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On Subclasses of Analytic Functions Associated with
Miller-Ross-Type Poisson Distribution Series

Bilal Seker'*, Sevtap Siimer Eker? and Bilal Cekic®

ABSTRACT. The aim of this article is to obtain some necessary and
sufficient conditions for functions, whose coefficients are probabil-
ities of the Miller-Ross-type Poisson distribution series, to belong
to certain subclasses of analytic and univalent functions. Further-
more, we consider an integral operator related to the Miller-Ross
type Poisson distribution series.

1. INTRODUCTION

Let A stand for the standard class of analytic functions of the form

(1.1) f(z):z+2akzk, zeU={z€C:|z| <1},
k=2

and let S be the class of functions in A which are univalent in U (see
BD)-

Let us define T as the subclass of functions f € A of the form given
by (see [23])

(1.2) f(2) :z—Zakzk, (a > 0).
k=2

Class 7 is given by Silverman [23]. Many studies have been done
on class 7 and its subclasses in the literature. Altintas [3] defined the
following class as being the subclass of 7.
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Definition 1.1 ([3]). A function f € T is said to be in the class T'(c, \),

if the following condition is satisfied:

(1.3) Re (f'(2) + Azf"(2)) > o,
A>0,0<a<1,z€el).

Furthermore, Altintag and Owa [4] introduced the following class as
a subclass of T.

Definition 1.2 ([4]). A function f € 7 is said to be in the class C(«, f),
if the following condition is satisfied:

F) + ()
- Re( S mepy) 7
0<a<1,0<8<1,z€l).

Kenneth S. Miller and Bertram Ross proposed a special function,
which is called the Miller-Ross function and is defined as follows:

E,c(z) = 2"e“~y" (v, c2),

where ~* is the incomplete gamma function (p.314, [13]). Using the
properties of the incomplete gamma functions the Miller-Ross function

can be written as follows:
[ee]

(15) Eu,c(z) _ ZVZ F( (Cz)n

—— z,cveC.
‘ n+v+1)

In recent years a large literature has evolved on the use of distribution
series such as Poisson, Pascal, Borel , etc. in geometric function theory.
Many researchers have examined some important features in the field of
geometric function theory, such as coefficient estimates, inclusion rela-
tions, and conditions of being in some known classes. They used different
probability distributions, see for example [2, 5, [7, 10, 16-19, 21, 27-29].

We now recall that a discrete random variable X whose probability
mass function is given by

—M,,, %

Px=dq=""""" i=0,1,2,...,m>0,

7!

is said to have a Poisson distribution with parameter m.

Porwal and Dixit [20] have recently introduced Mittag-Leffler-type
Poisson distributions and derived their moment-generating functions.
Bajpai [6] introduced Mittag—Leffler-type Poisson distribution series.
After that Murugusundaramoorthy and El-Deeb [15] studied the Mittag-
Leffler type Borel distribution. Lately, Srivastava et al. [12] introduced
the Miller-Ross-type Poisson distribution which is a two-parameter Pois-
son distribution and obtained moments, moment generating function.
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Motivated by results on connections between various subclasses of ana-
lytic univalent functions using special functions and distribution series
[, 9, 11, 14, 20, 22, 24-26] we obtain some necessary and sufficient
conditions for the Miller—Ross-type Poisson distribution series to be in
the classes T'(a, A) and C(a, 5). First, we recall the definition of the
Miller—Ross-type distribution.

The probability mass function of the Miller—Ross-type Poisson distri-
bution is given by

mY (em)*

E,.(m)I'(k+v+1)
where v > —1, ¢ > 0 and E, .(z) is Miller-Ross function given in (@)

We introduce a power series whose coefficients are Miller—-Ross-type
Poisson distribution:

(1.6)  P,o(msk) = k=0,1,2,...

Y

n—1

m o m”(cm) n
Fye(2) Z+§: T(n+ VB o(m)”

Now, we introduce the series
(1.7) KJe(2) = 22 = Fl.(2)
-1

ZFn—I—I/E c(m )Zn'

To establish our main results, we will use the following Lemmas:

Lemma 1.3 ([3]). The function f(z) defined by (@) belongs to the
class T'(a, ) if and only if
(1.8) Zn(l—)\+n)\)an§1—a.

n=2
Lemma 1.4 ([4]). The function f(z) defined by (@) belongs to the
class C(a, B) if and only if

o0

(1.9) Zn(n—ﬂan—a—i—ﬂa)angl—a.

n=2
2. MAIN RESULTS
Theorem 2.1. If v > —1 and ¢ > 0, then K]'.(z) € T'(a, \) if and only
if
(2.1)

(mﬂm%mhmmw+mpm1_m+uﬁwmn

+a—Ama—ymHme}g1—m
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Proof. Since

et mu(cm)n—l .

Kyel2) =2 - nz::z ['(n+ V)EV,C(m)Z ’

and by virtue of Lemma @, it suffices to show that

[e.9]

B V(Cm)nfl 1 B
(2.2) Z (1—X+n)) Tnt ) Ew(m)gl a.
It follows from (@) that
0 V(Cm)nfl 1
; (1—X+nr) Tt o] B
- ZA[(V+n— 1)(V—|—n—2)}m
"~ E,.(m) = I'(n+v)
= mY(ecm)" !
+Y My+n—-1)3-2v)+ 1 —v)| ——"—
nz_:z | ] I'(n+v)
S (1= A (0= 1) + (1 — ] e
+n§;(1 M@ +n—1)+(1-v)] Tt ) }
_ 1 o~ (em)" Tt ]S em)
_Eu,c(m){)\nz:;I‘(n+u—2)+[2)\(1 )+1}7§F(n+u—l)
0 mu(cm)n—l}
+(1=)(1—-v) —
[ ] nzz:? I'(n+v)

__em [ y-miem) 1) S mem)”
- Ey,c(m){/\nz: Tntv) [2A(1 =) +1] nZ:OF(n—i-I/—i-l)

[(1_>\V 1_V ZFn—i—u—i—Q }

= B, o(m) {m2)\E,,_1,C(m) +m[2X(1 = v) + 1]Ey c(m)

+ (1 - )1 - I/)El,_,_Lc(m)}
<l—«

by the given hypothesis. This completes the proof of Theorem @ O
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The result given in Theorem @ generalizes and improves the results
iven by Altinkaya and Yalgin [2]. Taking » = 0 and A = 0 in Theorem
, we get the following corollary.
Corollary 2.2. If m > 0, then K'.(z) € T, 0) if and only if,
c

Eo,c.(m)

[mEoc(m) 4+ Eqc(m)] =mc+1—e "
<1l-oa.

Example 2.3. Taking c =1 and v =0 in (@)’ we get

—m(m)n—l

o1(2) =2~ Z ﬁzn'

n=2
In view of Lemma Iﬁ we obtain

Znan Zn n_l”
:m+1—e m

thus K@ (2) € T(a,0) if and only if m +1—e™™ <1 — c.
This necessary and sufficient condition can also be easily obtained by
taking ¢ = 1 in Corollary

Theorem 2.4. Ifv > —1 and ¢ > 0, then KJ}'.(2) € C(a, B) if and only
if
(2. 3)

1

{m (1-Ba)E,—1c(m)+m[2(1 —v)(1—pr)+ (1 —a)]E,(m)

(1= ) [(1 = v) —a(l = B)]| Eprro(m)} < 1 —a

]E,,C(m

Proof. Since
1

7L
=z - 2",
Z F (n —|— V)E, .(m)
and by virtue of Lemma [L.4], it sufﬁces to show that

mY(em)"t 1

o0

(2.4) nZ:Qn(n—ﬂom—a—i—Ba) T(n+v) Byo(m) <1l-a.
It follows from (@) that

= mY(em)" 11

én (n — pan — a + fa) Tin+0) Byo(m)

et ml/(cm)n—l

1
:W{Z(l—/Ba)[(u+n—1)(u+n—2)]F(TH_V)

n=2
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+Y (=B [(v+n—1)3—2v)+ (1 -v)]

m”(cm)
_l’_

I'(n+v)

~Y o -B)wtn-1+0 -] ;”ly }

_ (1_/60‘)§:M
E, (m) o Fn+v-—2)
& mu(cm)n—l
F 21— 0)(1=Ba)+1—a] S 2
[2(1 =) = o) };F(n—i—l/—l)

> m” (em)" !
+(1—y)[(1—y)—a(1—5y)]zr((n+)y)}
n=2

_om g = m”(em)™
~ Eue(m) {(1 0 )Z I'(n+v)

n=0

o0

T [2(1—u)(1—6a)+1—0‘}zm
n=0

+(1—v)[(1=v)—a(l - Bv)] ZM}
n=0

Cc

— Ey,c(m){m2u — Ba)E, 1 c(m)
+m[2(1 —v)(1 - Ba)+1—a]E,(m)

(1= [1-v)—al- 5V)}Eu+1,c(m)}
S 1- «,
by the given hypothesis. This completes the proof of Theorem @ O
3. INTEGRAL OPERATORS

In this section, we give conditions for the integral operators defined
as follows:

2 K(t)
(3.1) Gp.(2) :/ — I
0 t
Theorem 3.1. Ifv > —1 and ¢ > 0, then G}'.(2) € T(a, A) if and only
if
(3.2) E,,,Cc(m) {(1 = AW)Eys1,6(m) + mAE,c(m)} <1 - a.
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Proof. From (@), we can write

o

mu(cm)n—l P
G} =z- —.
vel2) =2 nz:; F'n+v)E,(m) n
According to Lemma E, it is enough to show that
> mY(em)" 1 1 =z
3.3 1—A A —<1-
(3.3) nzzn( +n)) Tt 0] Bonl) =

It follows from (@) that

oo

Y n(l—A+nh) m” (cm

)n—l i
—~ Fin+v)E,(m) n

o ml/(cm)n—l
(1—X+n)) n
=2 (=2 e

B mY (em)"
ch(m){z}\[(u+n—l)+(1—uﬂ

+Z 1— )n_l}

n—|—1/)

1 > mY (em)™
:Ey,c(m){nz;l_”) T(n+v) -+ Z n+1/—1}
_cm > cm)”
_Eu,c(m){;(l_)\mf( v+2 + ZI‘n—l—V—i—l}

Cc

- W{(l — A)Eyp1e(m) + m)\IEl,yc(m)},

The last expression is bounded above by 1 — « if and only if () is

satisfied. This completes the proof. O
Theorem 3.2. Ifv > —1 and ¢ > 0, then G;)'.(z) € C(a, B) if and only
if

(3.4)

m{ [(1—=v)—a(l—=pv)]|Eyi1e(m)+m(l— ﬁy)Ew(m)} <1l-a.

Proof. From (@), we can write

o)

G () = 2 — Z I‘(ml/(cm

)n—l 2
= T(n+v)Eye(m) n’
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According to Lemma @, it is enough to show that

[e.9]

(3.5) Zn(n—ﬁan—oH—ﬁa)

n=2

mY(em)" 1 1

I'n+v) E,.(m)

zn
— < 1—-aq.
n

It follows from (@) that

Zn(n—ﬂan—a—}—ﬁa)F

n=2

:Z(n—ﬁan—a+ﬁa)r

n=2

mu(cm)nfl

(n+v)E,(m)

g
n
n—1

mY (ecm) B
(n+v)E,(m)

n

1 o0
_W{Z(l—ﬁu)[(u—i-n—l)

n=2

B m’(em)" & B mY (cm)" 1
+ (=) I'(n+v) * Z a(l=5) I'(n+v)
n=2

1 = mY (cm)"1
{ Z [(1 —v) —af(l —ﬁl/)}m

n=2

- E,c(m)

= m¥(cm)”
+(1_/8V)T;OF(7”L+I/+1)}

e {Z[(l—V)—a(l—ﬁ”)}m

n=0

— E,,cc(m){ [(1 —v)—a(l- IBV)]EV+17C(m) +m(l— ,BV)EV,C(m)}.
The last expression is bounded above by 1 — « if and only if (@) is
satisfied. This completes the proof. O
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