Automatic Continuity of Almost n-Multiplicative Linear Functionals

Abbas Zivari-Kazempour

Sahand Communications in Mathematical Analysis

Print ISSN: 2322-5807
Online ISSN: 2423-3900
Volume: 19
Number: 4
Pages: 97-107
Sahand Commun. Math. Anal.
DOI: 10.22130/scma.2022.549567.1065

SCMA, P. O. Box 55181-83111, Maragheh, Iran http://scma.maragheh.ac.ir

Automatic Continuity of Almost n-Multiplicative Linear Functionals

Abbas Zivari-Kazempour

Abstract

We generalize a theorem due to Jarosz, by proving that every almost n-multiplicative linear functional on Banach algebra A is automatically continuous. The relation between almost multiplicative and almost n-multiplicative linear functional on Banach algebra A is also investigated. Additionally, for commutative Banach algebra A, we prove that every almost Jordan homomorphism $\varphi: A \longrightarrow \mathbb{C}$ is an almost n-Jordan homomorphism.

1. Introduction

Let A and B be complex Banach algebras and $\varphi: A \longrightarrow B$ be a linear map. Then, φ is called an n-homomorphism if for all $a_{1}, a_{2}, \ldots, a_{n} \in A$,

$$
\varphi\left(a_{1} a_{2} \cdots a_{n}\right)=\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right) .
$$

The concept of n-homomorphism was studied for complex algebras in [6] and [11].

A linear map φ between algebras A and B is called an n-Jordan homomorphism if $\varphi\left(a^{n}\right)=\varphi(a)^{n}$, for all $a \in A$. This notion was introduced by Herstein in [10].

In the case of $n=2$, these concepts coincide with the classical definitions of homomorphism and Jordan homomorphism, respectively.

Clearly, each homomorphism is an n-homomorphism for every $n \geq 2$, but the converse does not hold in general. For example, if $\varphi: A \longrightarrow B$ is a homomorphism, then $\psi:=-\varphi$ is a 3 -homomorphism which is not a homomorphism [6].

[^0]Also, every n-homomorphism is an n-Jordan homomorphism, but in general, the converse is false. Zelazko in [20] has given a characterization of Jordan homomorphism that we will mention.

Theorem 1.1. Suppose that A is a Banach algebra, which need not be commutative, and suppose that B is a semi-simple commutative Banach algebra. Then each Jordan homomorphism $\varphi: A \longrightarrow B$ is a homomorphism.

This result has been proved by the author in [22] for 3-Jordan homomorphisms with the additional hypothesis that the Banach algebra A is unital, and then it is extended for all $n \in \mathbb{N}$ in [1].

Bodaghi and İnceboz in [4], extended Theorem 1.1 for $n \in\{3,4\}$ by considering an extra condition that $\varphi\left(a^{2} b-b a^{2}\right)=0$ for all $a, b \in A$.

There are two basic results concerning the automatic continuity of homomorphisms between Banach algebras.

The first basic result is due to Šilov, which is expressed as follows (see also [5]).

Theorem 1.2 ([7, Theorem 2.3.3]). Let A and B be two Banach algebras such that B is commutative and semi-simple. Then, every homomorphism $\varphi: A \longrightarrow B$ is automatically continuous.

The second result is the following which is due to Johnson (see also (17]).
Theorem 1.3 ([14, Theorem 2]). Let A and B be Banach algebras where B is semi-simple. Then, every surjective homomorphism $\varphi: A \longrightarrow B$ is automatically continuous.

Theorem 1.3 was extended to n-homomorphism in [8]. Now the following question can be raised.
Question 1.4. Does Theorem 1.2 generalize to n-homomorphisms?
A linear map φ between Banach algebras A and B is called almost n-multiplicative if there exists $\varepsilon \geq 0$ such that for all $a_{1}, a_{2}, \ldots, a_{n} \in A$,

$$
\left\|\varphi\left(a_{1} a_{2} \cdots a_{n}\right)-\varphi\left(a_{1}\right) \cdots \varphi\left(a_{n}\right)\right\| \leq \varepsilon\left\|a_{1}\right\|\left\|a_{2}\right\| \cdots\left\|a_{n}\right\|
$$

If $n=2$, then φ is called simply almost multiplicative. Note that almost n-multiplicative turns out to be n-multiplicative, whenever $\varepsilon=0$.

Jarosz [13] introduced the concept of an almost multiplicative function between Banach algebras. He investigated the automatic continuity of such maps and proved the following famous result.
Theorem 1.5 ([13, Proposition 5.5]). Let φ be an almost multiplicative linear functional from Banach algebra A into \mathbb{C}. Then $\|\varphi\| \leq 1+\varepsilon$, and hence φ is continuous.

After that, Johnson obtained some results on the continuity of almost multiplicative functionals [15], and then he generalized his result to almost multiplicative maps between Banach algebras [16].

Since then, many authors have investigated almost multiplicative maps between Banach algebras, see for example [2, 18, 23].

Similarly, we have the next question which derives from Jarosz's theorem.

Question 1.6. Does Theorem 1.5 generalize to almost n-multiplicative?
In this paper, we give a positive answer to both Question 1.4 and Question 1.6. We also prove that every almost multiplicative linear functional on Banach algebra A is almost n-multiplicative, and the same is true for almost Jordan homomorphisms with the extra condition that A is commutative.

2. Continuity of n-Homomorphisms

We begin with the following well-known theorem.
Theorem 2.1 ([5, Proposition 3, § 16]). Suppose that $\varphi: A \longrightarrow \mathbb{C}$ is a multiplicative linear functional on A. Then φ is continuous and $\|\varphi\| \leq 1$.

A Banach algebra A is called n-functionally continuous if every n multiplicative linear functional on A is continuous. If $n=2$, then A is called functionally continuous, in the usual sense.

Theorem 2.2 ([19, Corollary 2.2]). A topological algebra A is functionally continuous if and only if it is n-functionally continuous.

Now, it follows from Theorem 2.1 and Theorem 2.2 that every n multiplicative linear functional on A is continuous. More precisely, every n-homomorphism from a Banach algebra A into a commutative semisimple Banach algebra B is automatically continuous and so the answer to Question 1.4 is affirmative.

If A is a unital Banach algebra with unit e, then each n-multiplicative linear functional $\varphi: A \longrightarrow \mathbb{C}$ satisfies in $\varphi(a)=\varphi(e)^{n-1} \varphi(a)$, for all $a \in$ A. On the other hand, one can also verify that $\psi(a):=\varphi(e)^{n-2} \varphi(a)$ is multiplicative and so continuous by Theorem 2.1. From this, we deduce that φ is continuous.

For non-unital Banach algebra A, we now outline an alternative proof for this result with direct methods. For $n=3$, see [24, Theorem 5].

Theorem 2.3. Let A be a Banach algebra and $\varphi: A \longrightarrow \mathbb{C}$ be an n-multiplicative linear functional. Then $\|\varphi\| \leq 1$, and hence φ is automatically continuous.

Proof. Suppose that $\varphi: A \longrightarrow \mathbb{C}$ is an n-multiplicative. Since $\varphi \neq 0$, there exists $a \in A$ such that $\varphi(a)=1$. For all $x \in A$, define $\psi: A \longrightarrow \mathbb{C}$ by $\psi(x)=\varphi(a x)$. Then for every $x, y \in A$,

$$
\begin{aligned}
\psi(x y) & =\varphi(a x y) \\
& =\varphi(a x y) \varphi(a)^{n-1} \\
& =\varphi\left(a x y a^{n-1}\right) \\
& =\varphi(a x) \varphi(y a) \varphi(a)^{n-2} \\
& =\varphi(a x) \varphi(y a) .
\end{aligned}
$$

As

$$
\begin{aligned}
\varphi(y a) & =\varphi(a)^{n-1} \varphi(y a) \\
& =\varphi(a)^{n-2} \varphi(a y) \varphi(a) \\
& =\varphi(a y),
\end{aligned}
$$

we get

$$
\begin{aligned}
\psi(x y) & =\varphi(a x) \varphi(a y) \\
& =\psi(x) \psi(y)
\end{aligned}
$$

hence ψ is a multiplicative linear functional on A. Thus, ψ is continuous and $\|\psi\| \leq 1$. On the other hand, for all $x \in A$, we have

$$
\begin{align*}
\psi(x) & =\varphi(a x) \tag{2.1}\\
& =\varphi(a)^{n-1} \varphi(a x) \\
& =\varphi\left(a^{2}\right) \varphi(a)^{n-2} \varphi(x) \\
& =\varphi\left(a^{2}\right) \varphi(x),
\end{align*}
$$

which proves that $\varphi\left(a^{2}\right) \neq 0$. Let $w=\varphi\left(a^{2}\right)$. Since ψ is multiplicative, by (2.1) for all $x_{1}, x_{2}, \ldots, x_{n} \in A$, we get

$$
\begin{aligned}
w \varphi\left(x_{1} x_{2} \cdots x_{n}\right) & =\psi\left(x_{1} x_{2} \cdots x_{n}\right) \\
& =\psi\left(x_{1}\right) \psi\left(x_{2}\right) \cdots \psi\left(x_{n}\right) \\
& =w^{n} \varphi\left(x_{1}\right) \varphi\left(x_{2}\right) \cdots \varphi\left(x_{n}\right) .
\end{aligned}
$$

Consequently, $|w|=1$, so we conclude that $\|\varphi\| \leq 1$.
We get the following result in a similar mannar to [24, Corollary 1].

Corollary 2.4. Suppose that A is a Banach algebra and B is a semisimple commutative Banach algebra. Then each n-homomorphism φ : $A \longrightarrow B$ is continuous.

3. Continuity of Almost n-Multiplicative

Our main theorem in this section is to generalize Theorem 1.5 for almost n-multiplicative linear functionals. First, we prove it for the unital Banach algebra A.
Proposition 3.1. Let A be a unital Banach algebra and $\varphi: A \longrightarrow \mathbb{C}$ be an almost n-multiplicative linear functional. Then φ is automatically continuous.
Proof. For all $a \in A$, define $\psi: A \longrightarrow \mathbb{C}$ by $\psi(a)=\varphi(e)^{n-2} \varphi(a)$, where e is the unit of A. Then

$$
\begin{aligned}
|\psi(a b)-\psi(a) \psi(b)| & =\left|\varphi(e)^{n-2} \varphi(a b)-\varphi(e)^{n-2} \varphi(a) \varphi(e)^{n-2} \varphi(b)\right| \\
& \leq \varepsilon\left|\varphi(e)^{n-2}\right|\left|\varphi\left(a e^{n-2} b\right)-\varphi(a) \varphi(e)^{n-2} \varphi(b)\right| \\
& \leq \varepsilon\left|\varphi(e)^{n-2}\right|\|a\|\|e\|^{n-2}\|b\| \\
& \leq \varepsilon^{\prime}\|a\|\|b\|,
\end{aligned}
$$

where $\varepsilon^{\prime}=\varepsilon\left|\varphi(e)^{n-2}\right|\|e\|^{n-2}$. Therefore ψ is almost multiplicative and it is continuous by Theorem 1.5. Now the continuity of ψ implies that of φ.

Lemma 3.2. Let A be a Banach algebra and $\varphi: A \longrightarrow \mathbb{C}$ be an almost n-multiplicative linear functional. Then for all $a_{1}, a_{2}, \ldots, a_{n}, t \in A$, we have

$$
\begin{aligned}
& |\varphi(t)|^{n-1} \cdot\left|\varphi\left(a_{1} a_{2} \cdots a_{n}\right)-\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right)\right| \\
& \quad \leq \varepsilon\left(2\left\|a_{1}\right\| \cdots\left\|a_{n-1}\right\|+\left|\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n-1}\right)\right|\right)\left\|a_{n}\right\|\|t\|^{n-1} .
\end{aligned}
$$

Proof. Clearly, this is Lemma 3.1 of [12].
The next result is a generalization of Theorem 1.5. The case $n=3$ is [24, Theorem 7].
Theorem 3.3. Every almost n-multiplicative linear functional from a Banach algebra A into \mathbb{C} is automatically continuous.
Proof. Let $\varphi: A \longrightarrow \mathbb{C}$ be an almost n-homomorphism. Then, there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\left|\varphi\left(a_{1} a_{2} \cdots a_{n}\right)-\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right)\right| \leq \varepsilon\left\|a_{1}\right\|\left\|a_{2}\right\| \cdots\left\|a_{n}\right\| \tag{3.1}
\end{equation*}
$$

for all $a_{1}, a_{2}, \ldots, a_{n} \in A$. Set $\xi=\frac{1+\sqrt{1+4 \varepsilon}}{2}$. If for all $a \in A$,

$$
\begin{equation*}
|\varphi(a)| \leq \xi\|a\| \tag{3.2}
\end{equation*}
$$

then $\|\varphi\| \leq 1+\varepsilon$, and hence φ is continuous. If (3.2) does not hold, then by applying Lemma 3.2 and a method similar to [24, Theorem 7], we conclude that φ is n-multiplicative. Now, the continuity of φ follows from Theorem 2.3.

Corollary 3.4. Suppose that A and B are Banach algebras, where B is commutative and semisimple. Then each almost n-homomorphism $\varphi: A \longrightarrow B$ is continuous.

Every multiplicative linear functional is n-multiplicative. Next, we prove the same result for almost multiplicative.
Theorem 3.5. Let A be a Banach algebra and $\varphi: A \longrightarrow \mathbb{C}$ be an almost multiplicative. Then φ is almost n-multiplicative, for all $n \geq 2$.

Proof. Let φ be an almost multiplicative. Hence there exists $\varepsilon>0$ such that

$$
\begin{equation*}
|\varphi(a b)-\varphi(a) \varphi(b)| \leq \varepsilon\|a\|\|b\|, \quad a, b \in A \tag{3.3}
\end{equation*}
$$

Then by Theorem 1.5, φ is continuous and $\|\varphi\| \leq 1+\varepsilon$. Therefore, for all $a \in A$,

$$
\begin{equation*}
|\varphi(a)| \leq(1+\varepsilon)\|a\| \tag{3.4}
\end{equation*}
$$

By (3.3) and (3.4), for all $a, b, c \in A$, we have

$$
\begin{aligned}
|\varphi(a b c)-\varphi(a) \varphi(b) \varphi(c)| \leq & |\varphi(a b c)-\varphi(a b) \varphi(c)| \\
& +|\varphi(a b) \varphi(c)-\varphi(a) \varphi(b) \varphi(c)| \\
\leq & \varepsilon\|a b\|\|c\|+|\varphi(a b)-\varphi(a) \varphi(b)||\varphi(c)| \\
\leq & \varepsilon\|a\|\|b\|\|c\|+\varepsilon(1+\varepsilon)\|a\|\|b\|\|c\| \\
\leq & \varepsilon^{\prime}\|a\|\|b\|\|c\|
\end{aligned}
$$

where $\varepsilon^{\prime}=\varepsilon(2+\varepsilon)$. Thus, φ is almost 3-multiplicative. Now, assume that φ is an almost n-multiplicative for some fixed $n \in \mathbb{N}$. Then there exists $\varepsilon_{1}>0$ such that

$$
\begin{equation*}
\left|\varphi\left(a_{1} a_{2} \cdots a_{n}\right)-\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n}\right)\right| \leq \varepsilon_{1}\left\|a_{1}\right\|\left\|a_{2}\right\| \cdots\left\|a_{n}\right\| \tag{3.5}
\end{equation*}
$$

for all $a_{1}, a_{2}, \ldots, a_{n} \in A$. Hence by (3.3), (3.4) and (3.5), we get

$$
\begin{aligned}
& \left|\varphi\left(a_{1} a_{2} \cdots a_{n+1}\right)-\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n+1}\right)\right| \\
& \quad \leq\left|\varphi\left(a_{1} a_{2} \cdots a_{n+1}\right)-\varphi\left(a_{1} a_{2}\right) \varphi\left(a_{3}\right) \cdots \varphi\left(a_{n+1}\right)\right| \\
& \quad+\left|\varphi\left(a_{1} a_{2}\right) \varphi\left(a_{3}\right) \cdots \varphi\left(a_{n+1}\right)-\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \cdots \varphi\left(a_{n+1}\right)\right| \\
& \quad \leq \varepsilon_{1}\left\|a_{1} a_{2}\right\|\left\|a_{3}\right\| \cdots\left\|a_{n+1}\right\| \\
& \quad+\left|\varphi\left(a_{1} a_{2}\right)-\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)\right|\left(\left|\varphi\left(a_{3}\right)\right| \cdots\left|\varphi\left(a_{n+1}\right)\right|\right) \\
& \quad \leq \varepsilon_{1}\left\|a_{1}\right\|\left\|a_{2}\right\|\left\|a_{3}\right\| \cdots\left\|a_{n+1}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \quad+\varepsilon\left\|a_{1}\right\|\left\|a_{2}\right\|\left((1+\varepsilon)^{n-1}\left\|a_{3}\right\| \cdots\left\|a_{n+1}\right\|\right) \\
& \leq \varepsilon^{\prime \prime}\left\|a_{1}\right\|\left\|a_{2}\right\|\left\|a_{3}\right\| \cdots\left\|a_{n+1}\right\|
\end{aligned}
$$

Consequently, φ is almost $(n+1)$-multiplicative for $\varepsilon^{\prime \prime}=\varepsilon_{1}+\varepsilon(1+\varepsilon)^{n-1}$. This finishes the proof.

The converse of Theorem 3.5 fails, in general. This is illustrated by the following example.

Example 3.6. Let X be the normed algebra of all polynomials defined on $[0,1]$, and let $T: X \longrightarrow \mathbb{C}$ be a linear unbounded functional on X. Let

$$
A=\left\{\left[\begin{array}{ll}
0 & f \\
0 & 0
\end{array}\right]: \quad f \in X\right\} \quad \text { and } \quad B=\left\{\left[\begin{array}{lll}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right]: \quad a, b, c \in \mathbb{C}\right\}
$$

and define $\varphi: A \longrightarrow B$ by

$$
\varphi\left(\left[\begin{array}{ll}
0 & f \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{lll}
0 & z & z \\
0 & 0 & z \\
0 & 0 & 0
\end{array}\right]
$$

where $z=T(f)$. Then, φ is n-homomorphism for every $n \geq 3$, and hence it is almost n-homomorphism for all $\varepsilon \geq 0$. But, it is easy to check that φ is not almost homomorphism.

4. Almost n-Jordan Homomorphisms

Let A and B be Banach algebras and $\varphi: A \longrightarrow B$ be a linear map. Then φ is called almost mixed n-Jordan homomorphism if there exists $\varepsilon>0$ such that

$$
\left\|\varphi\left(a^{n} b\right)-\varphi(a)^{n} \varphi(b)\right\| \leq \varepsilon\|a\|^{n}\|b\|, \quad a, b \in A
$$

Moreover, φ is said to be almost n-Jordan homomorphism if there exists $\varepsilon>0$ such that

$$
\left\|\varphi\left(a^{n}\right)-\varphi(a)^{n}\right\| \leq \varepsilon\|a\|^{n}, \quad a \in A
$$

The following theorem gives a relation between almost mixed n-Jordan homomorphisms and almost n-homomorphisms.

Proposition 4.1. Let A be an unital Banach algebra with unit e, and let $\varphi: A \longrightarrow \mathbb{C}$ be almost n-multiplicative such that $\varphi(e)=1$. Then φ is almost multiplicative.

Proof. This follows from Proposition 3.1.

Theorem 4.2. Let A and B be two commutative algebras and φ be an almost mixed n-Jordan homomorphism from A into B. Then for all $a_{1}, a_{2}, \ldots, a_{n} \in A$,

$$
\left\|\varphi\left(a_{1} a_{2} \cdots a_{n}\right)-\varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \varphi\left(a_{3} \cdots a_{n}\right)\right\| \leq 3 \varepsilon\left\|a_{1}\right\|\left\|a_{2}\right\| \cdots\left\|a_{n}\right\| .
$$

Proof. Let φ be an almost mixed n-Jordan homomorphism. Then there exists $\varepsilon>0$ such that

$$
\begin{equation*}
\left\|\varphi\left(a^{n} b\right)-\varphi(a)^{n} \varphi(b)\right\| \leq \varepsilon\|a\|^{n}\|b\| \tag{4.1}
\end{equation*}
$$

for every $a, b \in A$. Since A and B are commutative, we get

$$
\begin{aligned}
& \varphi\left(x y a_{3} \cdots a_{n}\right)-\varphi(x) \varphi(y) \varphi\left(a_{3} \cdots a_{n}\right) \\
& ==\frac{1}{2}\left[\varphi\left((x+y)^{2} a_{3} \cdots a_{n}\right)-\varphi(x+y)^{2} \varphi\left(a_{3} \cdots a_{n}\right)\right. \\
& \quad+\varphi(x)^{2} \varphi\left(a_{3} \cdots a_{n}\right)-\varphi\left(x^{2} a_{3} \cdots a_{n}\right)+\varphi(y)^{2} \varphi\left(a_{3} \cdots a_{n}\right) \\
& \left.\quad-\varphi\left(y^{2} a_{3} \cdots a_{n}\right)\right] .
\end{aligned}
$$

For all $x, y, a_{3}, \ldots, a_{n} \in A$ with $\|x\|=\|y\|=1$, it follows from (4.1) and the above equality that

$$
\begin{align*}
&\left\|\varphi\left(x y a_{3} \cdots a_{n}\right)-\varphi(x) \varphi(y) \varphi\left(a_{3} \cdots a_{n}\right)\right\| \tag{4.2}\\
& \leq \frac{1}{2}\left\|\varphi\left((x+y)^{2} a_{3} \cdots a_{n}\right)-\varphi(x+y)^{2} \varphi\left(a_{3} \cdots a_{n}\right)\right\| \\
& \quad+\frac{1}{2}\left(\left\|\varphi(x)^{2} \varphi\left(a_{3} \cdots a_{n}\right)-\varphi\left(x^{2} a_{3} \cdots a_{n}\right)\right\|\right. \\
&\left.\quad+\left\|\varphi(y)^{2} \varphi\left(a_{3} \cdots a_{n}\right)-\varphi\left(y^{2} a_{3} \cdots a_{n}\right)\right\|\right) \\
& \leq \frac{1}{2} \varepsilon\left(\|x+y\|^{2}+\|x\|^{2}+\|y\|^{2}\right)\left\|a_{3} \cdots a_{n}\right\| \\
& \leq 3 \varepsilon\left\|a_{3}\right\| \cdots\left\|a_{n}\right\| .
\end{align*}
$$

Now, let $a_{1}, a_{2}, \ldots, a_{n} \in A$ be arbitrary. By setting $x=\frac{a_{1}}{\left\|a_{1}\right\|}$ and $y=\frac{a_{2}}{\left\|a_{2}\right\|}$ in (4.2), we get the result.

As a consequence of Theorem 4.2, we get the following result.
Corollary 4.3. Let A and B be two commutative algebras and φ from A into B be an almost mixed 3-Jordan homomorphism. Then φ is almost 3-homomorphism.

The following result follows from Corollary 4.3 and Theorem 3.3.
Corollary 4.4. Every almost mixed 3-Jordan homomorphism from commutative Banach algebra A into \mathbb{C} is continuous.
Corollary 4.5. Suppose that A is a unital commutative Banach algebra such that $\varphi(e)=1$. Then each almost mixed n-Jordan homomorphism $\varphi: A \longrightarrow \mathbb{C}$ is continuous.

Combining Theorem 2.5 of [21] and Theorem 3.5, we get the following result.

Proposition 4.6. Let A be a commutative Banach algebra. Then every almost Jordan homomorphism $\varphi: A \longrightarrow \mathbb{C}$ is an almost n-Jordan homomorphism.

The converse of the previous proposition is not true. For example, let A, B and φ be as in Example 3.6. Then φ is almost n-Jordan homomorphism for all $n \geq 3$, but it is not almost Jordan homomorphism.

Recall that every continuous linear map between Banach algebras A and B is an almost n-Jordan homomorphism. In other words, let φ be a continuous linear map from A into B. Then there exists $\delta>0$ such that $\|\varphi(a)\| \leq \delta\|a\|$, for all $a \in A$. Hence

$$
\begin{aligned}
\left\|\varphi\left(a^{n}\right)-\varphi(a)^{n}\right\| & \leq\left\|\varphi\left(a^{n}\right)\right\|+\left\|\varphi(a)^{n}\right\| \\
& \leq\left(\delta+\delta^{n}\right)\|a\|^{n},
\end{aligned}
$$

so φ is an almost n-Jordan homomorphism.
By [3, Theorem 2.4] or [9, Theorem 2.1], every n-Jordan homomorphism between two commutative Banach algebras is an n-homomorphism. Now, the following question can be raised.

Question 4.7. Let $\varphi: A \longrightarrow B$ be an almost n-Jordan homomorphism between commutative Banach algebras.
(i) Is φ almost n-homomorphism?
(ii) If $B=\mathbb{C}$, then is φ automatically continuous?

If the answer of (1) is positive, then the answer of (2) is affirmative by Theorem 3.3. For $n=2,3$, both parts (1) and (2) are valid. Indeed, if A is a commutative Banach algebra, then by [21, Theorem 2.5], each almost Jordan homomorphism $\varphi: A \longrightarrow \mathbb{C}$ is almost homomorphism and hence φ is continuous by Theorem 1.5. The case $n=3$, is $[24$, Theorem 11].

Acknowledgment. The author gratefully acknowledges the helpful comments of the anonymous referees.

References

1. G. An, Characterization of n-Jordan homomorphism, Linear Multilinear Algebra, 66(4) (2018), pp. 671-680.
2. E. Ansari-Piri and N. Eghbali, A note on multiplicative and almost multiplicative linear maps, Honam Math. J., 27(4) (2005), pp. 641647.
3. A. Bodaghi and H. İnceboz, n-Jordan homomorphisms on commutative algebras, Acta Math. Univ. Comen., 87(1) (2018), pp. 141-146.
4. A. Bodaghi and H. İnceboz, Extension of Zelazko's theorem to nJordan homomorphisms, Adv. Pure Appl. Math., 10(2) (2019), pp. 165-170.
5. F.F. Bonsall and J. Duncan, Complete normed algebra, SpringerVerlag, York, 1973.
6. J. Brac̆ic and M.S. Moslehian, On automatic continuity of 3homomorphisms on Banach algebras, Bull. Malays. Math. Sci. Soc., 30(2) (2007), pp. 195-200.
7. H.G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society, Monograph 24, Oxford, 2000.
8. M. Eshaghi Gordji, A. Jabbari and E. Karapinar, Automatic continuity of surjective n-homomorphisms on Banach algebras, Bull. Iran. Math. Soc., 41(5) (2015), pp. 1207-1211.
9. E. Gselmann, On approximate n-Jordan homomorphisms, Ann. Math. Sil., 28 (2014), pp. 47-58.
10. I.N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc., 81(1) (1956), pp. 331-341.
11. Sh. Hejazian, M. Mirzavaziri and M.S. Moslehian, nhomomorphisms, Bull. Iran. Math. Soc., 31(1) (2005), pp. 13-23.
12. T.G. Honary, M. Omidi and A.H. Sanatpour, Almost nmultiplicative maps between Fréchet algebras, Int. J. Nonlinear Anal. Appl., 8(1) (2017), pp. 187-195.
13. K. Jarosz, Perturbation of Banach algebras, Lecture Notes in Mathematics, Springer-verlag, 1985.
14. B.E. Johnson, The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc., 73 (1967) pp. 537-539.
15. B.E. Johnson, Approximately multiplicative functionals, J. Lond. Math. Soc., 34(2) (1986), pp. 489-510.
16. B.E. Johnson, Approximately multiplicative maps between Banach algebras, J. London Math. Soc., 37(2) (1988), pp. 294-316.
17. T.J. Ransford, A short proof of Johnson's uniqueness of norm theorem, Bull. Lond. Math. Soc., 21(5) (1989), 487-488.
18. P. Semrl, Almost multiplicative functions and almost linear multiplicative functionals, Aequationes Math., 63(1) (2002), pp. 180-192.
19. H. Shayanpour, T.G. Honary and M.S. Hashemi, Certain properties of n-characters and n-homomorphisms on topological algebras, Bull. Malays. Math. Sci. Soc., 38(2) (2015), pp. 985-999.
20. W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math., 30 (1968), pp. 83-85.
21. A. Zivari-Kazempour, A note on δ-Jordan homomorphisms on $B a$ nach algebras, Gol. J. Math. Anal., 2(2) (2014), pp. 70-72.
22. A. Zivari-Kazempour, A characterization of 3-Jordan homomorphism on Banach algebras, Bull. Aust. Math. Soc., 93(2) (2016), pp. 301-306.
23. A. Zivari-Kazempour, Automatic continuiuy of n-Jordan homomorphisms on Banach algebras, Commun. Korean Math. Soc., 33(1) (2018), pp. 165-170.
24. A. Zivari-Kazempour, Automatic continuiuy of almost 3homomorphisms and almost 3-Jordan homomorphisms on Banach algebras, Adv. Oper. Theory, 5(4) (2020), pp. 1340-1349.

Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran.

Email address: zivari@abru.ac.ir, zivari6526@gmail.com

[^0]: 2020 Mathematics Subject Classification. 47B48, 46H25.
 Key words and phrases. Almost n-multiplicative, Almost n-Jordan homomorphism, Automatic continuity, Semisimple.

 Received: 25 February 2022, Accepted: 22 June 2022.

