• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Sahand Communications in Mathematical Analysis
Articles in Press
Current Issue
Journal Archive
Volume Volume 9 (2018)
Volume Volume 8 (2017)
Volume Volume 7 (2017)
Volume Volume 6 (2017)
Volume Volume 5 (2017)
Volume Volume 4 (2016)
Volume Volume 3 (2016)
Volume Volume 2 (2015)
Volume Volume 1 (2014)
Hashemi Sababe, S., Ebadian, A. (2017). Some properties of reproducing Kernel Banach and Hilbert spaces. Sahand Communications in Mathematical Analysis, (), -. doi: 10.22130/scma.2017.27822
Saeed Hashemi Sababe; Ali Ebadian. "Some properties of reproducing Kernel Banach and Hilbert spaces". Sahand Communications in Mathematical Analysis, , , 2017, -. doi: 10.22130/scma.2017.27822
Hashemi Sababe, S., Ebadian, A. (2017). 'Some properties of reproducing Kernel Banach and Hilbert spaces', Sahand Communications in Mathematical Analysis, (), pp. -. doi: 10.22130/scma.2017.27822
Hashemi Sababe, S., Ebadian, A. Some properties of reproducing Kernel Banach and Hilbert spaces. Sahand Communications in Mathematical Analysis, 2017; (): -. doi: 10.22130/scma.2017.27822

Some properties of reproducing Kernel Banach and Hilbert spaces

Articles in Press, Accepted Manuscript , Available Online from 11 October 2017  XML
Document Type: Research Paper
DOI: 10.22130/scma.2017.27822
Authors
Saeed Hashemi Sababe orcid ; Ali Ebadian
Department of Mathematics, Payame Noor University (PNU), P.O. Box, 19395-3697, Tehran, Iran.
Abstract
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels and prove some theorems in this subject.
Keywords
Reproducing kernel; Multipliers; Vector-valued spaces
Main Subjects
Functional analysis and operator theory
References
[1] D. Alpay, P. Jorgensen, and D. Volok, Rlative reproducing kernel Hilbert spaces, Proceedings of the American Mathematical Society., 142 (2014) 3889 - 3895.

[2] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950) 337–-404.

[3] A. Berlinet and C. Thomas-Agnan, Reproducing kernel Hilbert spaces in probability and statistics, Kluwer Academic Publishers, Boston, 2004.

[4] S.S. Dragomir, Semi- inner products and application, Nova Science Publishers, 2004.

[5] G.E. Fasshauer and Q. Ye, Reproducing kernels of generalized Sobolev spaces via a Green function approach with distributional operators, Numer. Math., 119 (2011) 585-611.

[6] K. Fukumizu, G.R. Lanckriet, and B.K. Sriperumbudur, Learning in Hilbert vs. Banach Spaces: A measure embedding viewpoint, Advances in Neural Information Processing Systems, 24 (2011).

[7] J.R. Giles, Classes of semi-inner-product spaces, Trans. Amer. Math. Soc., 129 (1967) 436-446.

[8] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc., 100 (1961) 29-43.

[9] B.D. Malviya, A note on semi-inner product algebras, Math.Nachr., 47 (1970) 127-129.

[10] P.V. Pethe and N.K. Thakare, Applications of Riesz's representation theorem in semi-inner product spaces, Indian J. Pure Appl. Math., 7 (1976) 1024-1031.

[11] B. Scholkopf and A.J. Smola, Learning with kernels, MIT Press, Cambridge, Massachusetts, 2002.

[12] A. Smola and S.V.N. Vishwanathan, Introduction to machine learning, Cambridge University Press, 2008.

[13] S. Tsui, Hilbert C*-modules: a useful tool, Taiwanese Journal of Mathematics, 1 (1997) 111-126.

[14] Y. Xu and Q. Ye, Constructions of reproducing kernel Banach spaces via generalized Mercer kernels, arXiv:1412.8663v1, 30 (2014).

[15] H. Zhang, Y. Xu, and J. Zhang, Reproducing kernel Banach spaces for machine learning, Journal of Machine Learning Research, 10 (2009) 2741-2775.

[16] D.X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans. Inform. Theory, 49 (2003) 1743-1752.

Statistics
Article View: 258
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.