Invertibility of Multipliers for Continuous Gframes

Mohammad Reza Abdollahpour and Yavar Khedmati Yengejeh

Sahand Communications in
Mathematical Analysis
Print ISSN: 2322-5807
Online ISSN: 2423-3900
Volume: 19
Number: 4
Pages: 51-67
Sahand Commun. Math. Anal.
DOI: 10.22130/scma.2022.537931.981

SCMA, P. O. Box 55181-83111, Maragheh, Iran http://scma.maragheh.ac.ir

Invertibility of Multipliers for Continuous G-frames

Mohammad Reza Abdollahpour ${ }^{1 *}$ and Yavar Khedmati Yengejeh ${ }^{2}$

Abstract

In this paper, we study the concept of multipliers for the continuous g-Bessel families in Hilbert spaces. We present necessary conditions for invertibility of multipliers for the continuous g-Bessel families and sufficient conditions for invertibility of multipliers for continuous g-frames.

1. Introduction

In 1952, the concept of frames for Hilbert spaces was defined by Duffin and Schaeffer [10]. Frames are important tools in signal processing, image processing, data compression, etc. In 1993, Ali, Antoine and Gazeau developed the notion of ordinary frames to a family indexed by a measurable space which is known as continuous frames [4]. In 2006, g-frames or generalized frames were introduced by Sun [19]. Abdollahpour and Faroughi introduced and investigated continuous g-frames and Riesz-type continuous g-frames [1]. The importance of g-frames is derived from their ability to provide more choices in analyzing functions than frame expansion coefficients [19], furthermore, every fusion frame is a g-frame [9]. Also, in [13] they show how generalized translation invariant (GTI) frames can be considered as g-frames.

In the rest of the paper, (Ω, μ) is a measure space with positive measure $\mu,\left\{\mathcal{K}_{\omega}: \omega \in \Omega\right\}$ is a family of Hilbert spaces and $G L(\mathcal{H})$ denotes the set of all invertible bounded linear operators on Hilbert space \mathcal{H}.

In 2007, the Bessel multiplier for Bessel sequences in Hilbert spaces was introduced by P. Balazs [6].

[^0]Definition 1.1. Let \mathcal{H} and \mathcal{K} be Hilbert spaces. Suppose that $F=$ $\left\{f_{i}\right\}_{i \in I}$ and $G=\left\{g_{i}\right\}_{i \in I}$ are Bessel sequences for \mathcal{H} and \mathcal{K}, respectively, and $m=\left\{m_{i}\right\}_{i \in I} \in l^{\infty}(I)$. The operator $M_{m, F, G}: \mathcal{H} \rightarrow \mathcal{K}$ defined by

$$
M_{m, F, G} f=\sum_{i \in I} m_{i}\left\langle f, f_{i}\right\rangle g_{i},
$$

is called the Bessel multiplier for F and G.
Stoeva and Balazs investigated the invertibility of multipliers for frames in detail [18]. In [12], they generalized the concept of Bessel multipliers for p-Bessel and p-Riesz sequences in Banach spaces. In [14], fusion frame multipliers were introduced as a generalization of frame multipliers to extend the results of frame multipliers. Structures of duals of fusion frames and continuous fusion frames are discussed in [12, 14]. The concept of g-dual frames for Hilbert $C *$-modules is introduced in [11]. Also, results for g-Bessel multipliers are presented in [16]. In this paper, by generalizing results of [18], we obtain conditions for two continuous g-Bessel families to be continuous g-frames (Proposition 2.2). Also, to obtain a dual (not necessarily canonical) for each of these families (Proposition 2.3), we generalize a result of [7]. As well, we obtain necessary conditions for invertibility of multipliers for continuous g-Bessel families and sufficient conditions for invertibility of multipliers for continuous g-frames, by extending the results of [18]. In the rest of this section, we summarize some basic informations about continuous g-frames and multipliers of continuous g-Bessel families from [1, 2].

We say that $F \in \prod_{\omega \in \Omega} \mathcal{K}_{\omega}$ is strongly measurable if F as a mapping of Ω to $\bigoplus_{\omega \in \Omega} \mathcal{K}_{\omega}$ is measurable, where

$$
\prod_{\omega \in \Omega} \mathcal{K}_{\omega}=\left\{f: \Omega \rightarrow \bigcup_{\omega \in \Omega} \mathcal{K}_{\omega}: f(\omega) \in \mathcal{K}_{\omega}\right\} .
$$

Definition 1.2. We say that $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ is a continuous g-frame for \mathcal{H} with respect to $\left\{\mathcal{K}_{\omega}: \omega \in \Omega\right\}$ if
(i) for each $f \in \mathcal{H},\left\{\Lambda_{\omega} f: \omega \in \Omega\right\}$ is strongly measurable,
(ii) there are two constants $0<A_{\Lambda} \leq B_{\Lambda}<\infty$ such that

$$
\begin{equation*}
A_{\Lambda}\|f\|^{2} \leq \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega) \leq B_{\Lambda}\|f\|^{2}, \quad f \in \mathcal{H} \tag{1.1}
\end{equation*}
$$

We call A_{Λ}, B_{Λ} the lower and upper continuous g-frame bounds, respectively. Λ is called a tight continuous g-frame if $A_{\Lambda}=B_{\Lambda}$, and it is a Parseval continuous g-frame if $A_{\Lambda}=B_{\Lambda}=1$. A family $\Lambda=\left\{\Lambda_{\omega} \in\right.$ $\left.B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ is called a continuous g-Bessel family for \mathcal{H} with respect to $\left\{\mathcal{K}_{\omega}: \omega \in \Omega\right\}$ if the right side of the inequality (1.1) holds for all $f \in \mathcal{H}$, in this case, B_{Λ} is called the continuous g-Bessel constant.

Proposition $1.3([1])$. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a continuous g-frame. There exists a unique positive and invertible operator $S_{\Lambda}: \mathcal{H} \rightarrow \mathcal{H}$ such that

$$
\left\langle S_{\Lambda} f, g\right\rangle=\int_{\Omega}\left\langle\Lambda_{\omega} f, \Lambda_{\omega} g\right\rangle d \mu(\omega), \quad f, g \in \mathcal{H}
$$

and $A_{\Lambda} I \leq S_{\Lambda} \leq B_{\Lambda} I$.
The operator S_{Λ} in the Proposition 1.3 is called the continuous g frame operator of Λ.

We consider the space
$\widehat{\mathcal{K}}=\left\{F \in \prod_{\omega \in \Omega} \mathcal{K}_{\omega}: \mathrm{F}\right.$ is strongly measurable, $\left.\int_{\Omega}\|F(\omega)\|^{2} d \mu(\omega)<\infty\right\}$.
It is clear that $\widehat{\mathcal{K}}$ is a Hilbert space with point-wise operations and with the inner product given by

$$
\langle F, G\rangle=\int_{\Omega}\langle F(\omega), G(\omega)\rangle d \mu(\omega)
$$

Proposition 1.4 ([1]). Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a continuous g-Bessel family. Then, the mapping $T_{\Lambda}: \widehat{\mathcal{K}} \rightarrow \mathcal{H}$ defined by

$$
\begin{equation*}
\left\langle T_{\Lambda} F, g\right\rangle=\int_{\Omega}\left\langle\Lambda_{\omega}^{*} F(\omega), g\right\rangle d \mu(\omega), \quad F \in \widehat{\mathcal{K}}, g \in \mathcal{H} \tag{1.2}
\end{equation*}
$$

is linear and bounded with $\left\|T_{\Lambda}\right\| \leq \sqrt{B_{\Lambda}}$. Also, for each $g \in \mathcal{H}$ and $\omega \in \Omega$, we have

$$
\left(T_{\Lambda}^{*} g\right)(\omega)=\Lambda_{\omega} g
$$

The operators T_{Λ} and T_{Λ}^{*} in the Proposition 1.4 are called the synthesis and analysis operators of $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$, respectively.

Definition 1.5. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ and $\Theta=\left\{\Theta_{\omega} \in\right.$ $\left.B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be two continuous g-Bessel families such that

$$
\langle f, g\rangle=\int_{\Omega}\left\langle\Theta_{\omega} f, \Lambda_{\omega} g\right\rangle d \mu(\omega), \quad f, g \in \mathcal{H}
$$

then, Θ is called a dual of Λ.
Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a continuous g-frame. Then, $\widetilde{\Lambda}=\Lambda S_{\Lambda}^{-1}=\left\{\Lambda_{\omega} S_{\Lambda}^{-1} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ is a continuous g-frame and $\widetilde{\Lambda}$ is a dual of Λ. We call $\widetilde{\Lambda}$ the canonical dual of Λ.

Two continuous g-Bessel families $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ and $\Theta=\left\{\Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ are called weakly equal, if for all $f \in \mathcal{H}$,

$$
\Lambda_{\omega} f=\Theta_{\omega} f, \quad \text { a.e. } \omega \in \Omega
$$

Definition 1.6 ([3]). Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ and $\Theta=$ $\left\{\Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be two continuous g-Bessel families. The family Θ is called a generalized dual of Λ (or a g-dual of Λ), whenever the well-defined operator $S_{\Lambda \Theta}: \mathcal{H} \rightarrow \mathcal{H}$,

$$
\left\langle S_{\Lambda \Theta} f, g\right\rangle=\int_{\Omega}\left\langle\Theta_{\omega} f, \Lambda_{\omega} g\right\rangle d \mu(\omega), \quad f, g \in \mathcal{H},
$$

is invertible.
In the case that, the continuous g-Bessel family Θ is a g-dual of the continuous g-Bessel family Λ, then, Θ is a dual of a continuous g-Bessel family $\Lambda S_{\Theta \Lambda}^{-1}=\left\{\Lambda_{\omega} S_{\Theta \Lambda}^{-1} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$, i.e.

$$
\begin{equation*}
\langle f, g\rangle=\int_{\Omega}\left\langle\Theta_{\omega} f, \Lambda_{\omega} S_{\Theta \Lambda}^{-1} g\right\rangle d \mu(\omega), \quad f, g \in \mathcal{H} . \tag{1.3}
\end{equation*}
$$

As continuous frames are generalized by continuous g-frames, the above definition is the generalization of reproducing pair of weakly measurable functions [5].
Proposition 1.7 ([2]). Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ and $\Theta=$ $\left\{\Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be continuous g-Bessel families and $m \in$ $L^{\infty}(\Omega, \mu)$. The operator $M_{m, \Lambda, \Theta}: \mathcal{H} \rightarrow \mathcal{H}$ defined by

$$
\left\langle M_{m, \Lambda, \Theta} f, g\right\rangle=\int_{\Omega} m(\omega)\left\langle\Theta_{\omega} f, \Lambda_{\omega} g\right\rangle d \mu(\omega), \quad f, g \in \mathcal{H}
$$

is a bounded operator with bound $\|m\|_{\infty} \sqrt{B_{\Lambda} B_{\Theta}}$.
The operator $M_{m, \Lambda, \Theta}$ in the Proposition 1.7 is called the continuous g-Bessel multiplier for Λ and Θ with respect to m. Note that $M_{1, \Lambda, \Theta}=$ $S_{\Lambda \Theta}$.
Proposition 1.8 ([2]). Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ and $\Theta=$ $\left\{\Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be continuous g-Bessel families and $m \in$ $L^{\infty}(\Omega, \mu)$. Then

$$
M_{m, \Lambda, \Theta}^{*}=M_{\bar{m}, \Theta, \Lambda} .
$$

2. Invertibility of Multipliers for Continuous g-Bessel Families

In this section, we are going to get some results relevant to invertibility of continuous g-Bessel multipliers by generalizing results of [18].

For every $\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right), \omega \in \Omega$ and $m \in L^{\infty}(\Omega, \mu)$, we have

$$
\begin{aligned}
\left\|\left(m(\omega) \Lambda_{\omega}\right) f\right\| & =\left\|m(\omega) \Lambda_{\omega} f\right\| \\
& =|m(\omega)|\left\|\Lambda_{\omega} f\right\| \\
& \leq\|m\|_{\infty}\left\|\Lambda_{\omega}\right\|\|f\|, \quad f \in \mathcal{H},
\end{aligned}
$$

so, $m(\omega) \Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right)$.

Proposition 2.1. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a continuous g-Bessel family and $m \in L^{\infty}(\Omega, \mu)$. Then
(i) $m \Lambda=\left\{m(\omega) \Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ is a continuous g-Bessel family with the continuous g-Bessel constant $B_{\Lambda}\|m\|_{\infty}^{2}$.
(ii) $M_{m, \Lambda, \Theta}=M_{1, \bar{m} \Lambda, \Theta}=M_{1, \Lambda, m \Theta}$, where $\bar{m} \Lambda=\left\{\overline{m(\omega)} \Lambda_{\omega} \in\right.$ $\left.B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ and $m \Theta=\left\{m(\omega) \Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$.

Proof. (i) For every $f \in \mathcal{H}$, we have

$$
\begin{aligned}
\int_{\Omega}\left\|m(\omega) \Lambda_{\omega} f\right\|^{2} d \mu(\omega) & =\int_{\Omega}|m(\omega)|^{2}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega) \\
& \leq\|m\|_{\infty}^{2} \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega) \\
& \leq B_{\Lambda}\|m\|_{\infty}^{2}\|f\|^{2}
\end{aligned}
$$

(ii) By (i), $\bar{m} \Lambda$ and $m \Theta$ are continuous g-Bessel families. For every $f, g \in \mathcal{H}$, we have

$$
\begin{aligned}
\left\langle M_{m, \Lambda, \Theta} f, g\right\rangle & =\int_{\Omega} m(\omega)\left\langle\Theta_{\omega} f, \Lambda_{\omega} g\right\rangle d \mu(\omega) \\
& =\int_{\Omega}\left\langle\Theta_{\omega} f, \overline{m(\omega)} \Lambda_{\omega} g\right\rangle d \mu(\omega) \\
& =\int_{\Omega}\left\langle m(\omega) \Theta_{\omega} f, \Lambda_{\omega} g\right\rangle d \mu(\omega) .
\end{aligned}
$$

Therefore, $M_{m, \Lambda, \Theta}=M_{1, \bar{m} \Lambda, \Theta}=M_{1, \Lambda, m \Theta}$.
By generalizing a result of [18], the following proposition gives necessary conditions for invertibility of multipliers for continuous g-Bessel families.

Proposition 2.2. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ and $\Theta=$ $\left\{\Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be continuous g-Bessel families and $0 \neq$ $m \in L^{\infty}(\Omega, \mu)$. If $M_{m, \Lambda, \Theta} \in G L(\mathcal{H})$, then
(i) $m \Theta=\left\{m(\omega) \Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ and $\bar{m} \Lambda=\left\{\overline{m(\omega)} \Lambda_{\omega} \in\right.$ $\left.B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ are continuous g-frames with lower continuous g-frame bounds $\left(B_{\Lambda}\left\|M_{m, \Lambda, \Theta}^{-1}\right\|^{2}\right)^{-1}$ and $\left(B_{\Theta}\left\|M_{m, \Lambda, \Theta}^{-1}\right\|^{2}\right)^{-1}$, respectively.
(ii) Λ and Θ are continuous g-frames with lower continuous g-frame bounds $\left(B_{\Lambda}\|m\|_{\infty}^{2}\left\|M_{m, \Lambda, \Theta}^{-1}\right\|^{2}\right)^{-1}$ and $\left(B_{\Theta}\|m\|_{\infty}^{2}\left\|M_{m, \Lambda, \Theta}^{-1}\right\|^{2}\right)^{-1}$, respectively.

Proof. (i) Since $M_{m, \Lambda, \Theta} \in G L(\mathcal{H})$, by Proposition 2.1 (ii), the operators $M_{1, \Lambda, m \Theta}$ and $M_{1, m \Lambda, \Theta}$ are invertible. Let $f \in \mathcal{H}$ and $f \neq 0$, then, from Proposition 1.8, we have

$$
\begin{aligned}
\|f\|^{2} & =|\langle f, f\rangle| \\
& =\left|\left\langle f, M_{1, \Lambda, m \Theta}^{-1} M_{1, \Lambda, m \Theta} f\right\rangle\right| \\
& =\left|\left\langle M_{1, m \Theta, \Lambda} M_{1, m \Theta, \Lambda}^{-1} f, f\right\rangle\right| \\
& =\left|\int_{\Omega}\left\langle\Lambda_{\omega} M_{1, m \Theta, \Lambda}^{-1} f, m(\omega) \Theta_{\omega} f\right\rangle d \mu(\omega)\right| \\
& =\left|\left\langle T_{\Lambda}^{*} M_{1, m \Theta, \Lambda}^{-1} f, T_{m \Theta}^{*} f\right\rangle\right| \\
& \leq\left\|T_{\Lambda}^{*} M_{1, m \Theta, \Lambda}^{-1} f\right\|\left\|T_{m \Theta}^{*} f\right\| \\
& \leq \sqrt{B_{\Lambda}}\left\|M_{1, m \Theta, \Lambda}^{-1}\right\|\|f\|\left\|T_{m \Theta}^{*} f\right\|
\end{aligned}
$$

therefore, we get

$$
\begin{aligned}
\frac{1}{B_{\Lambda}\left\|M_{m, \Lambda, \Theta}^{-1}\right\|^{2}}\|f\|^{2} & =\frac{1}{B_{\Lambda}\left\|M_{1, m \Theta, \Lambda}^{-1}\right\|^{2}}\|f\|^{2} \\
& \leq\left\|T_{m \Theta}^{*} f\right\|^{2} \\
& =\int_{\Omega}\left\|m(\omega) \Theta_{\omega} f\right\|^{2} d \mu(\omega)
\end{aligned}
$$

Similarly, we have

$$
\begin{align*}
\frac{1}{B_{\Theta}\left\|M_{m, \Lambda, \Theta}^{-1}\right\|^{2}}\|f\|^{2} & \leq\left\|T_{\bar{m} \Lambda}^{*} f\right\|^{2} \tag{2.2}\\
& =\int_{\Omega}\left\|\overline{m(\omega)} \Lambda_{\omega} f\right\|^{2} d \mu(\omega)
\end{align*}
$$

It is clear that the inequlities (2.1) and (2.2) also hold for $f=0$.
So, by Proposition 2.1 (i), $m \Theta$ and $\bar{m} \Lambda$ are continuous g-frames.
(ii) For every $f \in \mathcal{H}$ by inequality (2.1), we have

$$
\begin{aligned}
\frac{1}{B_{\Lambda}\left\|M_{m, \Lambda, \Theta}^{-1}\right\|^{2}}\|f\|^{2} & \leq \int_{\Omega}\left\|m(\omega) \Theta_{\omega} f\right\|^{2} d \mu(\omega) \\
& \leq\|m\|_{\infty}^{2} \int_{\Omega}\left\|\Theta_{\omega} f\right\|^{2} d \mu(\omega)
\end{aligned}
$$

therefore,

$$
\frac{1}{B_{\Lambda}\|m\|_{\infty}^{2}\left\|M_{m, \Lambda, \Theta}^{-1}\right\|^{2}}\|f\|^{2} \leq \int_{\Omega}\left\|\Theta_{\omega} f\right\|^{2} d \mu(\omega) .
$$

Similarly, by inequality (2.2), we have

$$
\frac{1}{B_{\Theta}\|m\|_{\infty}^{2}\left\|M_{m, \Lambda, \Theta}^{-1}\right\|^{2}}\|f\|^{2} \leq \int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega)
$$

Thus Λ and Θ are continuous g-frames.
Note that Proposition 2.2 (ii), generalizes Proposition 3.2 of [1]. In the following proposition, by generalizing a conclusion from [7], we get a dual for continuous g-Bessel families Λ and Θ when $M_{m, \Lambda, \Theta} \in G L(\mathcal{H})$.
Proposition 2.3. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ and $\Theta=$ $\left\{\Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be continuous g-Bessel families and $0 \neq$ $m \in L^{\infty}(\Omega, \mu)$. If $M_{m, \Lambda, \Theta} \in G L(\mathcal{H})$, then, Θ and

$$
\bar{m} \Lambda M_{\bar{m}, \Theta, \Lambda}^{-1}=\left\{\overline{m(\omega)} \Lambda_{\omega} M_{\bar{m}, \Theta, \Lambda}^{-1} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}
$$

are dual. Also, Λ and $m \Theta M_{m, \Lambda, \Theta}^{-1}=\left\{m(\omega) \Theta_{\omega} M_{m, \Lambda, \Theta}^{-1} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in\right.$ Ω \} are dual.

Proof. By Proposition 2.2 (ii), Λ and Θ are continuous g-frames. Since $M_{m, \Lambda, \Theta} \in G L(\mathcal{H})$ and $M_{\bar{m}, \Theta, \Lambda}=M_{m, \Lambda, \Theta}^{*} \in G L(\mathcal{H})$ and then, by Proposition 2.2 (i) and [1, Proposition 3.3], we conclude

$$
\bar{m} \Lambda M_{\bar{m}, \Theta, \Lambda}^{-1}=\left\{\overline{m(\omega)} \Lambda_{\omega} M_{\bar{m}, \Theta, \Lambda}^{-1} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\},
$$

is a continuous g-frame. For every $f, g \in \mathcal{H}$, we have

$$
\begin{aligned}
\int_{\Omega}\left\langle\Theta_{\omega} f, \overline{m(\omega)} \Lambda_{\omega} M_{\bar{m}, \Theta, \Lambda}^{-1} g\right\rangle d \mu(\omega) & =\int_{\Omega} m(\omega)\left\langle\Theta_{\omega} f, \Lambda_{\omega} M_{\bar{m}, \Theta, \Lambda}^{-1} g\right\rangle d \mu(\omega) \\
& =\left\langle M_{m, \Lambda, \Theta} f, M_{\bar{m}, \Theta, \Lambda}^{-1} g\right\rangle \\
& =\langle f, g\rangle
\end{aligned}
$$

Also,

$$
\begin{aligned}
\int_{\Omega}\left\langle m(\omega) \Theta_{\omega} M_{m, \Lambda, \Theta}^{-1} f, \Lambda_{\omega} g\right\rangle d \mu(\omega) & =\int_{\Omega} m(\omega)\left\langle\Theta_{\omega} M_{m, \Lambda, \Theta}^{-1} f, \Lambda_{\omega} g\right\rangle d \mu(\omega) \\
& =\left\langle M_{m, \Lambda, \Theta} M_{m, \Lambda, \Theta}^{-1} g\right\rangle \\
& =\langle f, g\rangle
\end{aligned}
$$

The following result is the generalization of $[8$, Theorem 1.1.] and $[3$, Proposition 8.] with similar proof.

Proposition 2.4. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ and $\Theta=$ $\left\{\Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be continuous g-Bessel families and $0 \neq$ $m \in L^{\infty}(\Omega, \mu)$. If $M_{m, \Lambda, \Theta} \in G L(\mathcal{H})$, then,
(i) There is a dual $\widehat{\Theta}$ of Θ, such that for every dual Λ^{d} of Λ we have $M_{m, \Lambda, \Theta}^{-1}=M_{\frac{1}{m}, \Lambda^{d}, \widehat{\Theta}}$.
(ii) There is a dual $\widehat{\Lambda}$ of Λ, such that for every dual Θ^{d} of Θ we have $M_{m, \Lambda, \Theta}^{-1}=M_{\frac{1}{m}, \widehat{\Lambda}, \Theta^{d}}$.

Proof. (i) By Proposition 2.3, $\widehat{\Theta}=\bar{m} \Lambda M_{\bar{m}, \Theta, \Lambda}^{-1}$ and Θ are dual. Similar to proof of [3, Proposition 8.] and by Propositions 2.1 for every dual Λ^{d} of Λ we have

$$
\begin{aligned}
M_{m, \Lambda, \Theta}^{-1} & =M_{1, m \Lambda, \Theta}^{-1} \\
& =S_{(\bar{m} \Lambda) \Theta}^{-1} \\
& =T_{\Lambda^{d}}^{-1} T_{\Lambda S_{\left(-\frac{1}{m} \Lambda\right) \Theta}^{*}}^{*} \\
& =T_{\Lambda^{d}} T_{\Lambda M_{m, \Lambda, \Theta}^{-1}}^{*} \\
& =T_{\Lambda^{d}} T_{\frac{1}{m}}^{1} \widehat{\Theta} \\
& =M_{\frac{1}{m}, \Lambda^{d}, \widehat{\Theta}} .
\end{aligned}
$$

(ii) The proof is similar to the proof of (i).

By generalizing a result of [18], the following results give sufficient conditions for invertibility of multipliers for continuous g-frames. The [18, Proposition 2.2.] gives the criterion for the invertibility of operators and we apply this proposition in the proof of the following results.

Theorem 2.5. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a continuous g-frame and $\Theta=\left\{\Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a family of operators such that for each $f \in \mathcal{H},\left\{\Theta_{\omega} f\right\}_{\omega \in \Omega}$ is strongly measurable and there exists $\nu \in\left[0, \frac{A_{\Lambda}^{2}}{B_{\Lambda}}\right)$ such that

$$
\begin{equation*}
\int_{\Omega}\left\|\left(\Lambda_{\omega}-\Theta_{\omega}\right) f\right\|^{2} d \mu(\omega) \leq \nu\|f\|^{2}, \quad f \in \mathcal{H} \tag{2.3}
\end{equation*}
$$

Suppose $m \in L^{\infty}(\Omega, \mu)$ such that for some positive constants δ we have $m(\omega) \geq \delta>0$ a.e. and $\frac{\|m\|_{\infty}}{\delta} \sqrt{\nu}<\frac{A_{\Lambda}}{\sqrt{B_{\Lambda}}}$. Then, $M_{m, \Lambda, \Theta} \in G L(\mathcal{H})$ and
$\frac{1}{\|m\|_{\infty} B_{\Lambda}+\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}}\|f\| \leq\left\|M_{m, \Lambda, \Theta}^{-1} f\right\| \leq \frac{1}{\delta A_{\Lambda}-\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}}\|f\|$,
for every $f \in \mathcal{H}$, and

$$
M_{m, \Lambda, \Theta}^{-1}=\sum_{k=0}^{\infty}\left[S_{\sqrt{m} \Lambda}^{-1}\left(S_{\sqrt{m} \Lambda}-M_{m, \Lambda, \Theta}\right)\right]^{k} S_{\sqrt{m} \Lambda}^{-1}
$$

Also,

$$
\begin{aligned}
& \left\|M_{m, \Lambda, \Theta}^{-1}-\sum_{k=0}^{n}\left[S_{\sqrt{m \Lambda}}^{-1}\left(S_{\sqrt{m} \Lambda}-M_{m, \Lambda, \Theta}\right)\right]^{k} S_{\sqrt{m} \Lambda}^{-1}\right\| \\
& \quad \leq\left(\frac{\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}}{\delta A_{\Lambda}}\right)^{n+1} \frac{1}{\delta A_{\Lambda}-\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}}, \quad n \in \mathbb{N} .
\end{aligned}
$$

Proof. If $\nu=0$, then, by ineqaulity (2.3), Λ and Θ are weakly equal so, for every $f, g \in \mathcal{H}$, we have

$$
\begin{aligned}
\left\langle M_{m, \Lambda, \Theta} f, g\right\rangle & =\int_{\Omega} m(\omega)\left\langle\Theta_{\omega} f, \Lambda_{\omega} g\right\rangle d \mu(\omega) \\
& =\int_{\Omega} m(\omega)\left\langle\Lambda_{\omega} f, \Lambda_{\omega} g\right\rangle d \mu(\omega) \\
& =\left\langle M_{m, \Lambda, \Lambda} f, g\right\rangle .
\end{aligned}
$$

Therefore, by [2, Proposition 3.3.], $M_{m, \Lambda, \Theta}=M_{m, \Lambda, \Lambda}=S_{\sqrt{m} \Lambda}$ is an invertible operator with lower and upper bounds δA_{Λ} and $\|m\|_{\infty} B_{\Lambda}$, respectively, where $\sqrt{m} \Lambda=\left\{\sqrt{m(\omega)} \Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$. Therefore, for every $f \in \mathcal{H}$, we have

$$
\begin{align*}
\frac{1}{\|m\|_{\infty} B_{\Lambda}}\|f\| & \leq\left\|M_{m, \Lambda, \Lambda}^{-1} f\right\| \tag{2.4}\\
& =\left\|S_{\sqrt{m}}^{-1} f\right\| \\
& \leq \frac{1}{\delta A_{\Lambda}}\|f\|
\end{align*}
$$

For $\nu>0$, by inequality (2.3), the family $\Lambda-\Theta=\left\{\Lambda_{\omega}-\Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right)\right.$: $\omega \in \Omega\}$ is a continuous g-Bessel family so, Θ is a continuous g-Bessel family. Thus by Proposition 1.7, $M_{m, \Lambda, \Theta}$ is a well-defined bounded operator. By (2.3), for any $f, g \in \mathcal{H}$, we have

$$
\begin{aligned}
& \left|\left\langle M_{m, \Lambda, \Theta} f-S_{\sqrt{m} \Lambda} f, g\right\rangle\right| \\
& \quad=\left|\int_{\Omega} m(\omega)\left\langle\Theta_{\omega} f, \Lambda_{\omega} g\right\rangle d \mu(\omega)-\int_{\Omega} m(\omega)\left\langle\Lambda_{\omega} f, \Lambda_{\omega} g\right\rangle d \mu(\omega)\right| \\
& \quad=\left|\int_{\Omega} m(\omega)\left\langle\left(\Theta_{\omega}-\Lambda_{\omega}\right) f, \Lambda_{\omega} g\right\rangle d \mu(\omega)\right| \\
& \quad \leq \int_{\Omega}|m(\omega)|\left|\left\langle\left(\Theta_{\omega}-\Lambda_{\omega}\right) f, \Lambda_{\omega} g\right\rangle\right| d \mu(\omega)
\end{aligned}
$$

$$
\begin{aligned}
& \leq\|m\|_{\infty} \int_{\Omega}\left\|\left(\Theta_{\omega}-\Lambda_{\omega}\right) f\right\|\left\|\Lambda_{\omega} g\right\| d \mu(\omega) \\
& \leq\|m\|_{\infty}\left(\int_{\Omega}\left\|\left(\Theta_{\omega}-\Lambda_{\omega}\right) f\right\|^{2} d \mu(\omega)\right)^{\frac{1}{2}}\left(\int_{\Omega}\left\|\Lambda_{\omega} g\right\|^{2} d \mu(\omega)\right)^{\frac{1}{2}} \\
& \leq\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}\|f\|\|g\| .
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\left\|M_{m, \Lambda, \Theta} f-S_{\sqrt{m} \Lambda} f\right\| \leq\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}\|f\| \tag{2.5}
\end{equation*}
$$

Since $\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}<\delta A_{\Lambda} \leq \frac{1}{\left\|S_{\sqrt{m \Lambda}}^{-1}\right\|}$, by 18 , Proposition 2.2.], $M_{m, \Lambda, \Theta} \in$ $G L(\mathcal{H})$ and

$$
M_{m, \Lambda, \Theta}^{-1}=\sum_{k=0}^{\infty}\left[S_{\sqrt{m} \Lambda}^{-1}\left(S_{\sqrt{m} \Lambda}-M_{m, \Lambda, \Theta}\right)\right]^{k} S_{\sqrt{m} \Lambda}^{-1}
$$

Also, by inequality (2.4) for every $f \in \mathcal{H}$, we have

$$
\begin{aligned}
\frac{1}{\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}+\|m\|_{\infty} B_{\Lambda}}\|f\| & \leq \frac{1}{\|m\|_{\infty} \sqrt{B_{\Lambda} \nu}+\left\|S_{\sqrt{m} \Lambda}\right\|}\|f\| \\
& \leq\left\|M_{m, \Lambda, \Theta}^{-1} f\right\|^{1} \\
& \leq \frac{1}{\left\|S_{\sqrt{m \Lambda}}^{-1}\right\|}-\|m\|_{\infty} \sqrt{B_{\Lambda} \nu}
\end{aligned} f \|
$$

Since $\frac{\|m\|_{\infty}}{\delta} \sqrt{\nu}<\frac{A_{\Lambda}}{\sqrt{B_{\Lambda}}}$ and $\frac{\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}}{\delta A_{\Lambda}}<1$. By inequalities (2.4) and (2.5) for $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \left\|M_{m, \Lambda, \Theta}^{-1}-\sum_{k=0}^{n}\left[S_{\sqrt{m} \Lambda}^{-1}\left(S_{\sqrt{m} \Lambda}-M_{m, \Lambda, \Theta}\right)\right]^{k} S_{\sqrt{m} \Lambda}^{-1}\right\| \\
& \quad=\left\|\sum_{k=n+1}^{\infty}\left[S_{\sqrt{m} \Lambda}^{-1}\left(S_{\sqrt{m} \Lambda}-M_{m, \Lambda, \Theta}\right)\right]^{k} S_{\sqrt{m} \Lambda}^{-1}\right\| \\
& \quad \leq\left\|S_{\sqrt{m} \Lambda}^{-1}\right\| \sum_{k=n+1}^{\infty}\left\|S_{\sqrt{m} \Lambda}^{-1}\right\|^{k}\left\|S_{\sqrt{m} \Lambda}-M_{m, \Lambda, \Theta}\right\|^{k} \\
& \quad \leq \frac{1}{\delta A_{\Lambda}} \sum_{k=n+1}^{\infty}\left(\frac{\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}}{\delta A_{\Lambda}}\right)^{k}
\end{aligned}
$$

$$
=\left(\frac{\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}}{\delta A_{\Lambda}}\right)^{n+1} \frac{1}{\delta A_{\Lambda}-\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}} .
$$

Note that by considering $\Theta=\Lambda$, in Theorem 2.5, we get the Proposition 3.3 of [2].
Proposition 2.6. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a continuous g-frame. Let $m \in L^{\infty}(\Omega, \mu)$ such that $\|m-1\|_{\infty} \leq \lambda<\frac{A_{\Lambda}}{B_{\Lambda}}$ for some λ. Then, $M_{m, \Lambda, \Lambda} \in G L(\mathcal{H})$ and

$$
\frac{1}{(\lambda+1) B_{\Lambda}}\|f\| \leq\left\|M_{m, \Lambda, \Lambda}^{-1} f\right\| \leq \frac{1}{A_{\Lambda}-\lambda B_{\Lambda}}\|f\|, \quad f \in \mathcal{H}
$$

and

$$
M_{m, \Lambda, \Lambda}^{-1}=\sum_{k=0}^{\infty}\left[S_{\Lambda}^{-1}\left(S_{\Lambda}-M_{m, \Lambda, \Lambda}\right)\right]^{k} S_{\Lambda}^{-1}
$$

Also,
$\left\|M_{m, \Lambda, \Lambda}^{-1}-\sum_{k=0}^{n}\left[S_{\Lambda}^{-1}\left(S_{\Lambda}-M_{m, \Lambda, \Lambda}\right)\right]^{k} S_{\Lambda}^{-1}\right\| \leq\left(\frac{\lambda B_{\Lambda}}{A_{\Lambda}}\right)^{n+1} \frac{1}{A_{\Lambda}-\lambda B_{\Lambda}}, \quad n \in \mathbb{N}$.
Proof. For every $f, g \in \mathcal{H}$, we have

$$
\begin{aligned}
& \left|\left\langle M_{1, \Lambda, m \Lambda} f-S_{\Lambda} f, g\right\rangle\right| \\
& \quad=\left|\int_{\Omega}\left\langle(m(\omega)-1) \Lambda_{\omega} f, \Lambda_{\omega} g\right\rangle d \mu(\omega)\right| \\
& \quad \leq \int_{\Omega}|m(\omega)-1|\left|\left\langle\Lambda_{\omega} f, \Lambda_{\omega} g\right\rangle\right| d \mu(\omega) \\
& \quad \leq\|m-1\|_{\infty} \int_{\Omega}\left\|\Lambda_{\omega} f\right\|\left\|\Lambda_{\omega} g\right\| d \mu(\omega) \\
& \quad \leq\|m-1\|_{\infty}\left(\int_{\Omega}\left\|\Lambda_{\omega} f\right\|^{2} d \mu(\omega)\right)^{\frac{1}{2}}\left(\int_{\Omega}\left\|\Lambda_{\omega} g\right\|^{2} d \mu(\omega)\right)^{\frac{1}{2}} \\
& \quad \leq \lambda B_{\Lambda}\|f\|\|g\| .
\end{aligned}
$$

Therefore, we have

$$
\left\|M_{1, \Lambda, m \Lambda} f-S_{\Lambda} f\right\| \leq \lambda B_{\Lambda}\|f\|
$$

Since $0 \leq \lambda B_{\Lambda}<A_{\Lambda} \leq \frac{1}{\left\|S_{\Lambda}^{-1}\right\|}$, similar to the proof of the Theorem 2.5, by [18, Proposition 2.2.] and Proposition 2.1 (ii), the proof is completed.

Theorem 2.7. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a continuous g-frame and $\Theta=\left\{\Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a family of operators such that for each $f \in \mathcal{H},\left\{\Theta_{\omega} f\right\}_{\omega \in \Omega}$ is strongly measurable. Suppose there exists $\nu \in\left[0, \frac{A_{\Lambda}^{2}}{B_{\Lambda}}\right)$ such that the inequality (2.3) is satisfied. Let
$m \in L^{\infty}(\Omega, \mu)$ that $\|m-1\|_{\infty} \leq \lambda<\frac{A_{\Lambda}-\sqrt{\nu B_{\Lambda}}}{B_{\Lambda}+\sqrt{\nu B_{\Lambda}}}$ for some λ. Then, $M_{m, \Lambda, \Theta} \in G L(\mathcal{H})$ and for every $f \in \mathcal{H}$,

$$
\frac{1}{(\lambda+1)\left(B_{\Lambda}+\sqrt{\nu B_{\Lambda}}\right)}\|f\| \leq\left\|M_{m, \Lambda, \Theta}^{-1} f\right\| \leq \frac{1}{A_{\Lambda}-\lambda B_{\Lambda}-(\lambda+1) \sqrt{\nu B_{\Lambda}}}\|f\|
$$

and

$$
M_{m, \Lambda, \Theta}^{-1}=\sum_{k=0}^{\infty}\left[M_{m, \Lambda, \Lambda}^{-1}\left(M_{m, \Lambda, \Lambda}-M_{m, \Lambda, \Theta}\right)\right]^{k} M_{m, \Lambda, \Lambda}^{-1}
$$

Also,

$$
\begin{aligned}
& \left\|M_{m, \Lambda, \Theta}^{-1}-\sum_{k=0}^{n}\left[M_{m, \Lambda, \Lambda}^{-1}\left(M_{m, \Lambda, \Lambda}-M_{m, \Lambda, \Theta}\right)\right]^{k} M_{m, \Lambda, \Lambda}^{-1}\right\| \\
& \quad \leq\left(\frac{(\lambda+1) \sqrt{\nu B_{\Lambda}}}{A_{\Lambda}-\lambda B_{\Lambda}}\right)^{n+1} \frac{1}{A_{\Lambda}-\lambda B_{\Lambda}-(\lambda+1) \sqrt{\nu B_{\Lambda}}}, \quad n \in \mathbb{N} .
\end{aligned}
$$

Proof. If $\nu=0$, by the inequality (2.3), Λ and Θ are weakly equal. Also, for $\nu=0$ we have $\|m-1\|_{\infty} \leq \lambda<\frac{A_{\Lambda}}{B_{\Lambda}}$. Then, by Proposition 2.6, for $\nu=0$ the proof is completed. For $\nu \neq 0$ by inequality (2.3), the family $\Lambda-\Theta$ is a continuous g-Bessel family so, Θ is a continuous g-Bessel family. Similar to the proof of Theorem 2.5, for every $f, g \in \mathcal{H}$, we have

$$
\begin{aligned}
& \left|\left\langle M_{m, \Lambda, \Theta} f-M_{m, \Lambda, \Lambda} f, g\right\rangle\right| \\
& \quad=\left|\int_{\Omega} m(\omega)\left\langle\left(\Theta_{\omega}-\Lambda_{\omega}\right) f, \Lambda_{\omega} g\right\rangle d \mu(\omega)\right| \\
& \quad \leq\|m\|_{\infty}\left(\int_{\Omega}\left\|\left(\Theta_{\omega}-\Lambda_{\omega}\right) f\right\|^{2} d \mu(\omega)\right)^{\frac{1}{2}}\left(\int_{\Omega}\left\|\Lambda_{\omega} g\right\|^{2} d \mu(\omega)\right)^{\frac{1}{2}} \\
& \quad \leq\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}\|f\|\|g\| .
\end{aligned}
$$

Thus by $\|m-1\|_{\infty} \leq \lambda$, we have

$$
\left\|M_{m, \Lambda, \Theta} f-M_{m, \Lambda, \Lambda} f\right\| \leq\|m\|_{\infty} \sqrt{\nu B_{\Lambda}}\|f\| \leq(\lambda+1) \sqrt{\nu B_{\Lambda}}\|f\| .
$$

By $\lambda<\frac{A_{\Lambda}-\sqrt{\nu B_{\Lambda}}}{B_{\Lambda}+\sqrt{\nu B_{\Lambda}}}$, we have $(\lambda+1) \sqrt{\nu B_{\Lambda}}<A_{\Lambda}-\lambda B_{\Lambda}$ and since

$$
\|m-1\|_{\infty} \leq \lambda<\frac{A_{\Lambda}-\sqrt{\nu B_{\Lambda}}}{B_{\Lambda}+\sqrt{\nu B_{\Lambda}}}<\frac{A_{\Lambda}}{B_{\Lambda}},
$$

by Proposition 2.6, we have $(\lambda+1) \sqrt{\nu B_{\Lambda}}<A_{\Lambda}-\lambda B_{\Lambda} \leq \frac{1}{\left\|M_{m, \Lambda, \Lambda}^{-1}\right\|}$ and $\left\|M_{m, \Lambda, \Lambda}\right\| \leq(\lambda+1) B_{\Lambda}$. Therefore, by [18, Proposition 2.2.], $M_{m, \Lambda, \Theta} \in$ $G L(\mathcal{H})$ and for every $f \in \mathcal{H}$, we have

$$
\frac{1}{(\lambda+1)\left(B_{\Lambda}+\sqrt{\nu B_{\Lambda}}\right)}\|f\|=\frac{1}{(\lambda+1) \sqrt{\nu B_{\Lambda}}+(\lambda+1) B_{\Lambda}}\|f\|
$$

$$
\begin{aligned}
& \leq \frac{1}{(\lambda+1) \sqrt{\nu B_{\Lambda}}+\left\|M_{m, \Lambda, \Lambda}\right\|}\|f\| \\
& \leq\left\|M_{m, \Lambda, \Theta}^{-1} f\right\| \\
& \leq \frac{1}{\left\|M_{m, \Lambda, \Lambda}^{-1}\right\|}-(\lambda+1) \sqrt{\nu B_{\Lambda}}
\end{aligned}\|f\|
$$

and

$$
M_{m, \Lambda, \Theta}^{-1}=\sum_{k=0}^{\infty}\left[M_{m, \Lambda, \Lambda}^{-1}\left(M_{m, \Lambda, \Lambda}-M_{m, \Lambda, \Theta}\right)\right]^{k} M_{m, \Lambda, \Lambda}^{-1}
$$

Also, for $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \left\|M_{m, \Lambda, \Theta}^{-1}-\sum_{k=0}^{n}\left[M_{m, \Lambda, \Lambda}^{-1}\left(M_{m, \Lambda, \Lambda}-M_{m, \Lambda, \Theta}\right)\right]^{k} M_{m, \Lambda, \Lambda}^{-1}\right\| \\
& \quad=\left\|\sum_{k=n+1}^{\infty}\left[M_{m, \Lambda, \Lambda}^{-1}\left(M_{m, \Lambda, \Lambda}-M_{m, \Lambda, \Theta}\right)\right]^{k} M_{m, \Lambda, \Lambda}^{-1}\right\| \\
& \quad \leq\left\|M_{m, \Lambda, \Lambda}^{-1}\right\| \sum_{k=n+1}^{\infty}\left\|M_{m, \Lambda, \Lambda}^{-1}\right\|^{k}\left\|M_{m, \Lambda, \Lambda}-M_{m, \Lambda, \Theta}\right\|^{k} \\
& \quad \leq \frac{1}{A_{\Lambda}-\lambda B_{\Lambda}} \sum_{k=n+1}^{\infty}\left(\frac{(\lambda+1) \sqrt{\nu B_{\Lambda}}}{A_{\Lambda}-\lambda B_{\Lambda}}\right)^{k} \\
& \quad=\left(\frac{(\lambda+1) \sqrt{\nu B_{\Lambda}}}{A_{\Lambda}-\lambda B_{\Lambda}}\right)^{n+1} \frac{1}{A_{\Lambda}-\lambda B_{\Lambda}-(\lambda+1) \sqrt{\nu B_{\Lambda}}} .
\end{aligned}
$$

Proposition 2.8. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a continuous g-frame and $S \in G L(\mathcal{H})$. Also, suppose $m \in L^{\infty}(\Omega, \mu)$ satisfies one of the following conditions:
(i) for some positive constants $\delta, m(\omega) \geq \delta>0$ a.e.
(ii) $\|m-1\|_{\infty} \leq \lambda<\frac{A_{\Lambda}}{B_{\Lambda}}$ for some λ.

Then, the operators $M_{m, \Lambda, \Lambda S}$ and $M_{m, \Lambda S, \Lambda}$ are invertible and

$$
M_{m, \Lambda, \Lambda S}^{-1}=S^{-1} M_{m, \Lambda, \Lambda}^{-1}, \quad M_{m, \Lambda S, \Lambda}^{-1}=M_{m, \Lambda, \Lambda}^{-1}\left(S^{-1}\right)^{*}
$$

where $\Lambda S=\left\{\Lambda_{\omega} S \in B\left(\mathcal{H}, K_{\omega}\right): \omega \in \Omega\right\}$.
Proof. By [1, Proposition 3.3], ΛS is a continuous g-frame. For every $f, g \in \mathcal{H}$, we have

$$
\left\langle M_{m, \Lambda, \Lambda S} f, g\right\rangle=\int_{\Omega} m(\omega)\left\langle\Lambda_{\omega} S f, \Lambda_{\omega} g\right\rangle d \mu(\omega)
$$

$$
\begin{aligned}
& =\left\langle M_{m, \Lambda, \Lambda} S f, g\right\rangle \\
\left\langle M_{m, \Lambda S, \Lambda} f, g\right\rangle & =\int_{\Omega} m(\omega)\left\langle\Lambda_{\omega} f, \Lambda_{\omega} S g\right\rangle d \mu(\omega) \\
& =\left\langle M_{m, \Lambda, \Lambda} f, S g\right\rangle \\
& =\left\langle S^{*} M_{m, \Lambda, \Lambda} f, g\right\rangle
\end{aligned}
$$

Therefore, $M_{m, \Lambda, \Lambda S}=M_{m, \Lambda, \Lambda} S$ and $M_{m, \Lambda S, \Lambda}=S^{*} M_{m, \Lambda, \Lambda}$. If (i) is satisfied, then, by [2, Proposition 3.3], $M_{m, \Lambda, \Lambda} \in G L(\mathcal{H})$, and if (ii) is satisfied, then, by Proposition 2.6, $M_{m, \Lambda, \Lambda} \in G L(\mathcal{H})$, so, the proof is completed.

Corollary 2.9. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a continuous g-frame. Also suppose $m \in L^{\infty}(\Omega, \mu)$ satisfies one of the following conditions:
(i) for some positive constants $\delta, m(\omega) \geq \delta>0$ a.e.
(ii) $\|m-1\|_{\infty} \leq \lambda<\frac{A_{\Lambda}}{B_{\Lambda}}$ for some λ.

Then, the operators $M_{m, \Lambda, \widetilde{\Lambda}}$ and $M_{m, \widetilde{\Lambda}, \Lambda}$ are invertible and

$$
M_{m, \Lambda, \widetilde{\Lambda}}^{-1}=S_{\Lambda} M_{m, \Lambda, \Lambda}^{-1}, \quad M_{m, \widetilde{\Lambda}, \Lambda}^{-1}=M_{m, \Lambda, \Lambda}^{-1} S_{\Lambda}
$$

Proof. By Proposition 2.8, for $S=S_{\Lambda}^{-1}$ the proof is completed.
Theorem 2.10. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ and $\Theta=\left\{\Theta_{\omega} \in\right.$ $\left.B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be dual continuous g-frames. Let $m \in L^{\infty}(\Omega, \mu)$ such that $\|m-1\|_{\infty} \leq \lambda<\frac{1}{\sqrt{B_{\Lambda} B_{\Theta}}}$ for some λ. Then, $M_{m, \Lambda, \Theta} \in G L(\mathcal{H})$ and

$$
\begin{equation*}
\frac{1}{1+\lambda \sqrt{B_{\Lambda} B_{\Theta}}}\|f\| \leq\left\|M_{m, \Lambda, \Theta}^{-1} f\right\| \leq \frac{1}{1-\lambda \sqrt{B_{\Lambda} B_{\Theta}}}\|f\|, \quad f \in \mathcal{H} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{m, \Lambda, \Theta}^{-1}=\sum_{k=0}^{\infty}\left(M_{(1-m), \Lambda, \Theta}\right)^{k} \tag{2.7}
\end{equation*}
$$

Also,

$$
\left\|M_{m, \Lambda, \Theta}^{-1}-\sum_{k=0}^{n}\left(M_{(1-m), \Lambda, \Theta}\right)^{k}\right\| \leq \frac{\left(\lambda \sqrt{B_{\Lambda} B_{\Theta}}\right)^{n+1}}{1-\lambda \sqrt{B_{\Lambda} B_{\Theta}}}, \quad n \in \mathbb{N}
$$

Proof. For every $f, g \in \mathcal{H}$, we have

$$
\begin{aligned}
& \left|\left\langle M_{m, \Lambda, \Theta} f-f, g\right\rangle\right| \\
& \quad=\left|\left\langle M_{m, \Lambda, \Theta} f, g\right\rangle-\langle f, g\rangle\right| \\
& \quad=\left|\int_{\Omega}(m(\omega)-1)\left\langle\Theta_{\omega} f, \Lambda_{\omega} g\right\rangle d \mu(\omega)\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq\|m(\omega)-1\|_{\infty} \int_{\Omega}\left\|\Theta_{\omega} f\right\|\left\|\Lambda_{\omega} g\right\| d \mu(\omega) \\
& \leq\|m(\omega)-1\|_{\infty}\left(\int_{\Omega}\left\|\Theta_{\omega} f\right\|^{2} d \mu(\omega)\right)^{\frac{1}{2}}\left(\int_{\Omega}\left\|\Lambda_{\omega} g\right\|^{2} d \mu(\omega)\right)^{\frac{1}{2}} \\
& \leq \lambda \sqrt{B_{\Lambda} B_{\Theta}}\|f\|\|g\|
\end{aligned}
$$

Therefore,

$$
\left\|M_{m, \Lambda, \Theta} f-f\right\| \leq \lambda \sqrt{B_{\Lambda} B_{\Theta}}\|f\|
$$

Since $\lambda \sqrt{B_{\Lambda} B_{\Theta}}<1=\frac{1}{\left\|I^{-1}\right\|}$ and $I-M_{m, \Lambda, \Theta}=M_{(1-m), \Lambda, \Theta}$, by 18 , Proposition 2.2.], inequality (2.6) and equality (2.7) are satisfied. Also, for $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\left\|M_{m, \Lambda, \Theta}^{-1}-\sum_{k=0}^{n}\left(M_{(1-m), \Lambda, \Theta}\right)^{k}\right\| & =\left\|\sum_{k=n+1}^{\infty}\left(M_{(1-m), \Lambda, \Theta}\right)^{k}\right\| \\
& \leq \sum_{k=n+1}^{\infty}\left\|M_{(1-m), \Lambda, \Theta}\right\|^{k} \\
& \leq \sum_{k=n+1}^{\infty}\left(\lambda \sqrt{B_{\Lambda} B_{\Theta}}\right)^{k} \\
& =\frac{\left(\lambda \sqrt{B_{\Lambda} B_{\Theta}}\right)^{n+1}}{1-\lambda \sqrt{B_{\Lambda} B_{\Theta}}}
\end{aligned}
$$

Proposition 2.11. Let $\Lambda=\left\{\Lambda_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a continuous g-frame and $\Theta=\left\{\Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right): \omega \in \Omega\right\}$ be a family of operators such that for each $f \in \mathcal{H},\left\{\Theta_{\omega} f\right\}_{\omega \in \Omega}$ is strongly measurable that inequality (2.3) is satisfied for some $\nu>0$. If $\nu<A_{\Lambda}$, then, Θ is a continuous g-frame.

Proof. By ineqaulity (2.3), the family $\Lambda-\Theta=\left\{\Lambda_{\omega}-\Theta_{\omega} \in B\left(\mathcal{H}, \mathcal{K}_{\omega}\right)\right.$: $\omega \in \Omega\}$ is a continuous g-Bessel family so, Θ is a continuous g-Bessel family. For every $f, g \in \mathcal{H}$, we have

$$
\begin{aligned}
\left|\left\langle M_{1, \widetilde{\Lambda}, \Theta} f-f, g\right\rangle\right| & =\left|\left\langle M_{1, \widetilde{\Lambda}, \Theta} f-M_{1, \widetilde{\Lambda}, \Lambda} f, g\right\rangle\right| \\
& =\left|\int_{\Omega}\left\langle\left(\Theta_{\omega}-\Lambda_{\omega}\right) f, \widetilde{\Lambda}_{\omega} g\right\rangle d \mu(\omega)\right| \\
& \leq\left(\int_{\Omega}\left\|\left(\Theta_{\omega}-\Lambda_{\omega}\right) f\right\|^{2} d \mu(\omega)\right)^{\frac{1}{2}}\left(\int_{\Omega}\left\|\widetilde{\Lambda}_{\omega} g\right\|^{2} d \mu(\omega)\right)^{\frac{1}{2}} \\
& \leq \sqrt{\nu \frac{1}{A_{\Lambda}}}\|f\|\|g\|
\end{aligned}
$$

Thus

$$
\left\|I-M_{1, \tilde{\Lambda}, \Theta}\right\| \leq \sqrt{\nu \frac{1}{A_{\Lambda}}}<1
$$

It shows that $M_{1, \tilde{\Lambda}, \Theta} \in G L(\mathcal{H})$ therefore, according to Proposition 2.2 (ii), Θ is a continuous g-frame.

Acknowledgment. The authors gratefully thank referees for valuable comments.

References

1. M.R. Abdollahpour and M.H. Faroughi, Continuous g-frames in Hilbert spaces, Southeast Asian Bull. Math., 32 (2008), pp. 1-19.
2. M.R. Abdollahpour and Y. Alizadeh, Multipliers of continuous g frames in Hilbert spaces, Bull. Iranian Math. Soc., 43 (2017), pp. 291-305.
3. M.R. Abdollahpour and Y. Khedmati, G-duals of continuous gframes and their perturbations, Results Math., 73 (2018), pp. 1-15.
4. S.T. Ali, J.P. Antoine and J.-P. Gazeau, Continuous frames in Hilbert space, Ann. Phys., 222 (1993), pp. 1-37.
5. J.P. Antoine, M. Speckbacher and C. Trapani, Reproducing pairs of measurable functions, Acta Appl. Math., 150 (2017), pp. 81-101.
6. P. Balazs, Basic definition and properties of Bessel multipliers, J. Math. Anal. Appl., 325 (2007), pp. 571-585.
7. P. Balazs, D. Bayer and A. Rahimi, Multipliers for continuous frames in Hilbert spaces, J. Phys. A: Math. Theor., 45 (2012), p. 244023.
8. P. Balazs and D. T. Stoeva, Representation of the inverse of a frame multiplier, J. Math. Anal. Appl., 422 (2015), pp. 981-994.
9. O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., Boston: Birkhäuser, 2016.
10. R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341-366.
11. F. Ghobadzadeh and A. Najati, G-dual Frames in Hilbert $C *-$ module Spaces, Sahand Commun. Math. Anal., 11 (1) (2018), pp. 65-79.
12. M. Khayyami and A. Nazari, Construction of continuous g-frames and continuous fusion frames, Sahand Commun. Math. Anal., 4 (1) 2016, pp. 43-55.
13. Y. Khedmati and M.S. Jakobsen, Approximately dual and perturbation results for generalized translation invariant frames on LCA groups, Int. J. Wavelets Multiresolut. Inf. Process., 16 (2017), p. 1850017.
14. E. Osgooei and A. Arefijamal, Compare and contrast between duals of fusion and discrete frames, Sahand Commun. Math. Anal., 8 (1) (2017), pp. 83-96.
15. A. Rahimi and P. Balazs, Multipliers for p-Frames in Banach spaces, Integral Equations Oper. Theory, 68 (2010), pp. 193-205.
16. A. Rahimi, Multipliers of generalized frames in Hilbert spaces, Bull. Iranian Math. Soc., 37 (2011), pp. 63-80.
17. M. Shamsabadi and A.A. Arefijamaal, The invertibility of fusion frame multipliers, Linear Multilinear Algebra, 65 (2017), pp. 10621072.
18. D.T. Stoeva and P. Balazs, Invertibility of multipliers, Appl. Comput. Harmon. Anal., 33 (2012), pp. 292-299.
19. W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322 (2006), pp. 437-452.
[^1]
[^0]: 2020 Mathematics Subject Classification. Primary 41A58; Secondary 47A99, 42C15.

 Key words and phrases. Multiplier, invertibility, Continuous g-Bessel family, Continuous g-frame.

 Received: 31 August 2021, Accepted: 13 June 2022.

 * Corresponding author.

[^1]: ${ }^{1}$ Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, 56199-11367,Ardabil, Iran.

 Email address: mrabdollahpour@yahoo.com; m.abdollah@uma.ac.ir
 ${ }^{2}$ Department of Mathematics, Faculty of Sciences, University of Mohaghegh Ardabili, 56199-11367,Ardabil, Iran.

 Email address: khedmati.y@uma.ac.ir; khedmatiy.y@gmail.com

