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On generalized topological molecular lattices

Narges Nazari1 and Ghasem Mirhosseinkhani2∗

Abstract. In this paper, we introduce the concept of the gener-
alized topological molecular lattices as a generalization of Wang’s
topological molecular lattices, topological spaces, fuzzy topologi-
cal spaces, L-fuzzy topological spaces and soft topological spaces.
Topological molecular lattices were defined by closed elements, but
in this new structure we present the concept of the open elements
and define a closed element by the pseudocomplement of an open
element. We have two structures on a completely distributive com-
plete lattice, topology and generalized co-topology which are not
dual to each other. We study the basic concepts, in particular sep-
aration axioms and some relations among them.

1. Introduction and preliminaries

Since the set of open sets of a topological space is a frame, many
important properties to topological spaces may be expressed without
referring to the points. The first person who exploit possibility of ap-
plying the lattice theory to the topology was Henry Wallman. He used
the lattice-theoretic ideas to construct what is now called the “Wallman
compactification” of a T1-topological space. This idea was pursued by
Mckinsey, Tarski, Nöbeling, Lesier, Ehresmann, Bénabou, etc. How-
ever, the importance of attention to open sets as a lattice appeared as
late as 1962 in [3, 9]. After that, many authors became interested and
developed the field. The pioneering paper [6] by Isbell merits particu-
lar mention for opening several important topics. In 1983, Johnstone
gave an excellent monograph “Stone spaces” which is still the standard
reference book. Until then, all attempts had been about the modeling
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of a topology but not a topological space. In a similar method, as we
deal with a general topology, Wang Guo-Jun introduced the concept of
the topological molecular lattices on a completely distributive complete
lattice and studied some basic properties of them [10–12]. Since in the
general topological lattice theory there is no concept of complement,
he only introduced the concept of the topological molecular lattices by
closed elements. In [1], it was introduced an other new model of point
free topologies by frames.

In this paper, since a completely distributive complete lattice has
pseudocomplement, we introduce the concept of the generalized topo-
logical molecular lattices by the open elements which are closed under
finite meets and arbitrary joins. Also, we define a closed element by the
pseudocomplement of an open element. Thus closed elements are not
closed under finite joins, and hence we have two structures on a complete
lattice, topology and generalized co-topology which are not dual to each
other. One can easily verify that a general topology, fuzzy topology, L-
fuzzy topology and soft topology all are special cases of the generalized
topological molecular lattices.

A complete lattice L is said to be completely distributive if whenever
xij ∈ X for every i ∈ I and j ∈ J , then∨

i∈I

∧
j∈J

xij =
∧

f∈JI

∨
i∈I

xif(i).

A frame F is a complete lattice which satisfies the following distribu-
tive law:

a ∧

(∨
i∈I

bi

)
=
∨
i∈I

(a ∧ bi) for each a, bi ∈ F (i ∈ I).

Clearly, every completely distributive lattice is a frame. A pseu-
docomplement of an element a of a bounded lattice L is defined by
max(a⊥), if there exists, and denoted by a∗, where a⊥ = {x ∈ L :
x ∧ a = 0}. If F is a frame, then a∗ = ∨(a⊥). A distributive pseudo-
complemented lattice L is said to be a Stone algebra if a∗ ∨ a∗∗ = 1 for
every a ∈ L [2, 5, 8].

For two completely distributive L1 and L2, and a mapping f : L1 →
L2 which preserves arbitrary joins, let f̂ denotes the right adjoint of
f , then f̂ : L2 → L1 is defined by f̂(y) =

∨
{x ∈ L1 : f(x) ≤ y} for

every y ∈ L2. A mapping f : L1 → L2 is said to be a generalized order
homomorphism or a gml-map if f preserves joins and its right adjoint
preserves sups and infs [6].

An element a of a lattice L is a coprime element, if a ̸= 0 and a ≤ b∨c
implies that a ≤ b or a ≤ c, for every b, c ∈ L. Coprime elements are also
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called moleculars. For a completely distributive lattice L, we denote by
M the set of all coprime elements, and L is called a molecular lattice
and the write it in a slightly complex form L(M) to indicate the set M
of molecules. It is well known that M is a join generating base for L
[10].

Remark 1.1. The following simple assertions are useful throughout the
paper. Let L be a complete pseudocomplemented lattice.

1) The map ∗ is decreasing and a ≤ a∗∗ for every a ∈ L.
2) The map ∗∗ is identity on L∗, i.e., a∗∗∗ = a∗ for all a ∈ L.
3) For every a, b ∈ L we have

a ∧ b = 0 ⇔ a ≤ b∗

⇔ b ≤ a∗

⇔ a∗∗ ≤ b∗

⇔ a∗∗ ∧ b = 0.

4) If L is a frame and S ⊆ L, then (∨s∈Ss)
∗ = ∧s∈Ss

∗.

2. Generalized topological molecular lattices

In this section, we introduce the concept of the generalized topological
molecular lattices, and investigate some basic concepts of them.

Definition 2.1. Let L be a molecular lattice. If τ is a sublattice of L,∨
S ∈ τ for each S ⊆ τ and 0, 1 ∈ τ , then (L, τ) is called a general-

ized topological molecular lattice space, or briefly, gtml−space. Every
member of τ is said to be open and any member of τ∗ = {a∗ : a ∈ τ} is
said to be a closed element.

Notice that τ∗ is closed under arbitrary meets, since(∨
i∈I

ai

)∗

=
∧
i∈I

a∗i ,

but it is not closed under finite joins. Thus we have two structures on
a molecular lattice, topology and generalized co-topology which are not
dual to each other. Furthermore, if τ∗ is a sublattice of L, we say (L, τ)
is a topological molecular lattice space, or briefly, tml−space.

A gtml−space need to be a tml−space. For example, consider the
lattice L as follows:
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It is obvious that L∗ = {0, a, b, 1} and a ∨ b = c /∈ L∗.
Thus (L,L) is a gtml−space while it is not a tml−space.

Definition 2.2. Let (L1, τ1) and (L2, τ2) be two gtml−spaces. A
gml−map f : (L1, τ1) → (L2, τ2) is said to be:

1) continuous with respect to the topology or i−continuous if b ∈
τ2, implies f̂(b) ∈ τ1,

2) continuous with respect to the generalized co-topology or c−
continuous if b ∈ τ∗2 , implies f̂(b) ∈ τ∗1 ,

3) continuous if it is i−continuous and c−continuous.

Let (L(M), τ) be a gtml−space and a ∈ L. We define a◦ = ∨{t ∈ τ |
t ≤ a} and ā = ∧{x ∈ τ∗ | a ≤ x}. An open element P ∈ τ is called
a neighborhood of a ∈ M , if a ≤ p. Also a closed element p ∈ τ∗ is
called a remote-neighborhood of a ∈ M , if a ≰ p. The set of all remote-
neighborhoods of a is denoted by τ∗(a), and the set of all neighborhoods
of a is denoted by τ(a). Similarly, we define τ∗∗(a).

Definition 2.3. A gml−map f : (L1(M1), τ1) → (L2(M1), τ2) is said

to be i−continuous at point a ∈ M1, if (f̂(b))
◦ ∈ τ1(a), for every b ∈

τ2(f(a)).

Theorem 2.4. Let f : (L1(M1), τ1) → (L2(M2), τ2) be a gml−map.
Then f is i−continuous if and only if it is i−continuous at a, for every
a ∈ M1.

Proof. Suppose that f is i−continuous and a ∈ M1. Then for any b ∈
τ2(f(a)), f̂(b) is open. Clearly, a ≤ (f̂(b))◦. Hence (f̂(b))◦ ∈ τ1(a) and
so f is i−continuous at a. Conversely, suppose that for any a ∈ M1,
f is i−continuous at a and b ∈ τ2. We may assume that f̂(b) ̸= 0 and

a ≤ f̂(b) where a ∈ M1. Then f(a) ≤ b and so b ∈ τ2(f(a)). Hence

(f̂(b))◦ ∈ τ1(a), i.e., a ≤ f̂(b) implies that a ≤ (f̂(b))◦, or f̂(b) ≤ (f̂(b))◦.

Thus f̂(b) ∈ τ1. □
The proof of the following theorem is a result of Definition 2.2.

Theorem 2.5. Let f : L1 → L2 be a gml−map. Then:

1) f is i−continuous if and only if f̂(a◦) ≤ (f̂(a))◦, for every
a ∈ L2.

2) f is c−continuous if and only if f̂(a) ≤ f̂(ā), for every a ∈ L2.
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3) f is c−continuous if and only if f(ā) ≤ f(a), for every a ∈ L1.

Example 2.6. An i−continuous map need not to be a c−continuous
map. For instance, consider L1 and L2 respectively, as follows:

Let τ1 = τ2 = {0, b, 1} and define the map f : L1 → L2 by:

f(t) =

{
1,
t,

t ̸= d,
oth.

Clearly, f is a gml− map, f̂(t) = t, for each t ∈ L2, τ∗1 = {0, d, 1}
and τ∗2 = {0, a, 1}. Then f is i−continuous but it is not c−continuous,

because a ∈ τ∗2 and f̂(a) = a /∈ τ∗1 .
Conversely, a c−continuous map need not to be an i−continuous map.

If we put τ1 = {0, a, 1} and τ2 = {0, a, c, 1}, then τ∗1 = τ∗2 = {0, b, 1}
and f is c−continuous but it is not i−continuous, because c ∈ τ2 and
f̂(c) = c /∈ τ1.

Recall that, a Boolean algebra is a distributive lattice with comple-
ments, thus in a Boolean algebra L, we have a∗∗ = a for all a ∈ L.
Let (L, τ) be a gtml-space. Since a∗∗∗ = a∗ for all a ∈ L, the map
∗ : τ∗ → τ∗∗ is bijective. Also, since τ and τ∗ are not dual to each
other, the map ∗ : τ → τ∗ is not bijective. Clearly, in a Boolean algebra,
τ = τ∗∗. If the map ∗ : τ → τ∗ is bijective, then L is called topologically
injective.

Theorem 2.7 ([7]). Let f : L1 → L2 be a gml−map. Then the following
statements hold.

1) f̂(a∗) ≤ (f̂(a))∗.

2) If L2 is a Boolean algebra, then f̂(a∗) = (f̂(a))∗.

Theorem 2.8. Let f : L1 → L2 be a gml−map and L2 a Boolean
algebra. Then f is i−continuous if and only if it is c−continuous.

Proof. By Theorem 2.7, the result follows. □
Definition 2.9. Let f : (L1, τ1) → (L2, τ2) be a gml−map. Then:

1) f is an open map if f(a) ∈ τ2, for every a ∈ τ1.
2) f is a closed map if f(a) ∈ τ∗2 , for every a ∈ τ∗1 .
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The following theorems are immediate consequences of the definitions
of open and closed maps.

Theorem 2.10. Let f : L1 → L2 be an i−continuous gml−map. Then
the following statements are equivalent.

1) f is an open map,
2) f(a◦) ≤ (f(a))◦, for every a ∈ L1,

3) (f̂(b))◦ = f̂(b◦), for every b ∈ L2.

Theorem 2.11. Let f : L1 → L2 be a c−continuous gml−map. Then
the following statements are equivalent.

1) f is a closed map,

2) f(a) = f(ā), for every a ∈ L1.

Recall that an element b of L is called crisp if for any a ∈ M,a ≰ b
implies that a ∧ b = 0, or equivalently, a ∧ b ̸= 0 implies that a ≤ b.

Definition 2.12. Let (L(M), τ) be a gtml−space. Then L is said to
be:

1) i−crisp if p is crisp, for all p ∈ τ ,
2) c−crisp if p is crisp, for all p ∈ τ∗,
3) crisp if it is i−crisp and c−crisp.

Definition 2.13 ([10]). Let L(M) be a molecular lattice, D be a di-
rected set and S : D → M be a mapping. Then S is called a molecular
net in L and is denoted by S = {s(n), n ∈ D}. S is said to be in a ∈ L,
if for any n ∈ D, s(n) ≤ a.

Definition 2.14. Let (L(M), τ) be a gtml−space, S = {s(n), n ∈ D}
a molecular net and a ∈ M . Then a is said to be:

1) an i−limit point of S (or S i−converges to a), if for any p ∈ τ(a),
s(n) ≤ p is eventually true,

2) a c−limit point of S (or S c−converges to a), if for any p ∈ τ∗(a),
s(n) ≰ p is eventually true,

3) an ∗ ∗ −limit point of S (or S ∗ ∗ −converges to a), if for any
p ∈ τ∗∗(a), s(n) ≤ p is eventually true.

The union of all c−limit points of S is denoted by c− limS. Similarly,
we have i− limS and ∗ ∗ − limS.

The proof of the following theorem is a result of Definition 2.14.

Theorem 2.15. If (L(M), τ) is an i−crisp gtml−space and S is a
molecular net, then a is a c−limit point of S if and only if it is an
i−limit point of S.

Theorem 2.16. Let f : (L1(M1), τ1) → (L2(M2), τ2) be a gml−map.
Then f is i−continuous at a ∈ M1 if and only if for each molecular net
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S in L1 which i−converges to a we have f(S) is i−converges to f(a),
where f(S) = {f(s(n)), n ∈ D} is a molecular net in L2.

Proof. Suppose that f is i−continuous at a and S i−converges to a.
Let b ∈ τ2(f(a)). By hypothesis (f̂(b))◦ ∈ τ1(a) and so a ≤ f̂(b).

Hence s(n) ≤ f̂(b) and consequently f(s(n)) ≤ b, which shows that f(S)
i−converges to f(a). Conversely, suppose that f is not i−continuous at

a. Then there exists b ∈ τ2(f(a)) such that (f̂(b))◦ /∈ τ1(a). Hence

a ≰ (f̂(b))◦ and so for any p ∈ τ(a), p ≰ f̂(b). Therefore, there exists

s(p) ∈ M1 such that s(p) ≰ f̂(b) and s(p) ≤ p. Now the molecular net
{s(p), p ∈ τ(a)} is i−converges at a but f(S) does not i−converges to
f(a). □
Definition 2.17. Let (L(M), τ) be a gtml−space, b ∈ L and a ∈ M .
Then a is said to be:

1) an i−adherence point of b, if p ∈ τ(a), implies b ∧ p ̸= 0,
2) a c−adherence point of b, if p ∈ τ∗(a), implies b ≰ p,
3) an ∗∗-adherence point of b, if p ∈ τ∗∗(a), implies b ∧ p ̸= 0.

Clearly, the element 0 has no c−adherence points and i−adherence
points.

Theorem 2.18. Let (L(M), τ) be a gtml−space and a ∈ M . Then the
following statements hold.

1) If L is i−crisp, then a is a c−adherent point of b if and only if
a is an i−adherent point of b.

2) If L is c−crisp and a is ∗ ∗ −adherent point of b, then a is a
c−adherent point of b.

3) If L is a Stone algebra and a is ∗ ∗ −adherent point of b, then
a is a c−adherent point of b.

Proof. 1) Clearly, c−adherent point implies i−adherent point. Con-
versely, let a be an i−adherent point of b and p ∈ τ∗(a). Then
there exists c ∈ τ such that p = c∗. Since a ≰ c∗, it follows that
a ∧ c ̸= 0 and so, by hypothesis a ≤ c. Hence b ∧ c ̸= 0 and
consequently b ≰ c∗ = p, which shows that a is a c−adherent
point of b.

2) Let p ∈ τ∗(a). Then a ∧ p = 0 and consequently a ≤ p∗. Now
by hypothesis, b∧ p∗ ̸= 0. Hence b ≰ p∗∗ = p, which shows that
a is a c−adherent point of b.

3) Let p ∈ τ∗(a). Then we show that a ≤ p∗. If a ≰ p∗, then
a ≰ (p∨p∗) = 1, which is a contradiction, and so by assumption
we have b ∧ p∗ ̸= 0. Thus b ≰ p∗∗ = p, which shows that a is a
c−adherent point of b.

□
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Theorem 2.19. If (L(M), τ) is an i−crisp gtml−space, then a is an
i−adherent point of b if and only if a ≤ b̄.

Proof. By Definition 2.17, a is an i−adherent point of b if and only if
a ≤ p implies p∧ b ̸= 0, or equivalently, p∧ b = 0 implies a ≰ p for every
p ∈ τ and so, by hypothesis, a ∧ p = 0 for every p ∈ τ . Hence b ≤ p∗

implies a ≤ p∗ for every p∗ ∈ τ∗. This means that a ≤ b̄. □

Definition 2.20. Let (L(M), τ) be a gtml−space and {bi}i∈I be a
subset of L. Then {bi}i∈I is said to be:

1) i−locally finite if every point a ∈ M has a neighborhood p ∈
τ(a) such that bi ≤ p holds for at most a finite number of i,

2) c−locally finite if every point a ∈ M has a remote-neighborhood
p ∈ τ∗(a) such that bi ≰ p holds for at most a finite number of
i,

3) ∗ ∗ −locally finite if every point a ∈ M has a neighborhood
p ∈ τ∗∗(a) such that bi ≤ p holds for at most a finite number of
i.

Theorem 2.21. Let (L(M), τ) be an i−crisp gtml−space. Then the
following statements are equivalent.

1) {bi}i∈I is a c−locally finite family,
2) {bi}i∈I is an i−locally finite family,
3) {bi}i∈I is ∗ ∗ −locally finite family.

Proof. 1 ⇒ 2) Let a ∈ M and p ∈ τ∗(a). Then there exists c ∈ τ
such that p = c∗. Since a ≰ c∗, it follows that a ∧ c ̸= 0 and
so, by hypothesis, a ≤ c. On the other hand since {bi}i∈I is a
c−locally finite, it follows that bi ≰ p = c∗ and so bi ∧ c ̸= 0
holds for at most a finite number of i. Hence bi ≤ c holds for at
most a finite number of i, which shows that {bi}i∈I is i−locally
finite.

2 ⇒ 3) It is clear.
3 ⇒ 1) Assume that a ∈ M , p ∈ τ∗∗(a). Then there exists c ∈ τ such

that p = c∗∗. Hence a ≰ c∗. By hypothesis bi ≤ p = c∗∗ and
consequently bi ≰ c∗∗∗ = c∗ holds for at most a finite number
of i, which shows that {bi}i∈I is c−locally finite.

□

Theorem 2.22. If {bi}i∈I is an i−locally finite family and (L(M), τ)
an i−crisp gtml−space, then {bi}i∈I is an i−locally finite family.

Proof. Let a ∈ M , p ∈ τ(a). By hypothesis bi ≤ p holds for at most
a finite number of i. Hence bi ≰ p∗ and so bi ≰ p∗ = p∗ holds for at

most a finite number of i. Consequently, bi ∧ p ̸= 0 and so bi ≤ p holds
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for at most a finite number of i, which shows that {bi}i∈I is i−locally
finite. □
Definition 2.23. Let (L, τ) be a gtml−space. Then a subset {bi}i∈I
of L is said to be:

1) an i−cover of an element a ∈ L if a ≤ ∨i∈Ibi,
2) a c−cover of an element a ∈ L if (∧i∈Ibi) ∧ a = 0,
3) ∗ ∗ −cover of an element a ∈ L if a ≤ (∨i∈Ibi)

∗∗.

Notice that in the above definition if a = 1, {bi}i∈I is called a c−cover
of L. Similarly we have i−cover and ∗ ∗ −cover of L.

Theorem 2.24. Let (L, τ) be a gtml−space and {bi}i∈I a subset of L.

1) If L is a Boolean algebra, then {b∗i }i∈I is a c−cover of an ele-
ment a ∈ L if and only if {bi}i∈I is an i−cover of an element
a ∈ L.

2) Let L be a c−crisp. If {bi}i∈I is an i−cover of an element a ∈ L,
then {b∗i }i∈I is a c−cover of an element a ∈ L.

3) {b∗i }i∈I is a c−cover of an element a ∈ L if and only if {bi}i∈I
is ∗ ∗ −cover of an element a ∈ L.

4) If {bi}i∈I is an i−cover of an element a ∈ L, then {bi}i∈I is
∗ ∗ −cover of an element a ∈ L.

Proof. 1) Since we have a ∧ (∧b∗i ) = 0 ⇔ a ≤ (∧b∗i )∗ = (∨bi),
the result follows.

2) By hypothesis, we have a ≤ ∨i∈Ibi, thus a∧ (∨i∈Ibi) ̸= 0 and so
a ≰ (∨i∈Ibi)

∗ = ∧b∗i . Consequently, a ∧ (∧b∗i ) = 0, which shows
that {b∗i }i∈I is a c−cover of an element a ∈ L.

The parts 3 and 4 are evident.
□

Recall that a gtml−space (L, τ) has the finite c-cover property if every
c−cover of L consisting of the closed elements has a finite c−subcover.
Also, we say that (L, τ) has the finite i−cover property if every i−cover
of L consisting of the open elements has a finite i−subcover. Similarly,
we define the finite ∗ ∗ −cover property. We say a ∈ L is compact if
S ⊆ τ and a ≤ ∨S, imply that there exists a finite subset D of S such
that a ≤ ∨D. If 1 is a compact element in (L, τ), then we say (L, τ) is
compact. Similarly, we define ∗ ∗ −compact space.

Theorem 2.25. Let (L, τ) be a gtml−space. Then the following state-
ments hold.

1) If L has the finite c-cover property, then it is ∗∗−compact space.
2) If the map ∗ is topologically injective and L has the finite c−cover

property, then it is compact.
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Proof.

1) The proof is clear.
2) Suppose that ∨i∈Ibi = 1. Then ∧i∈Ib

∗
i = (∨i∈Ibi)

∗ = 1∗ = 0
and so, by hypothesis, ∧n

i=1b
∗
i = 0, thus (∨n

i=1bi)
∗ = 0 and

consequently ∨n
i=1bi = 1.

□

3. separation axioms

In this section, we introduce some kinds of separation axioms in a
gtml-space and investigate their properties. Moreover, we discuss the
relations among them.

Definition 3.1. Let (L(M), τ) be a gtml−space. Then L is said to be:

1) c − T−1, if a, b ∈ M and a < b, imply that there exists t ∈ τ
such that b ≰ t∗ and a ≤ t∗,

2) i − T−1, if a, b ∈ M and a < b, imply that there exists t ∈ τ
such that b ≤ t and a ∧ t = 0,

3) ∗ ∗ −T−1, if a, b ∈ M and a < b, imply that there exists t ∈ τ
such that b ≤ t∗∗ and a ∧ t∗∗ = 0.

Clearly, we have the implications: i− T−1 ⇒ ∗ ∗ −T−1 ⇒ c− T−1.

Definition 3.2 ([10]). Let L(M) be a molecular lattice, 0 ̸= a ∈ L
and m ∈ M . Then m is called a component of a if (i) m ≤ a, and (ii)
m′ ∈ M , m′ ≥ m and m′ ≤ a imply that m′ = m.

Theorem 3.3. Let (L(M), τ) be a gtml−space.

1) If L is c− T−1 and i−crisp, then it is i− T−1.
2) If L is i−crisp, then it is i − T−1 if and only if for all x ∈ M ,

x is a component of x̄.

Proof. 1) Let a, b ∈ M and a < b. Then there exists t ∈ τ such
that b ≰ t∗ and a ≤ t∗. Therefore b ∧ t ̸= 0 and a ∧ t = 0. Now
by hypothesis, we have that b ≤ t and a ∧ t = 0, which shows
that L is i− T−1.

2) By the part 1 and Theorem 6.16 [10], the result follows.
□

Definition 3.4. Let (L(M), τ) be a gtml−space. Then L is said to be:

1) c−T0, if a, b ∈ M and a ̸= b, imply that there exists p ∈ τ such
that a ≰ p∗ and b ≤ p∗ or there exists q ∈ τ such that b ≰ q∗

and a ≤ q∗,
2) i− T0, if a, b ∈ M and a ̸= b, imply that there exists t ∈ τ such

that a ≤ t and b ∧ t = 0 or there exists t′ ∈ τ such that b ≤ t′

and a ∧ t′ = 0,
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3) ∗ ∗ −T0, if a, b ∈ M and a ̸= b, imply that there exists t ∈ τ
such that a ≤ t∗∗ and b∧ t∗∗ = 0 or there exists q ∈ τ such that
b ≤ q∗∗ and a ∧ q∗∗ = 0.

Clearly, we have the implications: i − T0 ⇒ ∗ ∗ −T0 ⇒ c − T0. In
general, we have that i−T−1 does not imply i−T0. For example, consider
the lattice L as follows:

Let τ = {0, 1} and so τ∗ = {0, 1}. Clearly, (L, τ) is i − T−1 but it is
not i− T0, because x ≤ 1, y ≤ 1 and y ∧ 1 = y, x ∧ 1 = x.

Theorem 3.5. Let (L(M), τ) be a gtml−space.

1) If L is c− T0 and i−crisp, then it is i− T0.
2) If L is i−crisp, then it is i− T0 if and only if for all a, b ∈ M ,

a ̸= b, we have a ≰ b̄ or b ≰ ā.

Proof. 1) Let a, b ∈ M and a ̸= b. Then there exists t ∈ τ such
that a ≰ t∗ and b ≤ t∗. Therefore a ∧ t ̸= 0 and b ∧ t = 0. Now
by hypothesis, we have that a ≤ t and b ∧ t = 0. On the other
hand, we suppose that there exists q ∈ τ such that a ≤ q∗ and
b ≰ q∗. Similarly, we have that a ∧ q = 0 and b ≤ q, which
shows that L is ∗ ∗ −T0.

2) The proof is easy and hence is omitted.
□

Definition 3.6. Let (L(M), τ) be a gtml−space. Then L is said to be:

1) i− T1, if a, b ∈ M and a ≰ b, imply that there exists t ∈ τ such
that a ≤ t and b ∧ t = 0,

2) c− T1, if a, b ∈ M and a ≰ b, imply that there exists t ∈ τ such
that a ≰ t∗ and b ≤ t∗,

3) ∗ ∗ −T1, if a, b ∈ M and a ≰ b, imply that there exists t ∈ τ
such that a ≤ t∗∗ and b ∧ t∗∗ = 0.

Clearly, we have the implications: i− T1 ⇒ ∗ ∗ −T1 ⇒ c− T1.

Theorem 3.7. Let (L(M), τ) be a gtml−space. Then the following
statements hold.

1) If L is c− T1 and i−crisp, then it is i− T1.
2) L is c− T1 if and only if for every x ∈ M , x is closed.
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3) If L is i−crisp, then L is i− T1 if and only if for every x ∈ M ,
x is closed.

Proof. 1) The proof is similar to Theorem 3.5.
2) Suppose that L is c−T1 and b ∈ M . for any a ∈ M , if a ≰ b, then

there exists t ∈ τ such that a ≰ t∗ and b ≤ t∗. By Definition
2.17, this shows that a is not a c−adherent point of b. In other
words, b contains all its c−adherent points and hence is closed.
Conversely, let a, b ∈ M and a ≰ b. Then b ∈ τ∗(a) and b ≤ b,
hence L is c− T1.

3) It follows easily from 1 and 2.
□

In general, we have that c− T0 does not imply c− T1. For example,
consider the lattice L = L2 given in Example 2.6. Let τ = {0, a, c, 1}
and so τ∗ = {0, b, 1}. Clearly, (L, τ) is c−T0 but it is not c−T1, because
by Theorem 3.7, a ∈ M but a is not closed.

Also, i− T0 does not imply i− T1. For example, consider the lattice
L as follows:

Let τ = {0, x, 1} and so τ∗ = {0, y, 1}. Clearly, (L, τ) is i− T0 but it
is not i− T1 because by Theorem 3.7, x ∈ M but x is not closed.

Definition 3.8. Let (L(M), τ) be a gtml−space. Then L is said to be:

1) i−T2, if a, b ∈ M and a∧b = 0, imply that there exist t1, t2 ∈ τ
such that a ≤ t1, b ≤ t2 and t1 ∧ t2 = 0,

2) c−T2, if a, b ∈ M and a∧b = 0, imply that there exist t1, t2 ∈ τ
such that a ≰ t∗1, b ≰ t∗2 and t∗1 ∨ t∗2 = 1,

3) ∗∗−T2, if a, b ∈ M and a∧b = 0, imply that there exist t1, t2 ∈ τ
such that a ≤ t∗∗1 , b ≤ t∗∗2 and t∗∗1 ∧ t∗∗2 = 0.

Theorem 3.9. Let (L(M), τ) be a gtml−space. Then the following
statements hold.

1) If L is a tml-space and i−crisp, then L is c− T2 if and only if
it is i− T2.

2) If L is i− T2, then it is ∗ ∗ −T2.

Proof. 1) The proof follows from this fact that (t1 ∧ t2)
∗ = t∗1 ∨ t∗2.
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2) Since for every a, b ∈ L, we have a∧b = 0 if and only if a∗∗∧b∗∗ =
0, the result holds.

□
Definition 3.10. Let (L(M), τ) be a gtml−space. Then L is said to
be:

1) i−regular, if a, b ∈ M and b ∈ τ∗(a), imply that there exist
t1, t2 ∈ τ such that a ≤ t1, b ≤ t2 and t1 ∧ t2 = 0,

2) c−regular, if a, b ∈ M and b ∈ τ∗(a), imply that there exist
t1, t2 ∈ τ such that a ≰ t∗1, b ≰ t∗2 and t∗1 ∨ t∗2 = 1,

3) ∗ ∗ −regular, if a, b ∈ M and b ∈ τ∗(a), imply that there exist
t1, t2 ∈ τ such that a ≤ t∗∗1 , b ≤ t∗∗2 and t∗∗1 ∧ t∗∗2 = 0.

A c− T0 regular gtml-space is said to be c− T3. Similarly, we define
i− T3 and ∗ ∗ −T3.

Theorem 3.11. Let (L(M), τ) be a gtml−space. Then the following
statements hold.

1) If L is a tml−space and i−crisp, then L is c− T3 if and only if
it is i− T3.

2) If L is i− T3, then it is ∗ ∗ −T3.

Proof. The proof is similar to Theorem 3.9 □
In general, i − T2 does not imply i − T3. For example, consider the

lattice L = L1 given in Example 2.6. Let τ = {0, b, d, 1} and so τ∗ =
{0, b, d, 1}. Clearly, (L, τ) is i−T2 but it is not i−T3, because for a ̸= d,
we have a ≤ d, d ≤ 1 but a∧ d = a ̸= 0 and a∧ 1 = a ̸= 0. Similarly, we
can show that (L, τ) is c− T2 but it is not c− T1.

By the above definitions, we can directly obtain the following results.

Corollary 3.12. For a gtml−space L, the following implications hold.

1) c− T1 ⇒ c− T0 ⇒ c− T−1.
2) i− T1 ⇒ i− T0 ⇒ i− T−1.
3) i− T2 + i− T−1 ⇒ i− T1.
4) If L is also i−crisp, then c− T2 + c− T−1 ⇒ c− T1.
5) c− T3 ⇒ c− T2.
6) i− T3 ⇒ i− T2.

In general, i − T2 dose not imply i − T1. For instance, let L = [0, 1]
and τ = {0, 1}. Clearly, (L(M), τ) is not i − T−1 and hence it is not
i − T1. But there are no disjoint points, so L is i − T2, where a, b ∈ M
are called disjoint, if a ∧ b = 0.

Theorem 3.13 ([4]). Let L(M) be a gtml−space. Then it is c − T2

if and only if for each molecular net S, c − limS contains no disjoint
points.
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Theorem 3.14. Let L(M) be a gtml−space. Then it is i − T2 if and
only if for each molecular net S, i− limS contains no disjoint points.

Proof. Let S = {s(n), n ∈ D} be a molecular net such that i − limS
contains two disjoint points a and b. Suppose that p ∈ τ(a) and q ∈ τ(b).
Since a is an i−limit point of S, there exists n1 ∈ D such that s(n) ≤ p
whenever n ≥ n1; similarly, there exists n2 ∈ D such that s(n) ≤ q
whenever n ≥ n2. Since D is directed, there exists n3 ∈ D such that
s(n3) ≤ p and s(n3) ≤ q. Hence s(n3) ≤ p ∧ q. Therefore, p ∧ q ̸= 0 and
consequently L is not i − T2. Conversely, if L is not i − T2, then there
exist a, b ∈ M with a ∧ b = 0 and for any p, q ∈ τ such that a ≤ p and
b ≤ q, we have p ∧ q ̸= 0. Hence we can choose a molecular s((p, q))
such that s((p, q)) ≤ p ∧ q. Define S = {s((p, q)), (p, q) ∈ τ(a) × τ(b)}.
Then S is a molecular net which converges to both a and b, and hence
i− limS contains at least two disjoint points. □

By the previous statements, we have the following result.

Corollary 3.15. Let L be an i−crisp tml−space and j ∈ {−1, 0, 1, 2, 3}.
Then L is i− Tj if and only if it is c− Tj.

Definition 3.16. Let f : (L1(M), τ1) → (L2(M), τ2) be a bijective gml-

map. Then f is said to be a homeomorphism if f and f̂ are continuous.

Notice that if f is a homeomorphism, then f̂ = f−1 is also a homeo-
morphism, where f−1 is the inverse of f .

Theorem 3.17. Let f : (L1(M), τ1) → (L2(M), τ2) be a homeomor-
phism gml-map and j ∈ {−1, 0, 1, 2, 3}.

1) If L1 is i− Tj, then so is L2.
2) If L1 is c− Tj, then so is L2.

Proof. We only show the case of i − T2 and the others are similar. Let
L1 be an i− T2 and x, y ∈ M2 with x ∧ y = 0. Since f is bijective, then
there exist a, b ∈ M1 such that f(a) = x and f(b) = y, and so, a∧ b = 0.
Then there exist p, q ∈ τ1 such that a ≤ p, b ≤ q and p ∧ q = 0. Hence
x ≤ f(p), y ≤ f(q) and f(p∧ q) = f(p)∧ f(q) = 0, which shows that L2

is i− T2. □

4. Conclusion

In this paper, we have introduced the concept of the generalized
topological molecular lattices and investigated some basic properties of
them. We have presented some kinds of separation axioms and investi-
gated some relations among them. In particular, we have showed that
a gtml−space is i− T2 and c− T2 if and only if for each molecular net
S, i− limS and c− limS have no disjoint points.
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