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Modified Inertial Algorithms for a Class of Split Feasibility
Problems and Fixed Point Problems in Hilbert Spaces

Montira Suwannaprapa

Abstract. In this work, we introduce an iterative algorithm for
solving the split feasibility problem on zeros of the sum of monotone
operators and fixed point sets and also solving the fixed point prob-
lem of a nonexpansive mapping. This algorithm is a modification of
the method based on the inertial and Mann viscosity-type methods.
By assuming the existence of solutions, we show the strong conver-
gence theorems of the constructed sequences. Finally, we also apply
the proposed algorithm to related problems in Hilbert spaces.

1. Introduction

The split feasibility problem (SFP) was introduced by Censor and
Elfving [8]. This is the problem of finding a point x∗ ∈ Rn such that

(1.1) x∗ ∈ C ∩ L−1Q,

where C andQ are nonempty closed convex subsets of Rn, and L is an n×
n matrix. There are many applications of the problem (1.1), in various
fields of science and technology such as in signal processing, medical
image reconstruction, and intensity-modulated radiation therapy; see
[5, 6, 8, 9] and the references therein. The popular iterative algorithm
for solving the problem (1.1) is the following CQ algorithm, suggested
by Byrne [5]: for arbitrary x1 ∈ Rn,

(1.2) xn+1 = PC

(
xn − γL⊤(I − PQ)Lxn

)
, ∀n ∈ N,
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2 M. SUWANNAPRAPA

where γ ∈
(
0, 2/ ∥L∥2

)
, L is a real m×n matrix and L⊤ is the transpose

of the matrix L. Subsequently, in 2010, Xu [38] considered SFP in
infinite-dimensional Hilbert spaces and proposed the CQ algorithm by
using a bounded linear operator L : H1 → H2 instead of the matrix L
and also used L∗ (the adjoint operator of L). In addition, by considering
the algorithm (1.2), López et al. [16] suggested to use the stepsizes γn
without the norm of operator L,

(1.3) γn =
ψn ∥(I − PQ)Lxn∥2

2 ∥L∗(I − PQ)Lxn∥2
,

where 0 < ψn < 4 and L∗(I − PQ)Lxn ̸= 0. They point out that the
higher dimensions of L may be hard to compute the operator norm and
it may affect the computing in the iteration process. For example, the
CPU time, and the algorithm with stepsizes (1.3) gives faster results.

For a Hilbert space H, let B : H → 2H be a set-valued operator.
Martinet [21] introduced the variational inclusion problem (VIP), the
problem of finding a point x∗ ∈ H such that
(1.4) 0 ∈ Bx∗.

The popular method for solving the problem (1.4) is called the proximal
point algorithm: for a given x1 ∈ H,
(1.5) xn+1 = JBλnxn, ∀n ∈ N,

where {λn} ⊂ (0,∞) and JBλn is the resolvent of the maximal monotone
operator B; see [14, 20, 37] for more details. Later, by the concept of
SFP and VIP, Byrne et al. [7] proposed the split null point problem
(SNPP): let B1 : H1 → 2H1 and B2 : H2 → 2H2 be set-valued mappings.
The SNPP is the problem of finding a point
(1.6) x∗ ∈ B−1

1 0 ∩ L−1B−1
2 0.

They considered the following iterative algorithm: for λ > 0 and an
arbitrary x1 ∈ H1,

(1.7) xn+1 = JB1
λ

(
xn − γL∗

(
I − JB2

λ

)
Lxn

)
, ∀n ∈ N,

where γ ∈
(
0, 2/ ∥L∥2

)
. Under suitable control conditions, they ob-

tained the weakly convergence results. Moreover, by considering a more
general problem, Takahashi et al. [33] studied the problem as follows:
find x∗ ∈ H1 such that
(1.8) x∗ ∈ B−10 ∩ L−1F (T ),

where B : H1 → 2H1 is a maximal monotone operator and T : H2 → H2

is a nonexpansive mapping. They proposed the following algorithm: for
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any x1 ∈ H1,

(1.9) xn+1 = JBλn (xn − γnL
∗(I − T )Lxn) , ∀n ∈ N,

where {λn} and {γn} satisfy some suitable control conditions, and pro-
vide the weak convergence theorem of the algorithm (1.9) to the solution
set of the problem (1.8).

A type of generalization of (1.4) is the following problem: find x∗ ∈ H
such that

(1.10) 0 ∈ Ax∗ +Bx∗,

where A : H → H is a single-valued operator and B : H → 2H is a set-
valued operator. When A and B are monotone operators, the elements
in the solution set of the problem (1.10) are called the zeros of the sum of
monotone operators. There are many kinds of real world problems that
arise in the form of problem (1.10); see [4, 22, 28, 35] and the references
therein. In 2018, Zhu et al. [40] considered a problem of finding a point
x∗ ∈ H such that

(1.11) x∗ ∈ F (S) ∩ (A+B)−10 ∩ L−1F (T ) =: Ω,

where S : H1 → H1 and T : H2 → H2 are nonexpansive mappings.
They proposed the following method by using the viscosity algorithm
[23]: for any x1 ∈ H1,

un = JBλn ((I − λnA)− γnL
∗(I − T )L)xn,

xn+1 = αnf(xn) + (1− αn)Sun, ∀n ∈ N,(1.12)

when f : H1 → H1 is a contraction mapping, and showed that, by some
suitable conditions, the sequence {xn} converges strongly to a point
z ∈ Ω, where z = PΩf(z). Recently, there are many authors who have
studied the problems related to the fixed point and inclusion problems;
see [11–13, 36] for more imformation.

On the other hand, the study of the inertial technique was first pre-
sented by Polyak in 1964, to speed up the rate of convergence; see [27].
This technique is a two-step iterative method, in which each iteration
involves the previous two iterates. Recently, many authors used the in-
ertial method because of the faster convergence rate of the algorithm;
see [2, 26, 29, 34] for more information.

In 2001, Alvarez and Attouch [1] proposed the following inertial prox-
imal point method for finding the solution of the problem (1.4): for
arbitrary x0, x1 ∈ H,

yn = xn + µn(xn − xn−1),

xn+1 = JBλnyn, ∀n ∈ N,(1.13)
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where {λn} and {µn} satisfy some suitable conditions with
∞∑
n=1

µn∥xn − xn−1∥2 <∞,

and present the weakly convergence results.
In 2015, Lorenz and Pock [17] considered the monotone inclusion

problem (1.10) and proposed the inertial forward-backward algorithm
for solving the problem (1.10): for arbitrary x0, x1 ∈ H,

yn = xn + µn(xn − xn−1),

xn+1 = JBλn(I − λnA)yn, ∀n ∈ N,(1.14)
where A and B are monotone operators. By suitable conditions of {λn}
and {µn}, they proved that the sequence {xn} converges weakly to the
zeros of A+B.

Recently, Anh et al. [2] proposed the following iterative algorithm
for solving the problem (1.6), by combining the inertial method, the
algorithm (1.7) and Mann iteration [19]: for arbitrary x0, x1 ∈ H1,

zn = xn + µn(xn − xn−1),

yn = JB1
λ

(
zn − γnL

∗
(
I − JB2

λ

)
Lzn

)
,

xn+1 = (1− θn − αn)xn + θnyn, ∀n ∈ N,(1.15)
where {µn} ⊂ [0, µ) for some µ > 0, {θn} ⊂ (a, b) ⊂ (0, 1 − αn) and
{αn} satisfies lim

n→∞

µn
αn

∥xn − xn−1∥ = 0. They proved that the sequence
{xn} converges strongly to a solution of the problem (1.6).

Very recently, Tan et al. [34] introduced the modified inertial Mann
viscosity algorithm for solving fixed point problems. Let T be nonex-
pansive mapping, for arbitrary x0, x1 ∈ H,

zn = xn + µn(xn − xn−1),

yn = βnzn + (1− βn)Tzn,

xn+1 = αnf(xn) + (1− αn)yn, ∀n ∈ N,(1.16)

where {αn} and {βn} in (0, 1), and {αn} satisfies lim
n→∞

µn
αn

∥xn−xn−1∥ =

0 and some suitable conditions. They showed that the sequence {xn}
converges strongly to z = PF (T )f(z).

In this paper, motivated and inspired by the above literature, we
are going to consider a problem (1.11). We aim to suggest a modified
iterative algorithm, which is generated by using the inertial method and
Mann viscosity-type algorithm, for solving the considered problem. In
our results, we provide some suitable conditions to guarantee that the
constructed sequence {xn} converges strongly to a point in Ω.
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2. Preliminaries

Throughout this paper, we denote by N and R for the set of natural
numbers and real numbers, respectively. Let H be a real Hilbert space
with the inner product ⟨·, ·⟩ and the norm ∥·∥. Let {xn} be a sequence
in H, we denote the strong convergence and weak convergence of the
sequence {xn} to x by xn → x and xn ⇀ x, respectively.

Let T : H → H be a mapping. Then, T is said to be a Lipschitz
mapping if there exists α ≥ 0 such that

∥Tx− Ty∥ ≤ α∥x− y∥, ∀x, y ∈ H.

The number α is called a Lipschitz constant. If α ∈ [0, 1), then T is
a contraction mapping, and T is a nonexpansive mapping if α = 1.

Moreover, we say that T is firmly nonexpansive if
⟨Tx− Ty, x− y⟩ ≥ ∥Tx− Ty∥2 , ∀x, y ∈ H.

The set of fixed points of a self-mapping T will be denoted by F (T ),
that is F (T ) = {x ∈ H : Tx = x}. We note that if T is nonexpansive,
then F (T ) is closed and convex.

Let A : H → H be a single-valued mapping. For a positive real
number β, we will say that A is β-inverse strongly monotone (β-ism) if

⟨Ax−Ay, x− y⟩ ≥ β∥Ax−Ay∥2, ∀x, y ∈ H.

Now, we collect some important properties for our proof.

Lemma 2.1 ([4, 39]). We have
(i) If A : H → H is β-ism and λ ∈ (0, β], then T := I − λA is

firmly nonexpansive.
(ii) A mapping T : H → H is nonexpansive if and only if I − T is

1
2 -ism.

Let B : H → 2H be a set-valued mapping. The effective domain of B
is denoted by D(B), that is, D(B) = {x ∈ H : Bx ̸= ∅}. Recall that B
is said to be monotone if

⟨x− y, u− v⟩ ≥ 0, ∀x, y ∈ D(B), u ∈ Bx, v ∈ By.

A monotone mapping B is said to be maximal if its graph is not
properly contained in the graph of any other monotone operator. To a
maximal monotone operator B : H → 2H and λ > 0, its resolvent JBλ is
defined by

JBλ := (I + λB)−1 : H → D(B).

Notice that the resolvent JBλ is a single-valued and firmly nonexpan-
sive mapping, and F

(
JBλ

)
= B−10 ≡ {x ∈ H : 0 ∈ Bx},∀λ > 0; see

[32, 33].
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Lemma 2.2 ([3]). Let C be a nonempty, closed, and convex subset of a
real Hilbert space H and A : C → H be an operator. If B : H → 2H is
a maximal monotone operator, then F

(
JBλ (I − λA)

)
= (A+B)−10.

The following fundamental results are needed in our proof.
Let C be a nonempty closed convex subset of H. For every point

x ∈ H, there exists a unique nearest point in C, denoted by PCx, such
that

∥x− PCx∥ ≤ ∥x− y∥ , ∀y ∈ C.

PC is called a metric projection of H onto C; see [31]. The following
property of PC is well known and useful:

⟨x− PCx, y − PCx⟩ ≤ 0, ∀x ∈ H, y ∈ C.

For each x, y, z ∈ H, the following facts are valid for inner product
spaces,

(2.1) ∥αx+ (1− α)y∥2 = α ∥x∥2 + (1− α) ∥y∥2 − α(1− α) ∥x− y∥2 ,

and

∥αx+ βy + γz∥2 = α ∥x∥2 + β ∥y∥2 + γ ∥z∥2(2.2)
− αβ ∥x− y∥2 − αγ ∥x− z∥2 − βγ ∥y − z∥2 ,

for any α, β, γ ∈ [0, 1] such that α+ β + γ = 1; see [25, 32].
We also use the following lemmas for proving the main theorems.

Lemma 2.3 ([30]). Let C be a closed convex subset of a Hilbert space
H and T : C → C be a nonexpansive mapping. Then, U := I − T is
demiclosed, that is, xn ⇀ x0 and Uxn → y0 imply Ux0 = y0.

Lemma 2.4 ([15, 37]). Let {an} be a sequence of nonnegative real num-
bers satisfying the following relation:

an+1 ≤ (1− αn)an + αnbn + cn, ∀n ∈ N,

where {αn}, {bn} and {cn} are sequences of real numbers satisfying

(i) {αn} ⊂ [0, 1],
∞∑
i=1

αn = ∞;

(ii) lim supn→∞ bn ≤ 0;
(iii) cn ≥ 0,

∞∑
i=1

cn <∞.

Then, an → 0 as n→ ∞.
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3. Main Results

In this section, we start by introducing the assumptions and the mod-
ified inertial algorithm that will be used to provide our main results.

(A1) A : H1 → H1 is a η-inverse strongly monotone operator;
(A2) B : H1 → 2H1 is a maximal monotone operator;
(A3) L : H1 → H2 is a bounded linear operator;
(A4) T : H2 → H2 is a nonexpansive mapping;
(A5) S : H1 → H1 is a nonexpansive mapping;
(A6) f : H1 → H1 is a contraction mapping with coefficient ν ∈

(0, 1).
Algorithm 3.1. Let {αn}, {δn}, {θn} and {βn} be sequences in (0, 1)
with αn + δn + θn = 1 and the initial x0, x1 ∈ H1 be arbitrary, define

zn = xn + µn(xn − xn−1),

wn = JBλ (I − λA) (zn − γnL
∗(I − T )Lzn) ,

yn = βnzn + (1− βn)wn,

xn+1 = αnf(xn) + δnxn + θnSyn, ∀n ∈ N,
where {µn} ⊂ [0, µ) with µ ∈ [0, 1), λ ∈ (0, η) and {γn} is depend on
ψn ∈ [a, b] ⊂ (0, 1) by

γn =

{
ψn∥(I−T )Lzn∥2

∥L∗(I−T )Lzn∥2
, if L∗(I − T )Lzn ̸= 0;

γ, if otherwise,
where γ is any nonnegative value.
Remark 3.2. The sequence {γn} is bounded; see [26] for more detail.

Now, we will present the strong convergence theorem, by using the
above assumptions and Algorithm 3.1.
Theorem 3.3. Let H1 and H2 be two real Hilbert spaces. Let {xn} be
generated by Algorithm 3.1. Suppose that the assumptions (A1)-(A6)
hold, Ω ̸= ∅ and the following control conditions are satisfied:

(i) lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞;

(ii) 0 < a ≤ δn and 0 < a ≤ θn;
(iii) 0 < b1 ≤ βn ≤ b2 < 1;
(iv) lim

n→∞

µn
αn

∥xn − xn−1∥ = 0.

Then, {xn} converges strongly to p ∈ Ω, where p = PΩf(p).
Proof. First, we prove that the sequence {xn} is bounded. Let z ∈ Ω.
Then z ∈ F (S), z ∈ (A+ B)−10 and z ∈ L−1F (T ), imply that Sz = z,
JBλ (I − λA)z = z and TLz = Lz.
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Since T is nonexpansive, by Lemma 2.1(ii) we have (I − T ) is 1
2 -ism.

That is,

⟨(I − T )Lzn − (I − T )Lz, Lzn − Lz⟩ ≥ 1

2
∥(I − T )Lzn − (I − T )Lz∥2 ,

for each n ∈ N. By TLz = Lz, the inequality is reduced to

(3.1) ⟨Lzn − TLzn, Lzn − Lz⟩ ≥ 1

2
∥(I − T )Lzn∥2 .

By using (3.1), we obtain the following relations

∥wn − z∥2 =
∥∥JBλ (I − λA) (zn − γnL

∗(I − T )Lzn)− z
∥∥2(3.2)

≤ ∥(zn − z)− γnL
∗(I − T )Lzn∥2

≤ ∥zn − z∥2 − 2γn ⟨zn − z, L∗(I − T )Lzn⟩

+ γ2n ∥L∗(I − T )Lzn∥2

= ∥zn − z∥2 − 2γn ⟨Lzn − Lz, Lzn − TLzn⟩

+ γ2n ∥L∗(I − T )Lzn∥2

≤ ∥zn − z∥2 − γn ∥(I − T )Lzn∥2 + γ2n ∥L∗(I − T )Lzn∥2

= ∥zn − z∥2 − γn

(
∥(I − T )Lzn∥2 − γn ∥L∗(I − T )Lzn∥2

)
,

for each n ∈ N. By the definition of γn, we get

γn

(
∥(I − T )Lzn∥2 − γn ∥L∗(I − T )Lzn∥2

)
≥ 0.

Thus, from (3.2), we have
(3.3) ∥wn − z∥ ≤ ∥zn − z∥ .

Next, by the definition of yn and (3.3), we obtain
∥yn − z∥ ≤ βn ∥zn − z∥+ (1− βn) ∥wn − z∥(3.4)

≤ βn ∥zn − z∥+ (1− βn) ∥zn − z∥
= ∥zn − z∥ ,

for each n ∈ N. Now, by condition (iv), we see that
∥zn − z∥ ≤ ∥xn − z∥+ µn ∥xn − xn−1∥(3.5)

= ∥xn − z∥+ αn
µn
αn

∥xn − xn−1∥

≤ ∥xn − z∥+ αnK1,

for some K1 > 0. It follows by using (3.5) that
(3.6) ∥yn − z∥ ≤ ∥xn − z∥+ αnK1.
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We use (3.6) and the definition of xn+1, we have
∥xn+1 − z∥ = ∥αnf(xn) + δnxn + θnSyn − z∥(3.7)

≤ αn ∥f(xn)− z∥+ δn∥xn − z∥+ θn∥Syn − z∥
≤ αn ∥f(xn)− f(z)∥+ αn ∥f(z)− z∥+ δn∥xn − z∥
+ θn∥yn − z∥

≤ αnν ∥xn − z∥+ αn ∥f(z)− z∥+ δn∥xn − z∥
+ θn (∥xn − z∥+ αnK1)

≤ (αnν + δn + θn) ∥xn − z∥+ αn (∥f(z)− z∥+K1)

= (1− αn(1− ν)) ∥xn − z∥

+ αn(1− ν)

(
∥f(z)− z∥+K1

1− ν

)
≤ max

{
∥xn − z∥ , ∥f(z)− z∥+K1

1− ν

}
...

≤ max

{
∥x1 − z∥ , ∥f(z)− z∥+K1

1− ν

}
,

for each n ∈ N. Thus, we get {∥xn − z∥} is a bounded sequence, implies
that {xn} is bounded. Consequently, {zn}, {wn}, {yn} and {f(xn)} are
also bounded.

Next, we note that PΩf(·) is a contraction mapping. Let p be a unique
fixed point of PΩf(·), that is p = PΩf(p). For each n ∈ N,

∥zn − p∥2 = ∥xn + µn(xn − xn−1)− p∥2
(3.8)

≤ ∥xn − p∥2 + µ2n∥xn − xn−1∥2 + 2µn ⟨xn − p, xn − xn−1⟩

≤ ∥xn − p∥2 + µ2n∥xn − xn−1∥2 + 2µn∥xn − p∥∥xn − xn−1∥.

By using (3.8), we have

∥xn+1 − p∥2 = ⟨αnf(xn) + δnxn + θnSyn − p, xn+1 − p⟩
= αn ⟨f(xn)− f(p), xn+1 − p⟩+ αn ⟨f(p)− p, xn+1 − p⟩
+ δn ⟨xn − p, xn+1 − p⟩+ θn ⟨Syn − p, xn+1 − p⟩

≤ αn
2

(
∥f(xn)− f(p)∥2 + ∥xn+1 − p∥2

)
+
δn
2

(
∥xn − p∥2 + ∥xn+1 − p∥2

)
+
θn
2

(
∥Syn − p∥2 + ∥xn+1 − p∥2

)
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+ αn ⟨f(p)− p, xn+1 − p⟩

≤
(
αnν

2

2
+
δn
2

)
∥xn − p∥2 + θn

2
∥zn − p∥2

+
αn + δn + θn

2
∥xn+1 − p∥2

+ αn ⟨f(p)− p, xn+1 − p⟩

≤
(
αnν

2 + δn + θn
2

)
∥xn − p∥2 + 1

2
∥xn+1 − p∥2

+
θnµ

2
n

2
∥xn − xn−1∥2 + θnµn ∥xn − p∥ ∥xn − xn−1∥

+ αn ⟨f(p)− p, xn+1 − p⟩ ,
for each n ∈ N. Then,

∥xn+1 − p∥2 ≤
(
1− αn(1− ν2)

)
∥xn − p∥2 + µ2n ∥xn − xn−1∥2

(3.9)

+ 2µn ∥xn − p∥ ∥xn − xn−1∥+ 2αn ⟨f(p)− p, xn+1 − p⟩

≤
(
1− αn(1− ν2)

)
∥xn − p∥2

+ µn ∥xn − xn−1∥ (µn ∥xn − xn−1∥+ 2 ∥xn − p∥)
+ 2αn ⟨f(p)− p, xn+1 − p⟩

≤
(
1− αn(1− ν2)

)
∥xn − p∥2

+K2µn ∥xn − xn−1∥+ 2αn ⟨f(p)− p, xn+1 − p⟩ ,

where K2 = 3 supn {µ ∥xn − xn−1∥ , ∥xn − p∥} > 0. Thus,

(3.10) ∥xn+1 − p∥2 ≤
(
1− αn(1− ν2)

)
∥xn − p∥2 + αn(1− ν2)Tn,

where Tn =
K2

1− ν2
µn
αn

∥xn − xn−1∥+
2

1− ν2
⟨f(p)− p, xn+1 − p⟩.

Now, we consider the following two cases.

Case 1: Suppose that there exists n0 ∈ N such that {∥xn − p∥}
is monotonically non-increasing. Since {∥xn − p∥} is bounded, it is a
convergent sequence.

Consider the following relation, by using (2.1) and (3.2), we have

∥yn − p∥2 = ∥βnzn + (1− βn)wn − p∥2
(3.11)

= βn∥zn − p∥2 + (1− βn)∥wn − p∥2

− βn(1− βn)∥zn − wn∥2

≤ βn∥zn − p∥2 + (1− βn)∥wn − p∥2
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≤ βn∥zn − p∥2 + (1− βn)∥zn − p∥2

− (1− βn)γn

(
∥(I − T )Lzn∥2 − γn ∥L∗(I − T )Lzn∥2

)
= ∥zn − p∥2

− (1− βn)γn

(
∥(I − T )Lzn∥2 − γn ∥L∗(I − T )Lzn∥2

)
,

for each n ∈ N. Furthermore, from (3.5) we have

∥zn − p∥2 = ∥xn − p∥2 + 2αnK1∥xn − p∥+ α2
nK

2
1(3.12)

= ∥xn − p∥2 + αn
(
2K1∥xn − p∥+ αnK

2
1

)
= ∥xn − p∥2 + αnK3,

where K3 = supn
{
2K1∥xn − p∥+ αnK

2
1

}
> 0, for each n ∈ N.

By using (2.2), (3.11) and (3.12), we obtain

∥xn+1 − p∥2
(3.13)

= ∥αn (f(xn)− p) + δn(xn − p) + θn(Syn − p)∥2

≤ αn ∥f(xn)− p∥2 + δn∥xn − p∥2 + θn∥Syn − p∥2

− αnδn ∥f(xn)− xn∥2 − αnθn ∥f(xn)− Syn∥2

− δnθn∥xn − Syn∥2

≤ αn ∥f(xn)− p∥2 + δn∥xn − p∥2 + θn∥Syn − p∥2

≤ αn ∥f(xn)− p∥2 + δn∥xn − p∥2 + θn∥yn − p∥2

≤ αn ∥f(xn)− p∥2 + δn∥xn − p∥2 + θn∥zn − p∥2

− θn(1− βn)γn

(
∥(I − T )Lzn∥2 − γn ∥L∗(I − T )Lzn∥2

)
≤ αn ∥f(xn)− p∥2 + δn∥xn − p∥2 + θn∥xn − p∥2 + αnθnK3

− θn(1− βn)γn

(
∥(I − T )Lzn∥2 − γn ∥L∗(I − T )Lzn∥2

)
,

for each n ∈ N. Then,

θn(1− βn)γn

(
∥(I − T )Lzn∥2 − γn ∥L∗(I − T )Lzn∥2

)(3.14)

≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αn ∥f(xn)− p∥2 + αnθnK3

≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αn

(
∥f(xn)− p∥2 +K3

)
.
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Consequently, by condition (i), (ii) and (iii), we get

γn

(
∥(I − T )Lzn∥2 − γn ∥L∗(I − T )Lzn∥2

)
→ 0,

as n→ ∞. Furthermore, by the definition of γn, we have

γn

(
∥(I − T )Lzn∥2 − γn ∥L∗(I − T )Lzn∥2

)
= ψn(1−ψn)

∥(I − T )Lzn∥4

∥L∗(I − T )Lzn∥2
.

This implies

ψn(1− ψn)
∥(I − T )Lzn∥4

∥L∗(I − T )Lzn∥2
→ 0,

as n→ ∞. Since ψn ∈ [a, b] ⊂ (0, 1), it follows that

(3.15) lim
n→∞

∥(I − T )Lzn∥2

∥L∗(I − T )Lzn∥
= 0.

In addition, by the fact ∥L∗(I − T )Lzn∥ ≤ ∥L∗∥ ∥(I − T )Lzn∥, implies

∥(I − T )Lzn∥ ≤ ∥L∗∥ ∥(I − T )Lzn∥2

∥L∗(I − T )Lzn∥
,

for each n ∈ N. Thus, by (3.15), we get
(3.16) lim

n→∞
∥(I − T )Lzn∥ = 0,

and also
(3.17) lim

n→∞
∥L∗(I − T )Lzn∥ = 0.

From the following relation
∥xn+1 − p∥2 ≤ αn ∥f(xn)− p∥2 + δn∥xn − p∥2 + θn∥Syn − p∥2(3.18)

− αnδn∥f(xn)− p∥2 − αnθn∥f(xn)− Syn∥2

− δnθn∥xn − Syn∥2,
for each n ∈ N, which implies that

δnθn∥xn − Syn∥2 ≤ αn ∥f(xn)− p∥2 + δn∥xn − p∥2(3.19)
+ θn∥yn − p∥2 − ∥xn+1 − p∥2 .

Moreover, by (3.4) and (3.12), we know that
∥yn − p∥2 ≤ ∥zn − p∥2 ≤ ∥xn − p∥2 + αnK3.

Then, from (3.19), we obtain
δnθn∥xn − Syn∥2 ≤ αn ∥f(xn)− p∥2 + δn∥xn − p∥2(3.20)

+ θn∥xn − p∥2 + αnθnK3 − ∥xn+1 − p∥2

≤ αn

(
∥f(xn)− p∥2 +K3

)
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+ ∥xn − p∥2 − ∥xn+1 − p∥2 .

Hence, by conditions (i) and (ii), we have
(3.21) lim

n→∞
∥xn − Syn∥ = 0.

Next, we will show that lim
n→∞

∥yn − xn∥ = 0. Consider

∥yn − xn∥ = ∥βnzn + (1− βn)wn − xn∥(3.22)
≤ βn∥zn − xn∥+ (1− βn)∥wn − xn∥,

for each n ∈ N. In the first term of (3.22), we obtain
∥zn − xn∥ = ∥xn + µn(xn − xn−1)− xn∥(3.23)

≤ αn
µn
αn

∥xn − xn−1∥ .

By conditions (i) and (iv), we get
(3.24) lim

n→∞
∥zn − xn∥ = 0.

And, in the second term of (3.22), we use the following relation
(3.25) ∥wn − xn∥ ≤ ∥wn − zn∥+ ∥zn − xn∥,
for each n ∈ N. It remains to show that ∥wn − zn∥ → 0, as n → ∞.
Consider

∥yn − p∥2 = ∥βn(zn − p) + (1− βn)(wn − p)∥2(3.26)
≤ βn∥zn − p∥2 + (1− βn)∥wn − p∥2

− βn(1− βn)∥zn − wn∥2

≤ ∥zn − p∥2 − βn(1− βn)∥zn − wn∥2,

for each n ∈ N. From the relation in (3.13), we use (3.12) and (3.26), it
follows that

∥xn+1 − p∥2 ≤ αn ∥f(xn)− p∥2 + δn∥xn − p∥2 + θn∥yn − p∥2(3.27)
≤ αn ∥f(xn)− p∥2 + δn∥xn − p∥2 + θn∥zn − p∥2

− θnβn(1− βn)∥zn − wn∥2

≤ αn ∥f(xn)− p∥2 + δn∥xn − p∥2 + θn∥xn − p∥2

+ θnαnK3 − θnβn(1− βn)∥zn − wn∥2,
which implies that

θnβn(1− βn)∥zn − wn∥2
(3.28)

≤ αn ∥f(xn)− p∥2 + θnαnK3 + ∥xn − p∥2 − ∥xn+1 − p∥2
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≤ αn

(
∥f(xn)− p∥2 +K3

)
+ ∥xn − p∥2 − ∥xn+1 − p∥2 .

By using condition (i), (ii) and (iii), we get

(3.29) lim
n→∞

∥zn − wn∥ = 0.

From (3.25), by using (3.24) and (3.29), we obtain

(3.30) lim
n→∞

∥wn − xn∥ = 0.

Substituting (3.24) and (3.30) in (3.22) we obtain

(3.31) lim
n→∞

∥yn − xn∥ = 0.

Moreover, by using (3.21) and (3.31), we get

(3.32) ∥yn − Syn∥ ≤ ∥yn − xn∥+ ∥xn − Syn∥ → 0,

as n→ ∞.
Using the definition of xn+1, we have

∥xn+1 − xn∥ = ∥αnf(xn) + δnxn + θnSyn − xn∥(3.33)
≤ αn ∥f(xn)− xn∥+ θn ∥Syn − xn∥ ,

for each n ∈ N. By using (3.21) and condition (i), we obtain

(3.34) lim
n→∞

∥xn+1 − xn∥ = 0.

Now, the sequence {xn} is bounded on H1, there exists a subsequence
{xni} of {xn} converges weakly to x∗ ∈ H1. Next, we will show that
x∗ ∈ Ω.

To show x∗ ∈ F (S), we use Lemma 2.3. Since yni ⇀ x∗, from (3.32)
we have x∗ ∈ F (S).

Next, we show that x∗ ∈ (A+B)−10. Consider

∥∥x∗ − JBλ (I − λA)x∗
∥∥2(3.35)

≤
〈
x∗ − JBλ (I − λA)x∗, x∗ − xni

〉
+
〈
x∗ − JBλ (I − λA)x∗, xni − JBλ (I − λA)xni

〉
+
〈
x∗ − JBλ (I − λA)x∗, JBλ (I − λA)xni − JBλ (I − λA)x∗

〉
,

for each i ∈ N. We see that∥∥wn − JBλ (I − λA)xn
∥∥

≤
∥∥JBλ (I − λA) (zn − γnL

∗(I − T )Lzn)− JBλ (I − λA)xn
∥∥

≤ ∥zn − xn∥+ γn ∥L∗(I − T )Lzn∥ ,
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for each n ∈ N. By (3.17) and (3.23), we get
(3.36) lim

n→∞

∥∥wn − JBλ (I − λA)xn
∥∥ = 0.

Observe that the following inequality∥∥xn − JBλ (I − λA)xn
∥∥ ≤ ∥xn−zn∥+∥zn−wn∥+∥wn−JBλ (I−λA)xn∥,

for each n ∈ N. By using (3.23), (3.29) and (3.36) we have
lim
n→∞

∥∥xn − JBλ (I − λA)xn
∥∥ = 0.

Also the subsequence {xni}, we have
(3.37) lim

i→∞

∥∥xni − JBλ (I − λA)xni

∥∥ = 0.

From above (3.35), by using (3.37) and together with xni ⇀ x∗, we
obtain

lim
i→∞

∥∥x∗ − JBλ (I − λA)x∗
∥∥ = 0.

It follows that, x∗ = JBλ (I − λA)x∗ and hence x∗ ∈ (A+B)−10.

Next, we show that Lx∗ ∈ F (T ). Similarly, consider
∥Lx∗ − TLx∗∥2 ≤ ⟨Lx∗ − TLx∗, Lx∗ − Lxni⟩(3.38)

+ ⟨Lx∗ − TLx∗, Lxni − TLxni⟩
+ ⟨Lx∗ − TLx∗, TLxni − TLx∗⟩ ,

for each i ∈ N. Now, we have the following inequality,
∥(I − T )Lxn∥ ≤ ∥(I − T )Lxn − (I − T )Lzn∥+ ∥(I − T )Lzn∥

≤ ∥Lxn − Lzn∥+ ∥TLxn − TLzn∥+ ∥(I − T )Lzn∥
≤ 2 ∥L∥ ∥xn − zn∥+ ∥(I − T )Lzn∥ ,

for each n ∈ N. Then, by (3.16) and (3.23), we have
lim
n→∞

∥(I − T )Lxn∥ = 0.

And, we also have
lim
i→∞

∥(I − T )Lxni∥ = 0.

In addition, by using the linearity and continuity of L, Lxni ⇀ Lx∗, as
i→ ∞. Thus, from (3.38) we get

lim
i→∞

∥Lx∗ − TLx∗∥ = 0.

Therefore, Lx∗ = TLx∗, implies Lx∗ ∈ F (T ). Consequently, we obtain
x∗ ∈ Ω.

Finally, we prove that {xn} converges strongly to p = PΩf(p). Now,
we know that the sequence {xn} is bounded, and we have from (3.34)
that ∥xn+1 − xn∥ → 0, as n → ∞. With loss of generality, we may
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assume that a subsequence {xni+1} of {xn+1} converges weakly to x∗ ∈
H1. Thus, we obtain

lim sup
n→∞

2

1− ν2
⟨f(p)− p, xn+1 − p⟩ = lim

i→∞

2

1− ν2
⟨f(p)− p, xni+1 − p⟩

(3.39)

=
2

1− ν2
⟨f(p)− p, x∗ − p⟩

≤ 0.

By using (3.39) and together with condition (iv) we get

lim sup
n→∞

(
K2

1− ν2
µn
αn

∥xn − xn−1∥+
2

1− ν2
⟨f(p)− p, xn+1 − p⟩

)
≤ 0.

From (3.9), by using Lemma 2.4, we can conclude that ∥xn − p∥ → 0,
as n→ ∞. Thus xn → p, as n→ ∞.

Case 2: Suppose that {∥xn − p∥} is not monotonically decreasing
sequence. Set Γn = ∥xn − p∥, ∀n ∈ N and let τ : N → N be a mapping
for all n ≥ n0 (for some n0 large enough) by

τ(n) := max {k ∈ N : k ≤ n, Γk ≤ Γk+1} .
Then, we have {τ(n)} is a nondecreasing sequence, with τ(n) → ∞ as
n→ ∞ and

0 ≤ Γτ(n) ≤ Γτ(n)+1, ∀n ≥ n0.

Obviously, we get
∥∥xτ(n) − p

∥∥2 − ∥∥xτ(n)+1 − p
∥∥2 ≤ 0, for each n ≥ n0.

From the relation in (3.14), we obtain

θτ(n)(1− βτ(n))γτ(n)

(∥∥(I − T )Lzτ(n)
∥∥2 − γτ(n)

∥∥L∗(I − T )Lzτ(n)
∥∥2)(3.40)

≤
∥∥xτ(n) − p

∥∥2 − ∥∥xτ(n)+1 − p
∥∥2 + ατ(n)

(∥∥f(xτ(n))− p
∥∥2 +K3

)
≤ ατ(n)

(∥∥f(xτ(n))− p
∥∥2 +K3

)
,

for each n ≥ n0. Similar as in Case 1, we obtain
lim
n→∞

∥∥(I − T )Lzτ(n)
∥∥ = 0,

lim
n→∞

∥∥L∗(I − T )Lzτ(n)
∥∥ = 0,

lim
n→∞

∥∥xτ(n)+1 − xτ(n)
∥∥ = 0

and

lim sup
n→∞

(
K2

1− ν2
µτ(n)

ατ(n)
∥xτ(n) − xτ(n)−1∥+

2

1− ν2
〈
f(p)− p, xτ(n)+1 − p

〉)
≤ 0.
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Since the sequence {xτ(n)} is bounded, we can find a subsequence
of {xτ(n)}, still denoted by {xτ(n)}, which converges weakly to x∗ ∈
F (S) ∩ (A+B)−10 ∩ L−1F (T ). From (3.9), it follows that∥∥xτ(n)+1 − p

∥∥2 ≤ (
1− ατ(n)(1− ν2)

) ∥∥xτ(n) − p
∥∥2 + ατ(n)(1− ν2)Tτ(n),

where Tτ(n) =
K2

1− ν2
µτ(n)

ατ(n)
∥xτ(n)−xτ(n)−1∥+

2

1− ν2
〈
f(p)− p, xτ(n)+1 − p

〉
,

for each n ≥ n0. Consequently, we have
ατ(n)(1− ν2)

∥∥xτ(n) − p
∥∥2 ≤ ∥∥xτ(n) − p

∥∥2 − ∥∥xτ(n)+1 − p
∥∥2(3.41)

+ ατ(n)(1− ν2)Tτ(n)

≤ ατ(n)(1− ν2)Tτ(n)

By ατ(n)(1− ν2) > 0, from (3.41) we get

lim sup
n→∞

∥∥xτ(n) − p
∥∥2 ≤ 0.

This implies that
lim
n→∞

∥∥xτ(n) − p
∥∥2 = 0,

and also
(3.42) lim

n→∞

∥∥xτ(n) − p
∥∥ = 0.

Now, we use lim
n→∞

∥∥xτ(n)+1 − xτ(n)
∥∥ = 0 and (3.42), it follows that

(3.43)
∥∥xτ(n)+1 − p

∥∥ ≤
∥∥xτ(n)+1 − xτ(n)

∥∥+
∥∥xτ(n) − p

∥∥ → 0,

as n → ∞. Furthermore, if τ(n) < n, we see that Γτ(n) ≤ Γτ(n)+1,
because Γj ≥ Γj+1 for τ(n) + 1 ≤ j ≤ n. As a consequence, we have

0 ≤ Γn

≤ max
{
Γτ(n),Γτ(n)+1

}
= Γτ(n)+1,

for each n ≥ n0. By using (3.43), we can conclude that lim
n→∞

Γn = 0.
Therefore, we obtain the sequence {xn} converges strongly to p. This
completes the proof. □
Remark 3.4. (a) ([29]) The condition (iv) is easily implemented

in numerical computation because we can find the valued of
∥xn − xn−1∥ before choosing µn. Indeed, we can choose the
parameter µn such that 0 ≤ µn ≤ µ̄n, where

µ̄n =

min

{
µ,

ωn
∥xn − xn−1∥

}
, if xn ̸= xn−1;

µ, if otherwise,
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where ωn is a positive sequence such that ωn = o(αn).
(b) The following choice is the special case of (a); we choose αn =

1

n+ 1
, ωn =

1

(n+ 1)2
and µ =

n− 1

n+ ν − 1
∈ [0, 1). Then, we

have

µ̄n =


min

{
n− 1

n+ ν − 1
,

1

(n+ 1)2∥xn − xn−1∥

}
, if xn ̸= xn−1;

n− 1

n+ ν − 1
, if otherwise.

(c) If S := I (the identity operator) and A := 0 (the zero operator),
then Problem (1.11) reduces to Problem (1.8). And, if L := I
and A := 0, then we observe that Problem (1.11) reduces to a
type of common fixed points of nonexpansive mappings; see [18]
for more information.

4. Applications

In this section, we discuss some applications of the problem (1.11) via
Theorem 3.3.

4.1. Split feasibility problem. Now, we consider the normal cone to
C at u ∈ C is defined as

NC(u) = {z ∈ H : ⟨z, y − u⟩ ≤ 0, ∀y ∈ C},

where C is a nonempty closed convex subset of H. Notice that NC is a
maximal monotone operator. Then, when we set B := NC : H1 → 2H1 ,
we get JBλ =: PC . It follows that F (JBλ ) = F (PC) = C. By the setting
T =: PQ, we can verify that the problem (1.8) is reduced to the split
feasibility problem (1.1). By considering A := 0 (the zero operator), the
problem (1.11) is reduced to a problem of finding a point

x∗ ∈ F (S) ∩ C ∩ L−1Q =: ΩS,C,Q

Thus, we obtain the following result.

Algorithm 4.1. Let {αn}, {δn}, {θn} and {βn} be sequences in (0, 1)
with αn + δn + θn = 1 and the initial x0, x1 ∈ H1 be arbitrary, define

zn = xn + µn(xn − xn−1),

wn = PC (zn − γnL
∗(I − PQ)Lzn) ,

yn = βnzn + (1− βn)wn,

xn+1 = αnf(xn) + δnxn + θnSyn, ∀n ∈ N,
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where {µn} ⊂ [0, µ) with µ ∈ [0, 1) and {γn} is depend on ψn ∈ [a, b] ⊂
(0, 1) by

γn =


ψn∥(I−PQ)Lzn∥2

∥L∗(I−PQ)Lzn∥2 , if L∗(I − PQ)Lzn ̸= 0;

γ, if otherwise,

where γ is any nonnegative value.

Theorem 4.2. Let C and Q be nonempty colsed convex subsets of real
Hilbert spaces H1 and H2, respectively. Let {xn} be generated by Al-
gorithm 4.1. Suppose that the assumptions (A3), (A5) and (A6) hold,
ΩS,C,Q ̸= ∅ and the following control conditions are satisfied:

(i) lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞;

(ii) 0 < a ≤ δn and 0 < a ≤ θn;
(iii) 0 < b1 ≤ βn ≤ b2 < 1;
(iv) lim

n→∞

µn
αn

∥xn − xn−1∥ = 0.

Then, {xn} converges strongly to p ∈ ΩS,C,Q, where p = PΩS,C,Q
f(p).

4.2. Split monotone variational inclusion problem. We consider
a η̃-inverse strongly monotone Ã : H1 → H1 and maximal monotone
operator B̃ : H2 → 2H2 . By setting T := J B̃λ (I − λÃ), we obtain
F (T ) := (Ã + B̃)−10. In this case, we can verify that the problem
(1.11) is reduced to the problem of finding a common solution of the
split monotone variational inclusion problem [24] and the fixed point
problem. That is, we consider a problem of finding a point

x∗ ∈ F (S) ∩ (A+B)−10 ∩ L−1(Ã+ B̃)−10 =: ΩS,A,B

By the above setting, we get the result follows from Theorem 3.3.

Algorithm 4.3. Let {αn}, {δn}, {θn} and {βn} be sequences in (0, 1)
with αn + δn + θn = 1 and the initial x0, x1 ∈ H1 be arbitrary, define

zn = xn + µn(xn − xn−1),

wn = JBλ (I − λA)
(
zn − γnL

∗(I − J B̃λ (I − λÃ))Lzn

)
,

yn = βnzn + (1− βn)wn,

xn+1 = αnf(xn) + δnxn + θnSyn, ∀n ∈ N,
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where {µn} ⊂ [0, µ) with µ ∈ [0, 1), λ ∈ (0,min {η, η̃}) and {γn} is
depend on ψn ∈ [a, b] ⊂ (0, 1) by

γn =


ψn

∥∥∥(I−JB̃
λ (I−λÃ))Lzn

∥∥∥2∥∥∥L∗(I−JB̃
λ (I−λÃ))Lzn

∥∥∥2 , if L∗(I − J B̃λ (I − λÃ))Lzn ̸= 0;

γ, if otherwise,
where γ is any nonnegative value.
Theorem 4.4. Let H1 and H2 be two real Hilbert spaces. Let Ã :
H1 → H1 be a η̃-ism and B̃ : H2 → 2H2 be maximal monotone operator.
Let {xn} be generated by Algorithm 4.1. Suppose that the assumptions
(A1)-(A3) and (A5)-(A6) hold, ΩS,A,B ̸= ∅ and the following control
conditions are satisfied:

(i) lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞;

(ii) 0 < a ≤ δn and 0 < a ≤ θn;
(iii) 0 < b1 ≤ βn ≤ b2 < 1;
(iv) lim

n→∞

µn
αn

∥xn − xn−1∥ = 0.

Then, {xn} converges strongly to p ∈ ΩS,A,B, where p = PΩS,A,B
f(p).

4.3. Split common fixed point problem. Let V : H1 → H1 be
a nonexpansive mapping. Then, by Lemma 2.1(ii), we know that A :=
I−V is a 1

2 -ism. Moreover, since Ax∗ = 0 if and only if x∗ ∈ F (V ). From
case B := 0 (the zero operator), we get the problem (1.11) is reduced
to the problem of finding a common solution of the split common fixed
point problem [10] and the fixed point problem. That is, we consider a
problem of finding a point

x∗ ∈ F (S) ∩ F (V ) ∩ L−1F (T ) =: ΩS,V,T .

By applying Theorem 3.3, we obtain the following result.
Algorithm 4.5. Let {αn}, {δn}, {θn} and {βn} be sequences in (0, 1)
with αn + δn + θn = 1 and the initial x0, x1 ∈ H1 be arbitrary, define

zn = xn + µn(xn − xn−1),

wn = ((1− λ)I + λV ) (zn − γnL
∗(I − T )Lzn) ,

yn = βnzn + (1− βn)wn,

xn+1 = αnf(xn) + δnxn + θnSyn, ∀n ∈ N,

where {µn} ⊂ [0, µ) with µ ∈ [0, 1), λ ∈ (0, 12) and {γn} is depend on
ψn ∈ [a, b] ⊂ (0, 1) by

γn =

{
ψn∥(I−T )Lzn∥2

∥L∗(I−T )Lzn∥2
, if L∗(I − T )Lzn ̸= 0;

γ, if otherwise,
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where γ is any nonnegative value.

Theorem 4.6. Let H1 and H2 be two real Hilbert spaces. Let V : H1 →
H1 be a nonexpansive mapping. Let {xn} be generated by Algorithm
4.5. Suppose that the assumptions (A3)-(A6) hold, ΩS,V,T ̸= ∅ and the
following control conditions are satisfied:

(i) lim
n→∞

αn = 0 and
∞∑
n=1

αn = ∞;

(ii) 0 < a ≤ δn and 0 < a ≤ θn;
(iii) 0 < b1 ≤ βn ≤ b2 < 1;
(iv) lim

n→∞

µn
αn

∥xn − xn−1∥ = 0.

Then, {xn} converges strongly to p ∈ ΩS,V,T , where p = PΩS,V,T
f(p).

5. Conclusions

In this work, we present a new algorithm for finding a common solu-
tion of a class of split feasibility problems and fixed point problems of a
nonexpansive mapping in Hilbert spaces, the problem (1.11). We suggest
the modified algorithm including the inertial and Mann viscosity-type
methods, Algorithm 3.1. By providing suitable control conditions to
the process, we obtain the strong convergence theorem of the proposed
algorithm (Theorem 3.3). In application of our results, we show that
the proposed algorithms are applied to split feasibility problem, split
monotone variational inclusion problem and split common fixed point
problem.
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