• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter
Sahand Communications in Mathematical Analysis
arrow Articles in Press
arrow Current Issue
Journal Archive
Volume Volume 13 (2019)
Volume Volume 12 (2018)
Issue Issue 1
Volume Volume 11 (2018)
Volume Volume 10 (2018)
Volume Volume 09 (2018)
Volume Volume 08 (2017)
Volume Volume 07 (2017)
Volume Volume 06 (2017)
Volume Volume 05 (2017)
Volume Volume 04 (2016)
Volume Volume 03 (2016)
Volume Volume 02 (2015)
Volume Volume 01 (2014)
Fozouni, M. (2018). On Character Space of the Algebra of BSE-functions. Sahand Communications in Mathematical Analysis, 12(1), 187-194. doi: 10.22130/scma.2017.27982
Mohammad Fozouni. "On Character Space of the Algebra of BSE-functions". Sahand Communications in Mathematical Analysis, 12, 1, 2018, 187-194. doi: 10.22130/scma.2017.27982
Fozouni, M. (2018). 'On Character Space of the Algebra of BSE-functions', Sahand Communications in Mathematical Analysis, 12(1), pp. 187-194. doi: 10.22130/scma.2017.27982
Fozouni, M. On Character Space of the Algebra of BSE-functions. Sahand Communications in Mathematical Analysis, 2018; 12(1): 187-194. doi: 10.22130/scma.2017.27982

On Character Space of the Algebra of BSE-functions

Article 14, Volume 12, Issue 1, Autumn 2018, Page 187-194  XML PDF (91.25 K)
Document Type: Research Paper
DOI: 10.22130/scma.2017.27982
Author
Mohammad Fozouni email
Department of Mathematics and Statistics, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, P.O.Box 163, Gonbad Kavous, Iran.
Abstract
Suppose that $A$ is a semi-simple and commutative Banach algebra. In this paper we try to characterize the character space of the Banach algebra $C_{\rm{BSE}}(\Delta(A))$ consisting of all  BSE-functions on $\Delta(A)$ where $\Delta(A)$ denotes the character space of $A$. Indeed, in the case that $A=C_0(X)$ where $X$ is a non-empty locally compact Hausdroff space, we give a complete characterization of $\Delta(C_{\rm{BSE}}(\Delta(A)))$ and in the general case we give a partial answer.  Also, using the Fourier algebra, we show that $C_{\rm{BSE}}(\Delta(A))$ is not a $C^*$-algebra in general. Finally for some subsets $E$ of $A^*$, we define the subspace of BSE-like functions on $\Delta(A)\cup E$ and give a nice application of this space related to Goldstine's theorem.
Keywords
Banach algebra; BSE-function; Character space; Locally compact group
Main Subjects
Banach Algebra
References
[1] C.D. Aliprantis and K.C. Border, Infinite Dimensional Analysis, Springer-Verlag Berlin Heidelberg, edition 3, 2006.

[2] H.G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.

[3] Z. Kamali and M.L. Bami, The Bochner-Schoenberg-Eberlein Property for ${L}^{1}(mathbb{R}^{+})$, J. Fourier Anal. Appl., 20 (2014), pp. 225-233.

[4] E. Kaniuth, A Course in Commutative Banach Algebras, Springer Verlag, Graduate texts in mathematics, 2009.

[5] E. Kaniuth and A. Ulger, The Bochner-Schoenberg-Eberlein property for commutative Banach algebras, especially Fourier and Fourier-Stieltjes algebras, Trans. Amer. Math. Soc., 362 (2010), pp. 4331-4356.

[6] J. Kustermans and S. Vaes, Locally compact quantum groups, Ann. Sci. Ecole Norm. Sup., 33 (2000), pp. 837–934.

[7] R. Larsen, Functional Analysis: an introduction, Marcel Dekker, New York, 1973.

[8] G.J. Murphy, $C^*$-Algebras and Operator Theory, Academic Press Inc, 1990.

[9] J.P. Pier, Amenable Locally Compact Groups, Wiley Interscience, New York, 1984.

[10] W. Rudin, Fourier Analysis on Groups, Wiley-Interscience, New York, 1962.

[11] S.E. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein-type theorem, Proc. Amer. Math. Soc., 110 (1990), pp. 149-158.

[12] S.E. Takahasi and O. Hatori, Commutative Banach algebras and BSE-inequalities, Math. Japonica, 37 (1992), pp. 607-614.

Statistics
Article View: 233
PDF Download: 16
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

Journal Management System. Designed by sinaweb.