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Non-Instantaneous Impulsive Fractional Integro-Differential
Equations with State-Dependent Delay

Nadia Benkhettou', Abdelkrim Salim?  Khalida Aissani®, Mouffak Benchohra* and
Erdal Karapinar®*

ABSTRACT. This paper deals with the existence and uniqueness
of the mild solution of the fractional integro-differential equations
with non-instantaneous impulses and state-dependent delay. Our
arguments are based on the fixed point theory. Finally, an example
to confirm of the results is provided.

1. INTRODUCTION

The main objective of this work is to study the existence of mild
solutions for a class of fractional integro-differential equations with state-
dependent delay and non-instantaneous impulses described by the form

(1.1)

CD5p (9) + Zp (0) = [} a (9, 0) ¥ (0,Py(op,): P (0)) do,
VRS (Qj;ﬂj-i-l] C @,] =0,...,r,

P (19) = q)J (ﬁ’pﬁ(ﬁapﬂ)’p (’19)) ) v e (19379]]7] =1,...,v,

\ p0:B€X7

where CDg is the Caputo fractional derivative of order 0 < ( < 1, ¥ : ©x
XXE — Z,0 =[0,w],t0 > 0and n : ©xy — (—o0, v] are appropriated
functions, a : @ - R(Q = {(¥,0) € © x O : 9 > p}). (5,|]) is a real
Banach space. Here 0 = 99 = 090 < th < 01 < ¥y < -+ < 9,1 <
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oy < ¥, < Yy41 = w are pre-fixed numbers, Z : D (Z) C Z — Z is the
infinitesimal generator of an analytic semigroup {S () }y>o of uniformly
bounded linear operators on Z and ®; € C((¥;,0;] x x X E,5);j =
1,2,...,v. For any continuous function p defined on (—oo,tv] and any
¥ € ©, we denote by py the element of x given by py (¢) = p (¥ + €), for
g € (—00,0], where 3 € x to be specified later.

There have been many applications of fractional differential and inte-
gral equations including economics, engineering, neutron transport, sci-
ence, bioengineering, applied mathematics, radiative transfer, and the
kinetic theory of gases, among others [13, [16, 17]. Recent years have
seen significant progress in ordinary and partial fractional differential
equations see the papers [1-9, 14, 20, 24, 28, B&§40], and the sources
within. Moreover, fractional functional differential equations with state-
dependent delay are commonly used as models of equations in applica-
tions, and various authors have investigated these types of equations.
[10-12, 18, 26].

The study of impulsive differential equations has gained more at-
tention in recent years due to its applications. Most of the research
papers dealt with the existence of solutions for equations with instan-
taneous impulses, (for more details one can see [L15, 27, B, B5, 87]). In
[22, 29, B2, B4, B6], the authors investigated several types of impulsive
differential equations with non-instantaneous impulses.

This paper is organized into four sections. Section 2 provides some
basic notations, definitions and theorems. The existence of the mild
solutions to the problem ([L.1)) is presented in Section 4. Section 4 is
concerned with an example.

2. PRELIMINARIES

Consider the space € (0, E) of the E-valued continuous functions on
© and the Banach space L (Z) of bounded and linear operators on =.
Consider the space L! (©,Z) of Z—valued Bochner integrable functions
on © with the norm

o
|mmw=Armwmma

We denote by L* (0,R) the Banach space of the essentially bounded
measurable functions with the norm

Ip]l oo = inf{e > 0:|p (V)] <€, ae. V€ O},

Definition 2.1 ([19]). Let ( > 0 and ¥ : © — E be an integrable
function. The Riemann-Liouville integral is defined by:

¢ 17 (o)
%WW”‘F@Lﬁ<ﬂ_@k<@
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Definition 2.2 ([33]). The Caputo derivative of order ¢ for a function
¥ : © — = can be written as

1 9 gn)(e)
DS (9) = / do
MO gh v
= u™ (9),
where 9 > 0,n—1<{<n. If0< (¢ <1, then
1 A0
DS (9) = / do.
TD=FT0 Jy @ of

Definition 2.3. A function ¥ : © x y x =& — = is Carathéodory if it
verifies:

(i) for each ¥ € ©, the function ¥ (¢,-,-) : x X = — E is continu-
ous;

(ii) for each (q,w) € x x Z, the function ¥ (-,q,w) : © — = is
measurable.

In this study, we will use the proposed intuitive definition of the phase
space by Hale and Kato [21]. In particular, y will be a linear space of
functions translating (—oo, 0] into = with a seminorm ||.[|,, and verifies
the following:

(Cda,): If p: (—o0,w] — E is continuous on © and pg € X, then
Py € x and py is continuous in ¥ € © and

(2.1) o (D < e [lpoll,

where a7 > 0.
(Cda,): There exists a continuous function C () > 0 and a lo-
cally bounded function Cs (¢) > 0 in ¥ > 0 such that

(2.2) ol < C1(9) sup |lp (o)l + C2 (9) [[poll, ,
0€[0,9)
for ¥ € [0,w] and p as in (Cda, ).
(Cda,): The space x is complete.
Remark 2.4. Condition (@) in (Cdga,) is equivalent to ||3(0)] <
a1 [|B], , for all B € x.
We consider the phase space €, x LP (T, =) of Lebesgue-measurable

Y
and continuous functions § : (—00,0] — E. The seminorm in ||.|, is
given by

lell, = wp|&@n+<[wrwwa@ww)”

EE[—M,O}
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The space x = €, x LP (T, E) verifies (Cda,), (Cda,) and (Cda,). Fur-
ther, for u = 0 and p = 2, this space coincides with €y x L? (T, Z). (see
[25], for more details).

Consider the space

Pe (0, E) :{p O 5 Eped((W,91),5),5=0,1,...,v

andp( ) ( )ex1stw1thp<19):p(ﬁj),jzl,...,u}.
Obviously, Pg (0, E) is a Banach space with the norm

Ipllpe = sup [[p (9)[= -
9€0

3. EXISTENCE AND UNIQUENESS RESULTS

Definition 3.1. The function p : (—oo,tw] — Z is a mild solution of
) if po = B on (—o0, W], p|jo,w] € Pe ([0,10], =) and p verifies
)

(3.1
9 ro
0 0 ‘3:2 (19 - Q) a (Qa KV) v (Hapn(n,p,@)ap (’%)) dﬁd@?
+11 (79) /8 (0) ) (NS [Oa 191]7
b= ) PP (). Ve W0~ 12
9 ro
0 0 T2 (19 - Q) a (Qa ’%) v (van(n,pm)vp (H)) d’%d‘g
"‘Sl (79 - Qj) q)j (197pn(n,p,€)>p (19)) )
19 S (Qj70j+1]7
where

Tl(ﬂ):/oopg( )5(194 ) de.

g/ 091 pe S(z?c)dgp,
and p¢ is a probability density function defined on (0, 00), where
Ly (o
pc(s@)—cw n¢ (w <)
> 0,

so that

o)=Y (et T i n), v e (0.00).
j=1 '
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Remark 3.2. Note that {S () }y>0 is uniformly bounded i.e there exists
a constant w > 0 such that ||S (¢)| < w for all ¥ > 0.

Remark 3.3. Direct computation, as per [30], yields

(3.2) [%2 )] < Ceat™, 9 >0,
_
where C¢ o = Ta+0)
Set

T () ={n(e,€): (0,€) €O x x,n(0,§) <0}.

We always assume that 7 : © x y — (—o0, ] is continuous. In addition,
we present the following assumption:

(Cdg) The function ¥ — &y is continuous from 7 (n~) into x and there

exists a continuous and bounded function A? : 7 (n~) — (0, 00)
such that [|By||, < AP (9) 18]l for every ¥ € T (™).

Remark 3.4. Consider the constants C} and C5, where

Cy =supCi(p) and C5 =supCi(p).
0€0 0€0

Lemma 3.5 ([23]). Ifp: R — = is a function such that po = 3, then
Ipells < (C5+ A7) 185 + Cf supJs (2)]:= € [0, max{0, o}]},

foroe T (n7)UO, where A = sup AP (0).
YT (n™)
The hypotheses:

(Cdp,) There exists Iy > 0 such that for all (pp,q,) € x X E,p = 1,2

1% (9 p1,a1) = W (0, p2.a2)ll= < b [lp1 = pell, + llar — asll=]

(Cdp,) The functions ®; : (¥;, oj]xxx= = E,j = 1,..., v, are continu-
ous and there exists lg > 0 such that for all (p,,q,) € xxX=Z,p =
1,2

195 (9, p1,a1) — @5 (F,p2, 92) |z < lo [le —poll, + [l — c12||5] :

(Cdp,) For each ¥ € O, a(?,p) is measurable on [0,9] and a (V) =
esssup{|a (¢, 0)|,0 < o < ¥} is bounded on ©. The map ¥ — ay
is continuous from © to L (O, R), here, ay () = a (9, ) .

Theorem 3.6. Suppose that (Cd¢) and (Cdp,) — (Cdp,) hold, if
¢
v =wle (CT+1)+ anjw?l\y (CT+1)
<1,
then there exists a unique solution to the problem )
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Proof. Let ? = {p € Pe(E) : p(0) = 5(0) = 0} and consider the
operator G : = — = given by

9 ro
o Jo <o (79 - Q) a (Qa H) v (Hﬁﬁn(n,ﬁﬁ)aﬁ (’%)) drdo,
T, (9)5(0). 90,9
(bj <ﬁ7ﬁn(f{7ﬁm)uﬁ(’ﬂ)>) 196(19‘7'7@]']7]':1)2)"'71/7

/;9 /0g32 (9 = 0)a (0,7) W (K, Bygu, ) () ) drido

51 (0 = 0) 5 (9 By P (D))
(S (Qj719j+1]7

\

Z,po=pBandp=pon0O. Let 3: (—o0, tv] =

where p : (—o0, 0] —
= (3(0) =0 on 6.

be the extension of 3 to (—oo, w] such that 3 (¢)
Now, we shall show that operator & has a fixed point which is, in

turn, a mild solution to the problem () Let p,p* € =, we have
Case 1. For each 9 € [0,9], we get

I8 (5) (9) = & (v°) (V)]
- gae )[W(n,pn(n,pﬁ),p(m)

v (57E2(57ﬁ:)7ﬁ* ("?)) } ‘
v ro 1 B B B B
= aCc,w/O /0 (0 =) " lu (B — Bxll + [P () — P* (w)][] drde

¢
1Y * *
< an,leqf CT+Dlp—p*ll.

drdp

Case 2. For each ¥ € (V;,05],7 =1,...,v, we find

16 (p) (V) — & (p7) ()]
= @5 (9:Baegy T ) = @5 (9,550 ¥ @)
<o [IIps = Pill + [P (5) — 0" (5)]]
<lp (CT+1)[p—p7.
Case 3. For each ¥ € (9j,9j41],5 =1,...,

16 (p) (9) — & (p™) (V)|
< Hﬂ (¥ — o5) [‘bj (197577(,{,55)75(19)) —®; (19,5:}(@:)75* (79))} H

v, we obtain
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9 re
+/Qj/0 1T2 (9 — 0) a(0,%) [¥ (5, B, B () — ¥ (k, P, " ()] dredo

¢
* * o
<wle (CT + 1) [Ip —p*|| + aCc,w?

I (CF + 1>} —_—

Ly (CT + 1) [lp — 7|

1S
< I:wlcp (Cik + 1) + GCCij

From the above simulation, we conclude that

16 () =& B )llpc < ¥llp =P llpe

which implies that & is a contraction map and there exists a unique fixed
point which is the mild solution of the system ([L.1l). This completes the
proof of the theorem.

In order to get the second main result based on Krasnoselskii’s fixed
point Theorem, we give the following assumptions.

(Cdp,) The semigroup S () is compact for 9 > 0.

(Cdp,) ¥ :0O x yx x E — E satisfies the Carathéodory conditions.

(Cdp,) There exists a continuous function 6 : ©® — (0,+00) and a
continuous nondecreasing function v : R — (0, +00) such that

19 @.p,9)l < 6@ 0 (Ipll, + Iyllz) . (9.5,9) € O x x x Z,
(Cdp,) The functions ¥ — ®; (14,0, 0) are bounded with
@ = max [0 (2,0,0)]-.
j v

=1,...,

Theorem 3.7. Assume (Cd¢) and (Cdp,)—(Cdp,) hold. Ifwle (CF +1) <

1, then there exists a mild solution to the problem (|1.1).

Proof. Let G be the operator considered as in the proof of Theorem
. We introduce the decomposition &p () = &'p () +&3p (9), where

/ / 52 ) (’{’ Eﬁ(n,ﬁn) ) E (K‘)) d’{dQ
]

T (0 - o)) B, (ﬂ Fates) P 0))
if ¥ € (Q]719j+1]7] Z 1)

9 ro
To (9 = 0) @ (0, ) ¥ (4, By, P () disdo

0 0

T (9) 8(0), if 9 € [0,04],

0, if ¥ € (¥4, 04,5 > 1,
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and
9 (I)J (29 pn(np ) 5(19)> ) if ¥ € (19]79]] ] > ]-a
S (p) (W) =4 o, if ¥ € (0j,0511],7 > 1,
0, if ¥ € [0,v].
Choose

@ [la (C5 + A7) Bl + 2]
1—wlq> (Cr+1)

aCw e g v ((C5 + A?) 1Bl + (CF + 1) ) 1011 21 10,011
1—wle (CT +1) ’

_l’_

and define the set
Bu={p = Iplpc <n},

then B, is a bounded closed-convex subset in =.

In order to use Krasnoselskii’s fixed-point theorem, we divide our
proof into three steps.

Step 1: For any p € B,,, we prove that Glp+6&%p e B,.
Case 1. For all ¥ € [0,74], we obtain

}|(619+<‘52) Il

<Im @8O+ [ [0 a0 (5809 ) | e
<ol oo [ [*0- 07 00 ([P,
< @18l + aCo /O JRCEEIE

v ((C5+07) 18]+ Ciu+ 1) drdo

T lel) drdo

¢
10 * *
< w Bl +aCemev ((C5+ A7) 1Bl + (CF + 1) 1) 10lag0.0,
< p.

Case 2. For all ¥ € [¥},05),j =1,2,...,v, we have
l(&% + &%) ()]

<[ (2 Fuus 5 )

< |5 (9Bt B () = 2 (2,0.0)| + 2 (20,0

<to (s, + I91) + 0
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<lo |(C5+ A7) I8l + (CT + Du) + @
< p.
Case 3. For all ¥ € (0;,Y41],7 = 1,2,...,v, we obtain
I8 + &%) W)

< H‘Z1 (0 — 0j) @, (ﬂaﬁn(fi,ﬁ&ﬁﬁ(ﬁ)) H
+ /: /Og HTQ (0 —0)a(e, k)W (ﬁaﬁn(mwﬁ(“)) H drde,
<w [1a ((C5+07) 1Bls + (€T + D) + ']

¢
v £ AP *
+aC v (5 + A7) 185 + (CF + 1) 1) 10lao.
< p.

Step 2: Next, we will prove that &' is compact and continuous. There-
fore, 3 claims will be given.

Claim 1: &! is continuous.

Consider the sequence {p*}ren, where p* — p in B, if k — oo.

For 9 € [0,91], we get

|8 (") ) - &' (p) )

< [ [ 1m0 - ol [ (s g7 )
— 0 (K, By 0P () || dde

e [ [0~ 067 o (x ey 1)
— v (ﬁ,ﬁn(n’ﬁn),ﬁ (;@)) H drdo.
For each ¥ € [¥},05),j =1,2,...,v, we have
|& (+) ) = &' ) ()| = 0.
Further, for each ¥ € (g;,9;+1],7 = 1,2,..., v, we obtain
&' (") @) - &' () ()
<1500 = 2l || @ (985 )8 (9)) = @ (VB P O) |

- ﬁ [ 120 = el (55 g 7 ()
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-V (“ Puiep.)o P )H drde
< || (0.5 51y P () = @ (V. B0, F (0)) |

+aC<w// 0 — 0| (B ) 7 ()

-V (ﬁ,pn(,ﬁyﬁm),p (/@))’ drdo.
By the continuity of the function ®; and ¥, we have

\E%Mym—@@xmyﬂywkﬁm.

Thus, &' is continuous.

Claim 2: &' maps a bounded set into bounded sets of B,. By Step 1
1S'p[| <

Claim 3: &! maps a bounded set into equicontinuous sets of B,.
Case 1. For each ¥ € [0,91],0 < Ky < k1 < U1 and p € B,,. Then, we
have

|6 (p) (k1) = &" (p) (12)|| < 014 02 + 03,
where

Hfl k1) = T (r2) [ 12 ()],

o = ‘32 (1 = 0) = T2 (2 — o)) (0, %) ¥ (K, By, )P () ) dicdo

.

o3 —

0 Ty (51— 0)a(0) ¥ (K. Bygup B () drdo)|

o1 tends to zero as kg — k1 since S (¢#) is a uniformly continuous oper-
ator.
For o5, using (@) and (Cdp,), we have

o2 <av ((C3 +07) 811, + (Ci + D)) 6]l
X /0@ (T2 (k1 — 0) — T2 (k2 — 0)]de
v (3 +7) 1Bl + (G + 1) m) 18] 0
x /m [C /Oo e (1= 0) " pc(9) S (k1 = 0) ) dip
—C/ (52— 0 0 (9) S (k2= 0)° ) ds&} do

< av (€5 +A%) 1Bl + (CF + 1) w) 101
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e [ [ ol =07 == 0 e 15 (6= 06|
[ [ et 0 o (6 - 0 ) -5 (a0 )|

< av ((C5+87) 18lls + (CF + 1)) [0]]s
[ng/m (k1 —0)* " — (12 — 9)4_1’ do

[T et 0 e |s (6 - 0)

- S ((52 —~ 9)%) H dwdg]-

The right-hand side of the above inequality tends to zero as ko — k1.
From (Cdp,), we have

72 < aCim [ [ 0= 0| (5B B ) | e
K2

K1
< aCorv (G5 +A2) 1815+ (5 + D) Wollys [ (1= 0"

K2
As k9 — K1, 03 tends to zero.
Case 2. For each ¥ € [¥},05),7 = 1,2,...,v,9; < ko < k1 < p; and
p € B,. Then, we have
16" (p) (k1) = &' (p) (r2)| = 0.

Case 3. For each ¥ € (0;,9j4+1],7 = 1,2,...,v,0; < k2 < k1 < Vjy1,
and p € B,,. Then, we have

16 (p) (k1) — & (p) (k2|

<151 (1 = 0) = T (n2 = 0)) | [ @; (9 By B )| + 01 + 02 + 0.
By the uniform continuity of S (1), we have
lim ||Tl (k1 —0j) — %1 (k2 — )| =0, j=1,...,v

R2—K

Consequently
lim ||&" (p) (k1) — & (p) (k2)|| = 0.

KR2—K1
Thus, &' (B,) is equicontinuous.
Claim 4: The set {S! (p) () : p € B,} is relatively compact in =.
Case 1. For the interval 9 € [0,71]. Let 0 < 9 < ¢; be fixed and let A
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be a real number satisfying 0 < A < 9. For arbitrary ¢ > 0, we define
g—A 1 00
L@ =T8O +¢ [ 00 [“ences (-0 )
Q p— —
X A a (:Qa H) v (’{’7 pn(ﬁ,ﬁn)v p ("{)) dl{’d(pdg
RN 9
—es(xw) [ -0 [T pnc)s (0 00 - 20)
0 P
g p— —
X A a (:Qa H) v (K’a pn(ﬁ,ﬁn)v p (H)) dl{’d(de

Since S (V) is a compact operator, the set

Hyy = {6}\@ (p) () :p € PL(By)}

is relatively compact. Moreover,

|6 (p) (9) — B3, (p) (V)]
< C/OlH ¥ —0)" /Ow opc () HS ((19 - @)%) H

/Og la (o, ) | @ (5B, B () )| drdipd
9

o ot /OOO orc @) s (0 -0 4)

DD

/Og la (o, )| @ (B, ) B () )| drdipd

%
< wémau ((C5+ A7) 181+ (5 + 1)) 1011 [ o0c (o) e
n Nwa "
I'(1+¢)

Case 3. For the interval ¥ € (g;,9;41],7 = 1,2,...,v. Let g; < ¥ <
Yj41 be fixed and let A be a real number satisfying 0 < A < 9. For
arbitrary ¢ > 0, we define

&}y (p) (V)
=% (V- Qj) P, (ﬁ’ﬁﬁ(ﬁaﬁﬂ)’ﬁ (19)>

+ C/OlH (-0 /:o opc () S ((19 - @)%)

[
X /0 a (Qa H) v (Kvﬁn(n,ﬁnﬁﬁ(’%)) d’deOdQ

((C5+82) 1Bl + (G + 1) 1) 1610
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=% (V0 —05) P (?97577(19,519),5(19))
d—A 1 00
+es(xo) [ 0-0 [Tence)
0 P

0
<8 (0= 070 =3) [“alem) W (wFya5,).5 () drdpde
Since S (¥) is a compact operator, the set

Hyy = {6}\,¢ (p) (¥) :p € P (B}

is relatively compact. As a consequence of Claims 1 to 4 together with
the Arzela-Ascoli theorem, we can conclude that P; is completely con-
tinuous.

Step 3: We shall show that &2 is a contraction map. Let pi,ps € B,
we have

Case 1. For 9 € [0,91], we have

|(&%p1) (V) — (&%p2) (9)]| = 0.
Case 2. Let p1,p2 € B, and for ¥ € [¥},0;),j =1,2,...,v, we find
1(&%p1) (9) — (&p2) ()| < 1o (CT + 1) llp2 —m .
Case 3. Let p1,p2 € B, and for ¥ € (05,Yj41],5 = 1,2,...,v, we obtain
1(&p1) (9) — (&p2) ()] =0,

which implies that &? is a contraction mapping. As a consequence of
Krasnoselskii’s fixed point Theorem, we deduce that P; + P» has a fixed
point, which is a solution to the problem (EI)

4. AN EXAMPLE

We consider the following problem:

(4.)
' wa09w+ﬁ¢qu> J?ai(e—=0)p(o—m () (Ip (9) ), 7) do
+f0 2 COS|C| (97 )‘d@, (79 p) eENe U] 1[93’19]4-1] [0777]7
q(9,0) =q ¥, m) =0, 9 € [0, w],
q(H77)2q0(577)7 EE(—O0,0],]JE[O,W‘],
q.(0,7) = H; (0, (9 —m1 (9)m2 (Ip 9)]), 7)., 7 (9),
\ (9.p) € (9, 05] x [0, 7],
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where 0 < ( < 1,0=9p =00 <1 <o <V < - <Vp1 <o <
Y, < 9yp1 =wand a; : R — R,n; : [0,+00) — [0,+400),j = 1,2 are
continuous functions.

Set = = L? ([0, 7]) and consider Z : D (Z) C = — E by Z7 = 7" with

D(2)= {7’ € = : 7,7 are absolutely continuous, 7" € Z,7(0) = 7 (7) = 0}.
Thus
oo
Zr = an (T,Tn) T, TED(Z),
n=1
2 . : .
where 7, (p) = 1/ —sin (np), n € N is the orthogonal set of eigenvectors
T

of Z. It is well known that Z is the infinitesimal generator of an analytic
semigroup {S (V) }y>0 in = and is given by
o0
SW)T= Z e Y (1,7n) Tn, forall 7 € Z, and every J > 0.
n=1
Consequently, {S (¢)}y>0 is a uniformly bounded compact semigroup
on E. We choose x = €y x L? (T, Z) as phase space.

Set
p(0) () = a(0,7),
B(e)(v) =a0(e7),
0 92
V.Ep0)(0) = [ ar (@€ ep) ot coslp (9) ()],

D (0,8 p () (v) = Hj (0, (9 = m () n2 (l[p (D), 7), 7 ()
1 (9,8) =9 —m () n2 (1€ 0)]])-

Then the problem (BZT) can be rewritten as the abstract problem (IZT).
The following result is a direct consequence of Theorem B.17.

Proposition 4.1. Let { € x such that (H¢) holds, and let ¥ — & be
continuous on T (n~). Then there exists a mild solution of (E).

REFERENCES

1. S. Abbas, M. Benchohra and G.M. N’Guérékata, Topics in Frac-
tional Differential Equations, Springer, New York, 2012.

2. S. Abbas, M. Benchohra and G.M. N’'Guérékata, Advanced Frac-
tional Differential and Integral Equations, Nava Science Publishers,
New York, 2015.

3. R.S. Adiguzel, U. Aksoy, E. Karapinar and .M. Erhan, On the
solution of a boundary value problem associated with a fractional
differential equation, Math. Meth. Appl. Sci., (2020), pp. 1-12.



10.

11.

12.

13.

14.

15.

16.

17.

IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS 107

R.S. Adiguzel, U. Aksoy, E. Karapinar and I.M. Erhan, Unique-
ness of solution for higherorder nonlinear fractional differential
equations with multi-point and integral boundary conditions, RAC-
SAM, (2021), pp. 115-155.

H. Afshari and E. Karapinar, A discussion on the existence of posi-
tive solutions of the boundary value problems via - Hilfer fractional
derivative on b-metric spaces, Adv. Difference Equ., 616 (2020), pp.
1-11.

H. Afshari, S. Kalantari and E. Karapinar, Solution of fractional
differential equations via coupled fized point, Electron. J. Differ.
Equ., 2015 (2015), pp. 1-12.

B. Algahtani, H. Aydi, E. Karapmar and V. Rakocevic, A Solution
for Volterra Fractional Integral Equations by Hybrid Contractions,
Mathematics, 7 (2019).

E. Karapinar, A. Fulga, M. Rashid, L. Shahid and H. Aydi, Large
Contractions on QuasiMetric Spaces with an Application to Non-
linear Fractional Differential-Equations, Mathematics, 7 (2019).
E. Karapinar, H.D. Binh, N.H. Luc and N.H. Can, On continuity of
the fractional derivative of the time-fractional semilinear pseudo-
parabolic systems, Adv. Difference Equ., 70 (2021), pp.1-24.

K. Aissani and M. Benchohra, Global existence results for fractional
integro-differential equations with state-dependent delay, An. Stiint,.
Univ. Al I. Cuza lasi. Mat. (N.S.)., 62 (2016), pp. 411-422.

K. Aissani and M. Benchohra, Fxistence results for fractional
integro-differential equations with state-dependent delay, Adv. Dyn.
Syst. Appl., 9 (2014), pp. 17-30.

R.P. Agarwal, B. De Andrade and G. Siracusa, On fractional
integro-difierential equations with state-dependent delay, Comput.
Math. Appl., 62 (2011), pp. 1143-1149.

J. M. Appell, A.S. Kalitvin, and P.P. Zabrejko, Partial Integral Op-
erators and Integrodifferential Equations, 230, Marcel and Dekker,
Inc., New York, 2000.

D. Baleanu, K. Diethelm, E. Scalas and J.J. Trujillo, Fractional
Calculus Models and Numerical Methods, World Scientific Publish-
ing, New York, 2012.

M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differ-
ential Equations and Inclusions, Hindawi Publishing Corporation,
2, New York, 2006.

K.M. Case and P.F. Zweifel, Linear Transport Theory, Addison-
Wesley, Reading, MA 1967.

S. Chandrasekher, Radiative Transfer, Dover Publications, New
York, 1960.



108

18

19

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

N. BENKHETTOU, A. SALIM, K. AISSANI, M. BENCHOHRA AND

. M.A. Darwish and S.K. Ntouyas, Semilinear functional differential
equations of fractional order with state-dependent delay, Electron.
J. Differential Equations, 2009 (2009), pp. 1-10.

. L. Debnath and D. Bhatta, Integral Transforms and Their Appli-

cations(Second Edition), CRC Press, 2007.

K. Diethelm, The Analysis of Fractional Differential Equations,

Springer, Berlin, 2010.

J.K. Hale and J. Kato, Phase space for retarded equations with

infinite delay, Funk. Ekvacioj, 21 (1978), pp. 11-41.

E. Hernandez and D. O’Regan, On a new class of abstract impul-

stve differential equations, Proc. Amer. Math. Soc., 141 (2013), pp.

1641-1649.

E. Herndndez, A. Prokopczyk and L. Ladeira, A note on partial

functional differential equations with state-dependent delay, Non-

linear Anal. RWA, 7 (2006), pp. 510-519.

R. Hilfer, Applications of fractional calculus in physics, Singapore,

World Scientific, 2000.

Y. Hino, S. Murakami and T. Naito, Functional Differential Equa-

tions with Unbounded Delay, Springer-Verlag, Berlin, 1991.

V. Kavitha, P-Z. Wang and R. Murugesu, Fxistence results for neu-

tral functional fractional differential equations with state dependent-

delay, Malaya J. Math., 1 (2012), pp. 50-61.

V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of

Impulsive Differential Equations, World Scientific, NJ, 1989.

J. E. Lazreg, S. Abbas, M. Benchohra, and E. Karapinar, Impulsive

Caputo-Fabrizio fractional differential equations in b-metric spaces,

Open Math., 19 (2021), pp. 363-372.

P. Li and C.J. Xu , Mild solution of fractional order differential

equations with not instantaneous impulses, Open Math., 13 (2015),

pp- 436-443.

F. Mainardi, P. Paradisi and R. Gorenflo, Probability distributions

generated by fractional diffusion equations, Dordrecht, The Nether-

lands, 2000.

M. Meghnafi, M. Benchohra and K. Aissani, Impulsive fractional

evolution equations with state-dependent delay, Nonlinear Stud., 22

(2015), pp. 659-671.

D.N. Pandey, S. Das and N. Sukavanam, Ezistence of solution for a

second-order neutral differential equation with state dependent delay

and non-instantaneous impulses, Int. J. Nonlin. Sci., 18 (2014), pp.

145-155.

1. Podlubny, Fractional Differential Equations, Academic Press,

San Diego, 1999.



IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS 109

34. A. Salim, M. Benchohra, J.R. Graef and J.E. Lazreg, Boundary
value problem for fractional gemeralized Hilfer-type fractional de-
rivative with non-instantaneous impulses, Fractal Fract., 5 (2021),
pp- 1-21.

35. A. Salim, M. Benchohra, E. Karapinar and J.E. Lazreg, Fzistence
and Ulam stability for impulsive generalized Hilfer-type fractional
differential equations, Adv. Differ. Equ., 2020 (2020), pp. 1-21.

36. A. Salim, M. Benchohra, J.E. Lazreg and J. Henderson, Nonlin-
ear implicit generalized Hilfer-type fractional differential equations
with non-instantaneous impulses in Banach spaces, Advances in
the Theory of Nonlinear Analysis and its Application, 4 (2020),
pp- 332-348.

37. A. Salim, M. Benchohra, J.E. Lazreg and G. N’Guérékata, Bound-
ary value problem for nonlinear implicit generalized Hilfer-type frac-
tional differential equations with impulses, Abstr. Appl. Anal.,
2021 (2021), pp. 1-17.

38. A. Salim, M. Benchohra, J.E. Lazreg, J.J. Nieto and Y. Zhou,
Nonlocal initial value problem for hybrid generalized Hilfer-type
fractional implicit differential equations, Nonauton. Dyn. Syst., 8
(2021), pp. 87-100.

39. S.G. Samko, A A. Kilbas and O.I. Marichev, Fractional Integrals
and Derivatives. Theory and Applications, Gordon and Breach,
Yverdon, 1993.

40. Y. Zhou, Fractional Evolution Equations and Inclusions : Analysis
and Control, Elsevier Science, 2016.

! LABORATORY OF MATHEMATICS, UNIVERSITY OF SIDI BEL-ABBES, PO Box 89,
22000, SIDI BEL-ABBES, ALGERIA.
Email address: benkhettou_na@yahoo.fr

2 LABORATORY OF MATHEMATICS, UNIVERSITY OF SIDI BEL-ABBES, PO Box
89, 22000, SipI BEL-ABBES, ALGERIA. AND FACULTY OF TECHNOLOGY, HASSIBA
BENBOUALI UNIVERSITY, P.O. Box 151 CHLEF 02000, ALGERIA.

Email address: salim.abdelkrim@yahoo.com, a.salim@univ-chlef.dz

3 UNIVERSITY OF BECHAR, PO Box 417, 08000, BECHAR, ALGERIA.
Email address: aissani_kQyahoo.fr

4 LABORATORY OF MATHEMATICS, UNIVERSITY OF SIDI BEL-ABBES, PO Box 89,
22000, SIDI BEL-ABBES, ALGERIA.
Email address: benchohra@yahoo.com

> DIVISION OF APPLIED MATHEMATICS, THU DAU MoT UNIVERSITY, THU DAU
Mot City 820000, BINH DUONG PROVINCE, VIETNAM AND DEPARTMENT OF MATH-
EMATICS, CANKAYA UNIVERSITY, 06790, ETIMESGUT, ANKARA, TURKEY.

Email address: erdalkarapinar@tdmu.edu.vn



	1. Introduction
	2. Preliminaries
	3. Existence and Uniqueness Results
	4. An Example
	References

