Saadati and S.M. Vaezpour, *l-fuzzy Euclidean normed spaces and compactness*, Chaos Solitions Fractals, 42 (2009), pp. 40-45.
- A. Ebadian, R. Aghalary and M.A. Abolfathi, On approximate dectic mappings in non-Archimedean spaces: a fixed point approah, Int. J. Nonlinear Anal. Appl., 5(2) (2014), pp. 111-122.
- A. Ebadian, N. Ghobadipour, B. Savadkouhi and M. Eshaghi Gordji, of a mixed type cubic and quartic functional equation in non-Archimedean l-fuzzy normed spaces, Thai J. Math., 9 (2011), pp. 243-259.
- M. Eshaghi, M.B. Savadkouhi, M. Bidkham, C. park and J.R. Lee, Nearly partial derivations on Banach ternary algebras, J. Math. Stat., 6 (4) (2010) pp. 454-461.
- P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of the approximately additive mappings, J. Math. Anal. Appl., 184 (1994), pp. 431-436.
- A. George and p. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst., 64 (1994), pp. 395-399.
- J.A. Goguen, *L-fuzzy sets*, J. Math. Anal. Appl., 18 (1967), pp. 145-174.
- F.Q. Gouvêa, p-Adic Numbers. An Introduction, Springer-Verlag, Berlin, 1997.
- 16. O. Hadžić and E. Pap, Fixed point Theory in Probabilistic Metric Spaces, Kluwer Academic, Dordrecht, 2001.
- O. Hadžić, E. Pap and M. Budincević, Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces, Kybernetica, 38 (2002), pp. 363-381.
- K. Hensel, Über eine neue Begundung der Theorie der algebraischen Zahlen, Jahresbericht der Deutschen Mathematiker-Vereinigung, 6 (1897), pp. 83-88.
- 19. A. Himbert, Comptes Rendus del'Acad. Sci., Paris, (1985).
- N.E. Hoseinzadeh, A. Bodaghi and M.R. Mardanbeigi, Almost Multi-Cubic Mappings and a Fixed point Application, Sahand Commun. Math. Anal., 17 (3) (2020), pp. 131-142.
- D.H. Hyers, On the Stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), pp. 222-224.
- D.H. Hyers, G. Isac and Th.M. Rssias, Stability of Functional Equation in Several Variables, Birkhäuse, Basel, 1998.

M. A. ABOLFATHI

- K. Jun and H. Kim, The gegeralized Hyers-Ulam-Rassias stability of cubic functional equation, J. Math. Anal. Appl., 274 (2002), pp. 867-878.
- O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Set Syst., 12 (3) (1984), pp. 1-7.
- M. Kapranov, IM. Gelfand and A. Zelevinskii, Discrimininants, Reesultants and Multidimensional Determinants(Modern Bikhäuser Classics), Berlin, (1994).
- A.K. Katsaras, *Fuzzy topological vector spaces*, Fuzzy Set Syst., 12 (1984), pp. 143-154.
- R. Kerner, The cubic chessboard: Geometry and physics, Class. Quantum Grav., 14 (1997), pp. A203-A225.
- A. Khrennikov, Non-Archimedean Analysis: Quantu Paradoxes, Dynamical Systems and Biological Models, Math. Appl., vol.427, Kluwer Academic publisher Dordrecht, 1997.
- S.V. Krishna and K.K.M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Set Syst., 63 (1994) 207-217.
- A.K. Mirmostafaee and M.S. Moslehian, Stability of additive mapping in non Archimedean fuzzy normed spaces, Fuzzy Set Syst., 160 (2009), 1643-1652.
- A. Najati, B. Noori and M.B. Moghimi, On Approximation of Some Mixed Functional Equations, Sahand Commun. Math. Anal., 18 (1) (2021), pp. 35-46.
- M. Nazarianpoor and G. Sadeghi, On the stability of the Pexiderized cubic functional equation in multi-normed spaces, Sahand Commun. Math. Anal., 9 (1) (2018), pp. 45-83.
- S. Okabo, Triple products and Yang-Baxter equation I, II. Octonionic and quaternionic triple systems, J. Math. Phys., 34(7) (1993), 3273-3291 and 3291-3315.
- K.H. Park and Y.S. Jung, Stability of a cubic functional equation on groups, Bull. Korean Math. Soc., 41 (2004) 347–357.
- 35. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978) 297-300.
- Th.M. Rassias, Functional Equation, Inequalities and Applications, KLuwer Academic publishers Co., Dordrecht, Boston, London, 2003.
- A.M. Robert, A Course in p-Adic Analysis, (Graduate Texts in Mathematics), Vol.198, Springer-Verlag, New York, 2000.
- R. Saadati, On the l-fuzzy topological spaces, Chaos Solitions Fractals, 37 (2008), pp. 1419-1426.
- R. Saadati and J. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitions Fractals, 27 (2006), pp. 331-344.

- 40. B. Schweizer and A. Sklar, *Probabilistic Metric Spaces*, Elsevier, North Holand, New York, 1983.
- S. Shakeri, R. Saadati and C. Park, Stability of the functional equations in non- Archimedean l-fuzzy normed spaces, Int. J. Nonlinear Anal. Appl., 1(2) (2010), pp. 72-83.
- 42. N. Shilkret, *Non-Archimedian Banach algebras*, Ph.D. thesis, Polytechnic University, 1968.
- 43. S.M. Ulam, Problem in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
- 44. J.Z. Xiao and X.H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Set Syst., 133 (2003) pp. 389-399.
- 45. L.A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965) pp. 338-353.

 $Email \ address: \verb"m.abolfathi@urmia.ac.ir"$

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, URMIA UNIVERSITY, P.O.BOX 165, URMIA, IRAN.