Hashemi Sababe, S., Ebadian, A. (2017). Some properties of reproducing Kernel Banach and Hilbert spaces. Sahand Communications in Mathematical Analysis, (), -. doi: 10.22130/scma.2017.27822
Saeed Hashemi Sababe; Ali Ebadian. "Some properties of reproducing Kernel Banach and Hilbert spaces". Sahand Communications in Mathematical Analysis, , , 2017, -. doi: 10.22130/scma.2017.27822
Hashemi Sababe, S., Ebadian, A. (2017). 'Some properties of reproducing Kernel Banach and Hilbert spaces', Sahand Communications in Mathematical Analysis, (), pp. -. doi: 10.22130/scma.2017.27822
Hashemi Sababe, S., Ebadian, A. Some properties of reproducing Kernel Banach and Hilbert spaces. Sahand Communications in Mathematical Analysis, 2017; (): -. doi: 10.22130/scma.2017.27822
Some properties of reproducing Kernel Banach and Hilbert spaces
Articles in Press, Accepted Manuscript , Available Online from 11 October 2017
Department of Mathematics, Payame Noor University (PNU), P.O. Box, 19395-3697, Tehran, Iran.
Abstract
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels and prove some theorems in this subject.
[1] D. Alpay, P. Jorgensen, and D. Volok, Rlative reproducing kernel Hilbert spaces, Proceedings of the American Mathematical Society., 142 (2014) 3889 - 3895.
[2] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950) 337–-404.
[3] A. Berlinet and C. Thomas-Agnan, Reproducing kernel Hilbert spaces in probability and statistics, Kluwer Academic Publishers, Boston, 2004.
[4] S.S. Dragomir, Semi- inner products and application, Nova Science Publishers, 2004.
[5] G.E. Fasshauer and Q. Ye, Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators, Numer. Math., 119 (2011) 585-611.
[6] K. Fukumizu, G.R. Lanckriet, and B.K. Sriperumbudur, Learning in Hilbert vs. Banach Spaces: A measure embedding viewpoint, Advances in Neural Information Processing Systems, 24 (2011).
[9] B.D. Malviya, A note on semi-inner product algebras, Math.Nachr., 47 (1970) 127-129.
[10] P.V. Pethe and N.K. Thakare, Applications of Riesz's representation theorem in semi-inner product spaces, Indian J. Pure Appl. Math., 7 (1976) 1024-1031.
[11] B. Scholkopf and A.J. Smola, Learning with kernels, MIT Press, Cambridge, Massachusetts, 2002.
[12] A. Smola and S.V.N. Vishwanathan, Introduction to machine learning, Cambridge University Press, 2008.
[13] S. Tsui, Hilbert C*-modules: a useful tool, Taiwanese Journal of Mathematics, 1 (1997) 111-126.
[14] Y. Xu and Q. Ye, Constructions of reproducing kernel Banach spaces via generalized Mercer kernels, arXiv:1412.8663v1, 30 (2014).
[15] H. Zhang, Y. Xu, and J. Zhang, Reproducing kernel Banach spaces for machine learning, Journal of Machine Learning Research, 10 (2009) 2741-2775.
[16] D.X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans. Inform. Theory, 49 (2003) 1743-1752.