Fuzzy ϵ-regular spaces and strongly ϵ-irresolute mappings

Veerappan Chandrasekar1 and Somasundaram Parimala2*

Abstract. The aim of this paper is to introduce fuzzy $(\epsilon, \text{almost})$ ϵ^*-regular spaces in Šostak’s fuzzy topological spaces. Using the r-fuzzy ϵ-closed sets, we define r-$(r-\theta, r-\epsilon\theta)$ ϵ-cluster points and their properties. Moreover, we investigate the relations among r-$(r-\theta, r-\epsilon\theta)$ ϵ-cluster points, r-fuzzy $(\epsilon, \text{almost})$ ϵ^*-regular spaces and their functions.

1. Introduction

Kubiak [10] and Šostak [15] introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and fuzzy topology [1], in the sense that not only the objects are fuzzified, but also the axiomatics. In [13, 14], Šostak gave some rules and showed how such an extension can be realized. Chattopadhyay et al., [2] have redefined the same concept under the name gradation of openness. It has been developed in many directions [2, 11, 12]. Kim et al. [4, 6, 8, 9] investigate r-regulars closed sets, several operators and fuzzy (almost) regular spaces in Šostak’s fuzzy topological spaces. In this paper, we introduce r-fuzzy ϵ-closed sets in Šostak’s fuzzy topological spaces. We study the notions of r-fuzzy $(\epsilon, \text{almost})$ ϵ^*-regular spaces. We investigate some properties. In particular, we define r-$(r-\theta, r-\epsilon\theta)$ ϵ-cluster points and their properties. Moreover, we investigate the relations among r-$(r-\theta, r-\epsilon\theta)$ ϵ-cluster points, r-fuzzy $(\epsilon, \text{almost})$ ϵ^*-regular spaces and their functions.

2010 Mathematics Subject Classification. 54A40, 54C08, 54C10, 54D10.

Key words and phrases. Fuzzy topology, r-fuzzy ϵ-open (closed) sets, r-$(r-\theta, r-\epsilon\theta)$ ϵ-cluster points, r-fuzzy $(\epsilon, \text{almost})$ ϵ^*-regular spaces, (strongly, θ-) ϵ-irresolute mappings.

Received: 29 June 2016, Accepted: 18 October 2017.

* Corresponding author.
2. Preliminaries

Throughout this paper, let X be a non-empty set, $I = [0, 1]$, $I_0 = (0, 1]$. A fuzzy set λ of X is a mapping $\lambda : X \to I$, and I^X be the family of all fuzzy sets on X. The complement of a fuzzy set λ is denoted by $\overline{\lambda}$. For $\lambda \in I^X$, $\overline{\lambda}(x) = \lambda$ for all $x \in X$. For each $x \in X$ and $t \in I_0$, a fuzzy point x_t is defined by

$$x_t(y) = \begin{cases} t & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}$$

Let $Pt(X)$ be the family of all fuzzy points in X. For $\lambda, \mu \in I^X$, λ is called quasi coincident with μ, denoted by $\lambda \emph{eq} \mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. Otherwise, we denote $\lambda \neq \mu$. We define $x_t \in \lambda$ if $t \leq \lambda(x)$. All other notations and definitions are standard in the fuzzy set theory.

Definition 2.1 ([13]). A function $\tau : I^X \to I$ is called a fuzzy topology on X if it satisfies the following conditions:

1. $\tau(\overline{0}) = \tau(\overline{I}) = 1$,
2. $\tau(\bigvee_{i \in I} \mu_i) \geq \bigwedge_{i \in I} \tau(\mu_i)$, for any $\{\mu_i : i \in I\} \subseteq I^X$,
3. $\tau(\mu_1 \wedge \mu_2) \geq \tau(\mu_1) \wedge \tau(\mu_2)$, for all $\mu_1, \mu_2 \in I^X$.

The pair (X, τ) is called a fuzzy topological space (for short, fts).

Definition 2.2 ([3]). Let (X, τ) be a fts, $\lambda, \mu \in I^X$ and $r \in I_0$. We define operators as follows:

$$C_\tau(\lambda, r) = \bigwedge \{ \mu \in I^X : \lambda \leq \mu, \tau(\overline{I} - \mu) \geq r \},$$

$$I_\tau(\lambda, r) = \bigvee \{ \mu \in I^X : \lambda \geq \mu, \tau(\mu) \geq r \}.$$

Definition 2.3 ([3]). Let (X, τ) be a fts. For $\lambda, \mu \in I^X$ and $r \in I_0$, λ is called r-fuzzy regular open (for short, r-fro) (resp. r-fuzzy regular closed (for short, r-frc)) if $\lambda = I_\tau(C_\tau(\lambda, r), r)$ (resp. $\lambda = C_\tau(I_\tau(\lambda, r), r)$).

Definition 2.4 ([12]). Let (X, τ) be a fts. $\lambda, \mu \in I^X$ and $r \in I_0$,

(i) $\delta-I_\tau(\lambda, r) = \bigvee \{ \mu \in I^X : \lambda \leq \mu, \mu \text{ is a } r\text{-fro set} \}$ is called the r-fuzzy δ-interior of λ.

(ii) $\delta-C_\tau(\lambda, r) = \bigwedge \{ \mu \in I^X : \mu \geq \lambda, \mu \text{ is a } r\text{-frc set} \}$ is called the r-fuzzy δ-closure of λ.

Definition 2.5 ([12]). Let (X, τ) be a fts. For $\lambda, \mu \in I^X$ and $r \in I_0$,

(i) λ is called an r-fuzzy δ-semiopen (resp. r-fuzzy δ-semiopen) set if $\lambda \leq C_\tau(\delta-I_\tau(\lambda, r), r)$ (resp. $I_\tau(\delta-C_\tau(\lambda, r), r) \leq \lambda$).

(ii) λ is called an r-fuzzy δ-preopen (resp. r-fuzzy δ-preopen) set if $\lambda \leq I_\tau(\delta-C_\tau(\lambda, r), r)$ (resp. $C_\tau(\delta-I_\tau(\lambda, r), r) \leq \lambda$).
(iii) \(\lambda \) is called an \(r \)-fuzzy semi \(\delta \)-preopen (resp. \(r \)-fuzzy semi \(\delta \)-preclosed) set if \(\lambda \leq I_r(C_r(\delta-I_r(\lambda, r), r), r) \) (resp. \(C_r(I_r(\delta-C_r(\lambda, r), r), r) \leq \lambda \)).

(iv) \(\lambda \) is called an \(r \)-fuzzy \(e \)-open (resp. \(r \)-fuzzy \(e \)-closed) set if \(\lambda \leq C_r(\delta-I_r(\lambda, r), r) \lor I_r(\delta-C_r(\lambda, r), r) \) (resp. \(C_r(\delta-I_r(\lambda, r), r) \land I_r(\delta-C_r(\lambda, r), r) \) \leq \(\lambda \)).

Definition 2.6 ([12]). Let \((X, \tau)\) be a fts. \(\lambda, \mu \in I^X \) and \(r \in I_0 \).

(i) \(eI_r(\lambda, r) = \bigvee \{\mu \in I^X : \mu \leq \lambda, \mu \text{ is a r-feo set} \} \) is called the \(r \)-fuzzy \(e \)-interior of \(\lambda \).

(ii) \(eC_r(\lambda, r) = \bigwedge \{\mu \in I^X : \mu \geq \lambda, \mu \text{ is a r-fe set} \} \) is called the \(r \)-fuzzy \(e \)-closure of \(\lambda \).

Definition 2.7 ([8]). Let \((X, \tau)\) be a fts and \(x_t \in Pt(X) \). We denote

\[
Q_r(x_t, r) = \{\mu \in I^X | x_t \mu \tau(\mu) \geq r\},
\]

\[
R_r(x_t, r) = \{\mu \in I^X | x_t \mu \text{ is r-fro}\}.
\]

Definition 2.8 ([8]). Let \((X, \tau)\) be a fts, \(\lambda \in I^X, x_t \in Pt(X) \) and \(r \in I_0 \). A fuzzy point \(x_t \) is called:

(i) an \(r \)- (resp. \(r\theta \)-) cluster point of \(\lambda \) if \(\mu q \lambda \) (resp. \(C_r(\mu, r) q \lambda \)) for every \(\mu \in Q_r(x_t, r) \).

(ii) an \(r \)- (resp. \(r\theta \)-) regular cluster point of \(\lambda \) if \(\mu q \lambda \) (resp. \(C_r(\mu, r) q \lambda \)) for every \(\mu \in R_r(x_t, r) \).

Also, we define operators \(RC_r \) and \(RT_r \) with respect to \(r \)-regular cluster and \(r\theta \)-regular cluster points respectively.

Theorem 2.9 ([8]). Let \((X, \tau)\) be a fts. For each \(\lambda, \mu, \rho \in I^X \) and \(r \in I_0 \) we have the following properties:

1. \(C_r(\lambda, r) = \bigvee \{x_t \in Pt(X) | x_t \text{ is an } r \text{-cluster point of } \lambda\} \),

 \(RC_r(\lambda, r) = \bigwedge \{\mu \in I^X | \mu \leq \lambda, \mu \text{ is r-frc}\} \).

2. \(T_r(\lambda, r) = \bigwedge \{\mu \in I^X | \lambda \leq I_r(\mu, r), \tau(1 - \mu) \geq r\} \),

 \(RT_r(\lambda, r) = \bigwedge \{\mu \in I^X | \mu \leq I_r(\mu, r), \mu \text{ is r-frc}\} \).

3. \(x_t \) is an \(r\theta \)-cluster point of \(\lambda \) iff \(x_t \in T_r(\lambda, r) \),

 \(x_t \) is an \(r\theta \)-regular cluster point of \(\lambda \) iff \(x_t \in RT_r(\lambda, r) \).

Definition 2.10 ([8]). Let \((X, \tau)\) be a fts. Then \((X, \tau)\) is called an \(r \)-fuzzy regular (resp. \(r \)-fuzzy almost regular) if for each \(\tau(\mu) \geq r \) (resp. \(r \)-regular open \(\mu \)), there exists a family \(\{\nu_i \in I^X | \tau(\nu_i) \geq r\} \) such that \(\mu = \bigvee_{i \in I} \nu_i \) with \(C_r(\nu_i, r) \leq \mu \).

Definition 2.11. Let \((X, \tau)\) and \((Y, \eta)\) be fts’s, a function \(f : (X, \tau) \rightarrow (Y, \eta) \) is called:

(i) fuzzy continuous ([11]) iff \(\tau(f^{-1}(\mu)) \geq \eta(\mu) \),
(ii) fuzzy open (resp. fuzzy closed) \(f \) iff \(\eta(f(\lambda)) \geq \tau(\lambda) \) (resp. \(\eta(1 - f(\lambda)) \geq \tau(1 - \lambda) \)),

(iii) fuzzy \(\epsilon \)-irresolute \(f \) iff \(f^{-1}(\mu) \) is \(r \)-feo for each \(r \)-feo \(\mu \in I^X \).

(iv) fuzzy \(\epsilon \)-continuous \(F \) (resp. fuzzy weakly \(\epsilon \)-continuous) iff for each \(\mu \in \mathcal{Q}_\eta(f(x)_\mu, r) \), there exists \(\lambda \in e_\tau(x_t, r) \) such that \(f(\lambda) \leq \mu \) (resp. \(f(\lambda) \leq eC_\eta(\mu, r) \)),

(v) \(f \) is called fuzzy \(\delta \)-semiopen \(F \) (resp. fuzzy \(\delta \)-preopen, fuzzy semi \(\delta \)-preopen and fuzzy \(\epsilon \)-open) iff \(f(\lambda) \) is an \(r \)-\(\delta \)-so (resp. \(r \)-\(\delta \)-po, \(r \)-\(fs \)-\(\delta \)-po and \(r \)-feo) set of \(Y \) for each \(\lambda \in I^X, r \in I_0 \) with \(\tau_1(\lambda) \geq r \).

(vi) \(f \) is called fuzzy \(\delta \)-semiclosed \(F \) (resp. fuzzy \(\delta \)-preclosed, fuzzy semi \(\delta \)-preclosed and fuzzy \(\epsilon \)-closed) iff \(f(\lambda) \) is an \(r \)-\(\delta \)-sc (resp. \(r \)-\(\delta \)-pc, \(r \)-\(fs \)-\(\delta \)-pc and \(r \)-\(\gamma \)-c) set of \(Y \) for each \(\lambda \in I^X, r \in I_0 \) with \(\tau_1(1 - \lambda) \geq r \).

Theorem 2.12 (\(I \)). Let \((X, \tau)\) be a fts and \(r \in I_0 \).

(i) Any union of \(r \)-feo sets is an \(r \)-feo set.

(ii) Any intersection of \(r \)-feo sets is an \(r \)-feo set.

Definition 2.13 (\(I \)). Let \((X, \tau)\) and \((Y, \eta)\) be fts’s a function \(f : (X, \tau) \to (Y, \eta) \) is called a supercontinuous iff for each \(\mu \in \mathcal{Q}_\eta(f(x)_\mu, r) \), there exists \(\lambda \in \mathcal{R}_\tau(x_t, r) \) such that \(f(\lambda) \leq \mu \).

3. **Fuzzy \(\epsilon \)-regular spaces**

Definition 3.1. Let \((X, \tau)\) be a fts and \(x_t \in Pt(X) \). We denote
\[
\mathcal{E}_\tau(x_t, r) = \{ \mu \in I^X | x_t \mu r, \mu \text{ is } r \text{-feo} \}.
\]

Definition 3.2. Let \((X, \tau)\) be a fts, \(\lambda \in I^X, x_t \in Pt(X) \) and \(r \in I_0 \). A fuzzy point \(x_t \) is called:

(i) an \(r \)-\(\epsilon \)-\(\theta \)-cluster point of \(\lambda \) if \(eC_\tau(\mu, r)q\lambda \) for every \(\mu \in \mathcal{Q}_\tau(x_t, r) \),

(ii) an \(r \)-\(\epsilon \)-\(\theta \)-\(\theta \)-\(\epsilon \)-cluster point of \(\lambda \) if \(\mu q\lambda \) (resp. \(C_\tau(\mu, r)q\lambda, eC_\tau(\mu, r)q\lambda \) for every \(\mu \in \mathcal{E}_\tau(x_t, r) \),

(iii) an \(r \)-\(\epsilon \)-\(\theta \)-regular cluster point of \(\lambda \) if \(eC_\tau(\mu, r)q\lambda \) for every \(\mu \in \mathcal{R}_\tau(x_t, r) \).

We define operators \(eT_\tau, eeT_\tau : I^X \times I_0 \to I^X \) as follows:
\[
eT_\tau(\lambda, r) = \sqrt{\{x_t \in Pt(X) | x_t \text{ is an } r \text{-}\(\epsilon \)-\(\theta \)-cluster point of } \lambda \}.
\]
\[
eeT_\tau(\lambda, r) = \sqrt{\{x_t \in Pt(X) | x_t \text{ is a } r \text{-}\(\epsilon \)-\(\theta \)-cluster point of } \lambda \}.
\]

Also, we define operators \(ReT_\tau \) and \(CeT_\tau \) with respect to \(r \)-\(\epsilon \)-\(\theta \)-regular cluster and \(r \)-\(\epsilon \)-\(\theta \)-cluster points respectively.

Theorem 3.3. Let \((X, \tau)\) be a fts. For \(\lambda, \mu \in I^X, r \in I_0 \), it holds the following properties.
FUZZY ϵ-REGULAR SPACES AND STRONGLY ϵ-IRRRESOLUTE MAPPINGS 139

(1) $eC_\tau(T - \lambda, r) = T - eI_\tau(\lambda, r)$,
(2) $\lambda \leq eC_\tau(\lambda, r) \leq C_\tau(\lambda, r)$,
(3) If $\tau(\lambda) \geq r$ and $\tau(T - \lambda) \geq r$, then $eC_\tau(\lambda, r) = C_\tau(\lambda, r)$,
(4) $eC_\tau(eC_\tau(\lambda, r), r) = eC_\tau(\lambda, r)$.

Proof. (1) For each $\lambda \in I^X, r \in I_0$, we have
$$eI_\tau(T - \lambda, r) = \bigvee \{ \mu \in I^X | \mu \leq T - \lambda, \text{mísr-feo} \} = T - \bigwedge \{ T - \mu | T - \mu \geq \lambda, T - \text{mísr-fec} \} = T - eC_\tau(\lambda, r).$$

(2) Since $\tau(T - \lambda) \geq r$, then μ is r-féc. Thus the result holds.
(3) Suppose $eC_\tau(\lambda, r)(x) < t < C_\tau(\lambda, r)(x)$. There exists an r-féc set μ with $\lambda \leq \mu$ such that
$$eC_\tau(\lambda, r)(x) < \mu(x) < t < C_\tau(\lambda, r)(x).$$
Since μ is r-féc,
$$C_\tau(\delta - I_\tau(\mu, r), r) \wedge I_\tau(\delta - C_\tau(\mu, r), r) \leq \mu.$$ Since $\tau(\lambda) \geq r$ and $\tau(T - \lambda) \geq r$, $I_\tau(\lambda, r) = \lambda$ and $C_\tau(\lambda, r) = \lambda$. So
$$C_\tau(\lambda, r)(x) = C_\tau(\delta - I_\tau(\lambda, r), r)(x) \wedge I_\tau(\delta - C_\tau(\lambda, r), r)(x) \leq C_\tau(\delta - I_\tau(\mu, r), r)(x) \wedge I_\tau(\delta - C_\tau(\mu, r), r)(x) \leq \mu(x) < t.$$
It is a contradiction.
(4) Since $eC_\tau(\lambda, r)$ is r-féc from Theorem 3.3 (2), it is trivial.

\[\square \]

Theorem 3.4. Let (X, τ) be a fts. The following statements hold:

- r-ϵ cluster \implies r-θ-ϵ cluster \implies r-ϵ cluster
- r-cluster \implies r-ϵ cluster \iff r-θ cluster
- r-regular cluster \implies r-θ regular cluster \iff r-θ regular cluster

Proof. By Theorem 3.3 (3), since $eC_\tau(\mu, r) = C_\tau(\mu, r)$ for $\tau(\mu) \geq r$, x_t is an r-ϵ (resp. r-ϵ regular) cluster point iff x_t is an r-θ (resp. r-θ regular) cluster point. Other implications follow from the definitions.

\[\square \]

Theorem 3.5. Let (X, τ) be a fts. For each $\lambda, \mu, \rho \in I^X$ and $r \in I_0$ we have the following properties:
(1) $R_\tau(x_t, r) \subset Q_\tau(x_t, r) \subset E_\tau(x_t, r)$.

(2) $eC_\tau(\lambda, r) = \bigvee \{x_t \in Pt(X) \mid x_t \text{ is an } r\text{-cluster point of } \lambda \}$.

(3) $eT_\tau(\lambda, r) = \bigwedge \{\mu \in I^X \mid \lambda \leq I_\tau(\mu, r), \mu \text{ is } r\text{-feco} \}$.

(4) $eeT_\tau(\lambda, r) = \bigwedge \{\mu \in I^X \mid \lambda \leq eI_\tau(\mu, r), \mu \text{ is } r\text{-feco} \}$,

\[CeT_\tau(\lambda, r) = \bigwedge \{\mu \in I^X \mid \lambda \leq eI_\tau(\mu, r), \tau(\bar{T} - \mu) \geq r \}, \]

\[ReT_\tau(\lambda, r) = \bigwedge \{\mu \in I^X \mid \lambda \leq eI_\tau(\mu, r), \mu \text{ is } r\text{-feco} \}. \]

(5) x_t is an e-cluster point of λ iff $x_t \in eC_\tau(\lambda, r)$, x_t is an r-θ- (resp. r-$e\theta$-) e cluster point of λ iff $x_t \in eT_\tau(\lambda, r)$ (resp. $x_t \in eeT_\tau(\lambda, r)$), x_t is an r-$e\theta$-regular cluster point of λ iff $x_t \in ReT_\tau(\lambda, r)$.

(6) $CeT_\tau(\lambda, r) = T_\tau(\lambda, r)$ and $ReT_\tau(\lambda, r) = RT_\tau(\lambda, r)$.

(7) $eC_\tau(\lambda, r) \leq eeT_\tau(\lambda, r) \leq eT_\tau(\lambda, r) \leq T_\tau(\lambda, r) \leq RT_\tau(\lambda, r)$.

(8) $eC_\tau(\lambda, r) \leq C_\tau(\lambda, r) \leq RC_\tau(\lambda, r) \leq T_\tau(\lambda, r) \leq RT_\tau(\lambda, r)$.

(9) If ρ is r-feco, then

\[eC_\tau(\rho, r) = eeT_\tau(\rho, r), \]

and

\[C_\tau(\rho, r) = RC_\tau(\rho, r) = T_\tau(\rho, r) = RT_\tau(\rho, r). \]

(10) If $\tau(\rho) \geq r$, then

\[eC_\tau(\rho, r) = eeT_\tau(\rho, r) = eT_\tau(\rho, r) = C_\tau(\rho, r) = RC_\tau(\rho, r) = T_\tau(\rho, r) = RT_\tau(\rho, r). \]

Proof. (1) It follows from the definitions.

(2) Put $\rho = \vee\{x_t \in Pt(X) \mid x_t \text{ is an } r\text{-cluster point of } \lambda \}$. Suppose $eC_\tau(\lambda, r) \nless \rho$. Then there exist $x \in X$ and $t \in (0, 1)$ such that $eC_\tau(\lambda, r)(x) > t > \rho(x)$. Then x_t is not an r-cluster point of λ. So, there exists $\mu \in E_\tau(x_t, r)$, $\lambda \leq \bar{T} - \mu$ and $\bar{T} - \mu$ is r-feco. By the definition of eC_τ, in Theorem 5.3

\[eC_\tau(\lambda, r)(x) \leq (\bar{T} - \mu)(x) < t. \]

It is a contradiction. Thus $eC_\tau(\lambda, r) \leq \rho$.

Suppose $eC_\tau(\lambda, r) \nless \rho$. Then there exists an r-cluster point $y_s \in Pt(X)$ of λ such that $eC_\tau(\lambda, r)(y) < s \leq \rho(y)$. By the
definition of eC_τ, there exists an r-fec set μ with $\lambda \leq \mu$ such that $eC_\tau(\lambda, r)(y) \leq \mu(y) < s < \rho(y)$. Then, $\bar{I} - \mu \in E_\tau(y_s, r)$ and $\lambda \bar{I} - \mu$. Hence, y_s is not an r-e cluster point of λ. It is a contradiction. So $eC_\tau(\lambda, r) \geq \rho$.

(3) Put
$$\delta = \bigwedge \{\mu \in I^X | \lambda \leq I_\tau(\mu, r), \mu \text{is r-fec}\}.$$

Suppose $eT_\tau(\lambda, r) \notin \delta$. Then there exist $x \in X$ and $t \in (0, 1)$ such that $eT_\tau(\lambda, r)(x) < t < \delta(x)$. Then x_t is not an r-e cluster point of λ. So, there exists $\mu \in E_\tau(x_t, r)$ and $C_\tau(\mu, r) \leq \bar{I} - \lambda$. Thus $\bar{I} - \mu$ is r-fec and
$$\lambda \leq \bar{I} - C_\tau(\mu, r) = I_\tau(\bar{I} - \mu, r).$$

Hence $\delta(x) \leq (\bar{I} - \mu)(x) < t$. It is a contradiction. Thus $eT_\tau(\lambda, r) \geq \delta$.

Suppose $eT_\tau(\lambda, r) \notin \delta$. Then there exists an r-θ-e cluster point y_s of λ such that $eT_\tau(\lambda, r)(y) \geq s > \delta(y)$. By the definition of δ, there exists μ with $\lambda \leq I_\tau(\mu, r)$ and μ is r-fec such that
$$eT_\tau(\lambda, r)(y) \geq s > \mu(y) \geq \delta(y).$$

Then, μ is r-fec and $\bar{I} - \mu \in E_\tau(y_s, r)$. So
$$\lambda \leq I_\tau(\mu, r) = \bar{I} - C_\tau(\bar{I} - \mu, r),$$

implies $\lambda \bar{I} C_\tau(\bar{I} - \mu, r)$. Hence, y_s is not an r-θ-e cluster point of λ. It is a contradiction. Thus $eT_\tau(\lambda, r) \leq \delta$.

(4) Put
$$\gamma = \bigwedge \{\mu \in I^X | \lambda \leq eI_\tau(\mu, r), C_\tau(I_\tau(\mu, r), r) = \mu\}.$$

Suppose $ReT_\tau(\lambda, r) \notin \gamma$. There exist $x \in X$ and $t \in (0, 1)$ such that $ReT_\tau(\lambda, r)(x) < t < \gamma(x)$. Then x_t is not an r-θ regular cluster point of λ. So, there exists $\mu \in R_\tau(x_t, r)$, $eC_\tau(\mu, r) \leq \bar{I} - \lambda$. Thus
$$\lambda \leq \bar{I} - eC_\tau(\mu, r)$$
$$= eI_\tau(\bar{I} - \mu, r), C_\tau(I_\tau(\mu, r), r)$$
$$= \bar{I} - \mu.$$

Hence $\gamma(x) \leq (\bar{I} - \mu)(x) < t$. It is a contradiction. Thus $ReT_\tau(\lambda, r) \geq \gamma$.

Suppose $ReT_\tau(\lambda, r) \notin \gamma$. Then there exists an r-θ regular cluster point y_s of λ such that $ReT_\tau(\lambda, r)(y) \geq s > \gamma(y)$. By the definition of γ, there exists μ with $\lambda \leq eI_\tau(\mu, r)$, $C_\tau(I_\tau(\mu, r), r) = \mu$ such that $RT_\tau(\lambda, r)(y) \geq s > \mu(y) \geq \gamma(y)$. Then, μ is r-fec and $\bar{I} - \mu \in R_\tau(y_s, r)$. Furthermore, $\lambda \leq eI_\tau(\mu, r)$ =
\[1 - eC_\tau(T - \mu, r) \text{ implies } \lambda \notin eC_\tau(T - \mu, r). \] Hence, \(y_\lambda \) is not an \(r \)-\(e \)-regular cluster point of \(\lambda \). It is a contradiction. Thus \(ReT_\tau(\lambda, r) \leq \gamma \). Other cases are similarly proved.

(5) We show that \(x_t \) is an \(r \)-\(e \)-\(e \)-cluster point of \(\lambda \) iff \(x_t \in eeT_\tau(\lambda, r) \).

\(\Rightarrow \) It is trivial.

\(\Leftarrow \) Suppose that \(x_t \) is not an \(r \)-\(e \)-\(e \)-cluster point of \(\lambda \). Then there exists \(\mu \in E_\tau(x_t, r) \) such that \(eC_\tau(\mu, r) \leq T - \lambda \). Thus,

\[\lambda \leq T - eC_\tau(\mu, r) = eI_\tau(\mu, r). \]

By (3), we have \(eeT_\tau(\lambda, r)(x) \leq (T - \mu)(x) < t \). Hence \(x_t \notin eeT_\tau(\lambda, r) \). Other cases are similarly proved.

(6)-(8) Are easily proved from Theorem 5.31.

(9) For each \(r \)-feo set \(\rho \), we will show that \(eC_\tau(\rho, r) = eeT_\tau(\rho, r) \).

Then there exist \(x \in X \) and \(t \in I_0 \) such that

\[eC_\tau(\rho, r)(x) < t < eeT_\tau(\rho, r)(x). \]

Thus, \(x_t \) is not an \(r \)-\(e \) cluster point of \(\rho \). So, there exists \(\lambda \in E_\tau(x_t, r) \) such that \(\lambda \leq T - \rho \). It implies \(eC_\tau(\lambda, r) \leq T - \rho \). Thus, \(x_t \) is not an \(r \)-\(e \)-\(e \)-cluster point of \(\rho \). Hence \(eC_\tau(\rho, r) \leq eeT_\tau(\rho, r) \) and \(C_\tau(\rho, r) \) is \(r \)-frc. By (3), \(eeT_\tau(\rho, r) \) be given. Since \(C_\tau(\rho, r) \) is \(r \)-frc, \(eC_\tau(\rho, r) \leq C_\tau(\rho, r) \). Moreover, since

\[C_\tau(\rho, r) \leq C_\tau(I_\tau(C_\tau(\rho, r), r), r) \]

\[\leq C_\tau(\rho, r), \]

then \(C_\tau(\rho, r) \) is \(r \)-frc. Since \(\rho \leq I_\tau(C_\tau(\rho, r), r) \) and \(C_\tau(\rho, r) \) is \(r \)-frc, by (3), \(RT_\tau(\rho, r) = C_\tau(\rho, r) \). From (8), we have

\[C_\tau(\rho, r) = RC_\tau(\rho, r) = T_\tau(\rho, r) = RT_\tau(\rho, r). \]

(10) There exist \(\rho \in IX \) with \(\tau(\rho) \geq r \) such that

\[eC_\tau(\rho, r) \notin eT_\tau(\rho, r). \]

Then there exists \(x \in X \) and \(t \in I \) such that

\[eC_\tau(\rho, r)(x) < t < eT_\tau(\rho, r)(x). \]

Thus, \(x_t \) is not an \(r \)-\(e \) cluster point of \(\rho \). So, there exists \(\lambda \in E_\tau(x_t, r) \) such that \(\lambda \leq T - \rho \). It implies \(C_\tau(\lambda, r) \leq T - \rho \). Thus, \(x_t \) is not an \(r \)-\(\theta \)-\(e \)-cluster point of \(\rho \). Hence

\[eC_\tau(\rho, r) = eeT_\tau(\rho, r) = eT_\tau(\rho, r). \]
By (7-9), we have
\[
\begin{align*}
e C_\tau(\rho, r) &= C_\tau(\rho, r) \\
&= RC_\tau(\rho, r) \\
&= T_\tau(\rho, r) \\
&= RT_\tau(\rho, r).
\end{align*}
\]
\[\square\]

Example 3.6. Let \(X = \{a, b, c\}\), \(\alpha, \beta, \gamma, \delta \in I^X\) are defined as
\[
\begin{align*}
\alpha(a) &= 0.3, & \beta(a) &= 0.6, & \gamma(a) &= 0.6, & \delta(a) &= 0.3, \\
\alpha(b) &= 0.4, & \beta(b) &= 0.5, & \gamma(b) &= 0.5, & \delta(b) &= 0.4, \\
\alpha(c) &= 0.5, & \beta(c) &= 0.5, & \gamma(c) &= 0.4, & \delta(c) &= 0.4.
\end{align*}
\]

We define the smooth topology \(\tau : I^X \to I\) as follows:
\[
\tau(\lambda) = \begin{cases}
1 & \text{if } \lambda \in \{0, 1\}, \\
\frac{1}{2} & \text{if } \lambda = \alpha, \\
\frac{1}{3} & \text{if } \lambda = \beta, \\
\frac{1}{4} & \text{if } \lambda = \gamma, \\
\frac{1}{5} & \text{if } \lambda = \delta, \\
0 & \text{otherwise}.
\end{cases}
\]

For \(r = \frac{1}{2}\), then the fuzzy sets \(\alpha, \beta, \gamma, \delta\) are \(r\)-feo sets, \(\overline{I} - \alpha, \overline{I} - \beta, \overline{I} - \gamma, \overline{I} - \delta\) are \(r\)-fec sets. Let \(\lambda(a) = 0.4, \lambda(b) = 0.5, \lambda(c) = 0.5, e C_\tau(\lambda, r) = \lambda\), and clearly, \(e e T_\tau(\lambda, r) \leq e T_\tau(\lambda, r) = T_\tau(\lambda, r) = RT_\tau(\lambda, r)\).

Definition 3.7. Let \((X, \tau)\) be a fts. Then \((X, \tau)\) is called:

1. \(r\)-fuzzy \(e\)-regular if for each \(r\)-feo \(\mu\) there exists a family \(\{\nu_i \in I^X \mid C_\tau(\nu_i, r) \geq r\}\) such that \(\mu = \bigvee_{i \in \Gamma} \nu_i\) with \(e C_\tau(\nu_i, r) \leq \mu\).
2. \(r\)-fuzzy \(e^*\)-regular (resp. \(r\)-fuzzy \(ee^*\)-regular, \(r\)-fuzzy almost \(e^*\)-regular) if for each \(\tau(\mu) \geq r\) (resp. \(r\)-fuzzy \(e\)-regular, \(r\)-fuzzy \(e\)-regular) there exists a family \(\{\nu_i \in I^X \mid C_\tau(\nu_i, r) \geq r\}\) such that \(\mu = \bigvee_{i \in \Gamma} \nu_i\) with \(e C_\tau(\nu_i, r) \leq \mu\).
3. fuzzy (\(e\), almost) \((e^*)\)-regular if \((X, \tau)\) is \(r\)-fuzzy \((e\), almost)\((e^*)\)-regular, for each \(r \in I_0\).

We easily prove the following Lemma.

Lemma 3.8. For \(\lambda, \lambda_i, \mu \in I^X\) and \(x_t \in Pt(X)\), we have

1. \(\lambda \leq \mu\) iff \(x_t q \lambda\) implies \(x_t q \mu\).
2. \(x_t q \bigvee_{i \in A} \lambda_i\) iff there exists \(i \in A\) such that \(x_t q \lambda_i\).

Theorem 3.9. Let \((X, \tau)\) be a fts and \(r \in I_0\). Then the following statements are equivalent:

1. \((X, \tau)\) is \(r\)-fuzzy almost \(e^*\)-regular.
(2) For all \(\mu \in R_\tau(x_t, r) \), there exists \(\nu \in \mathcal{E}_\tau(x_t, r) \) with \(eC_\tau(\nu, r) \leq \mu \).

(3) For each \(x_t \in Pt(X) \) and each \(r \)-frc \(\lambda \in I^X \) with \(x_t \notin \lambda \), there exist \(\nu \in \mathcal{E}_\tau(x_t, r) \) and \(r \)-feo \(\mu \in I^X \) such that \(\lambda \leq \mu \) and \(\mu \rho_\tau \nu \).

(4) For each \(r \)-frc \(\lambda \in I^X \), \(\lambda = \bigwedge \{ eC_\tau(\nu, r) | \lambda \leq \nu, \nu \text{ is } r \text{-feo} \} \).

(5) For each \(r \)-frc \(\lambda \in I^X \) with \(\rho \not\subseteq \lambda \), there exist \(\nu \in \mathcal{E}_\tau(x_t, r) \) and \(r \)-feo \(\mu \) such that \(\lambda \leq \mu \), \(\rho_\tau \nu \) and \(\mu \rho_\tau \nu \).

Proof.

(1) \(\Rightarrow \) (2): Let \(\mu \in \mathcal{R}_\tau(x_t, r) \) be given. Since \((X, \tau)\) is \(r \)-fuzzy almost \(e^* \)-regular, there exists a family \(\{ \nu_i | \nu_i \text{ is } r \text{-feo} \} \) such that \(\mu = \bigvee_{i \in \Gamma} \nu_i \) with \(eC_\tau(\nu_i, r) \leq \mu \). Since \(x_t \rho (\mu = \bigvee_{i \in \Gamma} \nu_i) \), by Lemma 6.3 (2), there exists \(i \in \Gamma \) such that \(\nu_i \in \mathcal{E}_\tau(x_t, r) \) with \(eC_\tau(\nu_i, r) \leq \mu \).

(2) \(\Rightarrow \) (1): For each \(\mu \in \mathcal{R}_\tau(x_t, r) \), there exists \(\nu_i \in \mathcal{E}_\tau(x_t, r) \) such that \(eC_\tau(\nu_i, r) \leq \mu \). Let \(\{ \nu_i \in \mathcal{E}_\tau(x_t, r) | i \in \Lambda, eC_\tau(\nu_i, r) \leq \mu \} \) be the family satisfying the above condition. Trivially, \(\bigvee_{i \in \Lambda} \nu_i \leq \mu \).

(2) \(\Rightarrow \) (3): Let \(x_t \notin \lambda \) with \(r \)-frc \(\lambda \). Then \(I - \lambda \in \mathcal{R}_\tau(x_t, r) \). By (2), there exists \(\nu \in \mathcal{E}_\tau(x_t, r) \) such that \(eC_\tau(\nu, r) \leq I - \lambda \). Put \(\mu = I - eC_\tau(\nu, r) \). By Theorem 2.2 (1), \(r \)-feo such that \(\lambda \leq \mu \) and \(\mu \rho_\tau \nu \).

(3) \(\Rightarrow \) (4): Suppose there exists \(r \)-frc \(\lambda \in I^X \) such that

\[
\lambda \not\subseteq \bigwedge \{ eC_\tau(\nu, r) | \lambda \leq \nu, \nu \text{ is } r \text{-feo} \}.
\]

Then there exist \(x \in X \) and \(t \in I_0 \) such that

\[
\lambda(x) < t < \bigwedge \{ eC_\tau(\nu, r)(x) | \lambda \leq \nu, \nu \text{ is } r \text{-feo} \}.
\]

Since \(x_t \notin \lambda \), by (4), there exist \(\mu \in \mathcal{E}_\tau(x_t, r) \) and \(r \)-feo \(\nu \) such that \(\lambda \leq \nu \) and \(\mu \rho_\tau \nu \). Since \(\nu \) is \(r \)-feo, \(\lambda \leq eI_\tau(\nu, r) \) and \(eI_\tau(\nu, r) \) is \(r \)-feo. Hence

\[
\lambda(x) < t < eC_\tau(eI_\tau(\nu, r), r)(x).
\]

By the definition of \(eC_\tau \), we have

\[
eC_\tau(eI_\tau(\nu, r), r)(x) \leq eC_\tau(\nu, r)(x)
\]

\[
\leq I - \mu(x) < t.
\]

It is contradiction for (3.1). Thus

\[
\lambda = \bigwedge \{ eC_\tau(\nu, r) | \lambda \leq \nu, \nu \text{ is } r \text{-feo} \}.
\]

(4) \(\Rightarrow \) (5): Let \(\lambda \in I^X \) be \(r \)-frc with \(\rho \not\subseteq \lambda \). Then \(x_t \in Pt(X) \) such that \(x_t \in \rho \) and \(t > \lambda(x) \). By (4), there exist \(r \)-feo \(\mu \) such that \(\lambda \leq \mu \).
and \(eC_\tau(\mu, r)(x) < t \). Put \(\nu = \mathcal{T} - eC_\tau(\mu, r) \). By Theorem 3.12, (1), \(\nu \) is \(r \)-feo, that is, \(\nu \in \mathcal{E}_\tau(x_t, r) \) such that \(\lambda \leq \mu, \rho \mu \nu \) and \(\mu \overline{\nu} \).

(5) \(\Rightarrow \) (2): For all \(\mu \in \mathcal{R}_\tau(x_t, r), t > \mathcal{T} - \mu(x) \). So, \(x_t \notin \mathcal{T} - \mu \) and \(\mathcal{T} - \mu \) is \(r \)-fec, by (5), there exist \(\nu \in \mathcal{E}_\tau(x_t, r) \) and \(r \)-fec \(\rho \) such that \(\mathcal{T} - \mu \leq \rho \) and \(\rho \overline{\nu} \). Thus, \(\nu \leq \mathcal{T} - \rho \leq \mu \). Since \(\mathcal{T} - \rho \) is \(r \)-fec and \(\mu \) is \(r \)-fro, \(eC_\tau(\mathcal{T} - \rho, r) \leq \mu \). It implies \(\nu \in \mathcal{E}_\tau(x_t, r) \) such that \(eC_\tau(\nu, r) \leq \mu \).

\[\square \]

Corollary 3.10. Let \((X, \tau) \) be a fts and \(r \in I_0 \). Then the following statements are equivalent:

(i) \((X, \tau) \) is \(r \)-fuzzy \(ee^* \)-regular (resp. \(r \)-fuzzy \(e^* \)-regular).

(ii) For all \(\mu \in \mathcal{E}_\tau(x_t, r) \) (resp. \(\mu \in \mathcal{Q}_\tau(x_t, r) \)), there exists \(\nu \in \mathcal{E}_\tau(x_t, r) \) with \(eC_\tau(\nu, r) \leq \mu \).

(iii) For each \(x_t \in \mathcal{P}(X) \) and each \(r \)-fec \(\lambda \in I^X \) (resp. \(\tau(\mathcal{T} - \lambda) \geq r \)) with \(x_t \notin \lambda \), there exist \(\nu \in \mathcal{E}_\tau(x_t, r) \) and \(r \)-feco \(\rho \) such that \(\lambda \leq \mu \) and \(\mu \overline{\nu} \).

(iv) For each \(r \)-fec \(\lambda \in I^X \) (resp. \(\tau(\mathcal{T} - \lambda) \geq r \)),

\[\lambda = \bigwedge \{ eC_\tau(\nu, r) | \lambda \leq \nu, \nu \text{ is } r \text{-feo} \}. \]

(v) For each \(r \)-feco \(\lambda \in I^X \) (resp. \(\tau(\mathcal{T} - \lambda) \geq r \)) with \(\rho \notin \lambda \), there exist \(\nu \in \mathcal{E}_\tau(x_t, r) \) and \(r \)-feco \(\mu \) such that \(\lambda \leq \mu \) and \(\mu \overline{\nu} \).

Corollary 3.11. Let \((X, \tau) \) be a fts and \(r \in I_0 \). Then the following statements are equivalent:

(i) \((X, \tau) \) is \(r \)-fuzzy \(e \)-regular (resp. \(r \)-fuzzy regular, \(r \)-fuzzy almost regular).

(ii) For all \(\mu \in \mathcal{E}_\tau(x_t, r) \) (resp. \(\mu \in \mathcal{Q}_\tau(x_t, r), \mu \in \mathcal{R}_\tau(x_t, r) \)), there exists \(\nu \in \mathcal{Q}_\tau(x_t, r) \) with \(C_\tau(\nu, r) \leq \mu \).

(iii) For each \(x_t \in \mathcal{P}(X) \) and each \(r \)-fec \(\lambda \in I^X \) (resp. \(\tau(\mathcal{T} - \lambda) \geq r, r \)-feco) with \(x_t \notin \lambda \), there exist \(\nu \in \mathcal{Q}_\tau(x_t, r) \) and \(\tau(\mu) \geq r \) such that \(\lambda \leq \mu \) and \(\mu \overline{\nu} \).

(iv) For each \(r \)-fec \(\lambda \in I^X \) (resp. \(\tau(\mathcal{T} - \lambda) \geq r, r \)-feco),

\[\lambda = \bigwedge \{ C_\tau(\nu, r) | \lambda \leq \nu, \tau(\nu) \geq r \}. \]

(v) For each \(r \)-feco \(\lambda \in I^X \) (resp. \(\tau(\mathcal{T} - \lambda) \geq r, r \)-feco) with \(\rho \notin \lambda \), there exist \(\nu \in \mathcal{Q}_\tau(x_t, r) \) and \(\tau(\mu) \geq r \) such that \(\lambda \leq \mu \) and \(\mu \overline{\nu} \).

Lemma 3.12. Let \((X, \tau) \) be a fts.

(i) For each \(x_t \in \mathcal{Q}_\tau(x_t, r) \), there exists \(\mu \in \mathcal{Q}_\tau(x_t, r) \) such that

\[C_\tau(\mu, r) \leq \lambda \text{ iff } \mathcal{T} - \lambda = T_\tau(\mathcal{T} - \lambda, r). \]
(ii) For each \(x_tq\lambda \), there exists \(\mu \in \mathcal{E}_\tau(x_t, r) \) such that
\[
eC_\tau(\mu, r) \leq \lambda \quad \text{iff} \quad \bar{\lambda} = eeT_\tau(\bar{\lambda}, r).
\]

Proof.
(i) It is similarly proved as the following (ii).
(ii) \((\Rightarrow)\) We only show that \(1 = eeT_\tau(1, r) \). Let \(x_t \notin \bar{\lambda} = eeT_\tau(\bar{\lambda}, r) \). Then \(x_tq\lambda \). By hypothesis, there exists \(\mu \in \mathcal{E}_\tau(x_t, r) \) such that
\[
eC_\tau(\mu, r) \leq \lambda \quad \text{iff} \quad \bar{\lambda} = eeT_\tau(\bar{\lambda}, r).
\]

Theorem 3.13. Let \((X, \tau)\) be a fts and \(r \in I_0 \). The following statements are equivalent:

1. \((X, \tau)\) is \(r \)-fuzzy \(ee^* \)-regular (resp. \(r \)-fuzzy \(e^* \)-regular, \(r \)-fuzzy almost \(e^* \)-regular).
2. For each \(r \)-feo \(\mu \) (resp. \(\tau(\mu) \geq r, r \)-fro \(\mu \)), \(\bar{\lambda} = eeT_\tau(\bar{\lambda} - \mu, r) \).
3. For each \(\lambda \in I^X \), \(eC_\tau(\lambda, r) = eeT_\tau(\lambda, r) \) (resp. \(C_\tau(\lambda, r) = eeT_\tau(\lambda, r) \), \(RC_\tau(\lambda, r) = eeT_\tau(\lambda, r) \)).

Proof.
(1) \(\Leftrightarrow \) (2) It is easy from Lemma 3.12. (2).
(2) \(\Rightarrow \) (3) Suppose there exists \(\lambda \in I^X \) with \(eC_\tau(\lambda, r) \not\subseteq eeT_\tau(\lambda, r) \). Then there exist \(x \in X \) and \(t \in I_0 \) such that
\[
eC_\tau(\lambda, r)(x) < t < eeT_\tau(\lambda, r)(x).
\]

By the definition of \(eC_\tau \), there exists \(r \)-feo set \(\rho \in I^X \) with \(\lambda \leq \rho \) such that
\[
eC_\tau(\lambda, r)(x) \leq \rho(x) < t < eeT_\tau(\lambda, r)(x).
\]

By (2), since \(eeT_\tau(\rho, r) = \rho \), we have
\[
D_\tau(\lambda, r)(x) \leq eeT_\tau(\rho, r)(x) = \rho(x) < t.
\]

It is a contradiction.
(3) \(\Rightarrow \) (2) It is easy.

Corollary 3.14. Let \((X, \tau)\) be a fts and \(r \in I_0 \). The following statements are equivalent:

(i) \((X, \tau)\) is \(r \)-fuzzy regular (resp. \(r \)-fuzzy \(e \)-regular, \(r \)-fuzzy almost regular)
(ii) For each \(\tau(\mu) \geq r \) (resp. \(r \)-feo \(\mu \), \(r \)-fro \(\mu \)), \(\bar{\lambda} - \mu = T(\bar{\lambda} - \mu, r) \).
(iii) For each \(\lambda \in I^X \), \(C_\tau(\lambda, r) = T_\tau(\lambda, r) \) (resp. \(eC_\tau(\lambda, r) = T_\tau(\lambda, r) \), \(RC_\tau(\lambda, r) = T_\tau(\lambda, r) \)).

Remark 3.15. Let \((X, \tau)\) be a fts. We have:
Let r-fuzzy e-regular $\Rightarrow r$-fuzzy regular $\Rightarrow r$-fuzzy almost regular

r-fuzzy e^*-regular $\Rightarrow r$-fuzzy e^*-regular $\Rightarrow r$-fuzzy almost e^*-regular.

Example 3.16. Let $X = \{a, b, c\}$ be a set and $a_{0.6} \in Pt(X)$. We define the fuzzy topology $\tau : I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda \in \{\overline{0}, \overline{1}\}, \\ \frac{1}{2} & \text{if } \lambda \in \{\chi_{\{a\}}, \chi_{\{b, c\}}\}, \\ \frac{1}{2} & \text{if } \lambda \in \{a_{0.6}, a_{0.6} \vee \chi_{\{b, c\}}\}, \\ 0 & \text{otherwise}. \end{cases}$$

(1) For $0 < r \leq \frac{1}{2}$, since $\chi_{\{a\}}$ and $\chi_{\{b, c\}}$ are r-fro and r-frc sets, $C_r(\chi_{\{a\}}, r) = \chi_{\{a\}}$ and $C_r(\chi_{\{b, c\}}, r) = \chi_{\{a, c\}}$, then (X, τ) is r-fuzzy almost regular.

(2) For $a_{0.6} \in Q_{\tau}(a_{0.7}, 1/2)$, for all $\mu \in Q_{\tau}(a_{0.7}, 1/2)$ we have $C_{\tau}(\mu, 1/2) \neq a_{0.6}$. So, (X, τ) is not a 1/2-fuzzy regular. Moreover, for $a_{0.9} \in E_{\tau}(a_{0.2}, 1/2)$ and for all $\mu \in E_{\tau}(a_{0.2}, 1/2)$, we have $eC_{\tau}(\mu, 1/2) \neq a_{0.9}$. So, (X, τ) is not a 1/2-fuzzy e^*-regular.

(3) For $0 < r \leq 1/2$, we have the following (a) and (b).

(a) If $a_{0.4} < a_s < a_{0.6}$, then a_s is r-fro and r-frc. For $a_{0.6} \in Q_{\tau}(a_t, r)$, there exists $a_t \in E_{\tau}(a_t, r)$ with $eC_{\tau}(a_t, r) \leq a_{0.6}$.

(b) Let $a_{0.6} \vee \chi_{\{b, c\}} \in Q_{\tau}(x_t, r)$. If $(x = a)_t$, by (a), there exist $a_s \in E_{\tau}(a_t, r)$ such that $eC_{\tau}(a_s, r) = a_s \leq a_{0.6} \vee \chi_{\{b, c\}}$. If $(x = b)_t$ or $(x = c)_t$, there exists x_s with $s + t > 1$ and $a_s \in E_{\tau}(x_t, r)$ such that $eC_{\tau}(x_t, r) = x_s \leq a_{0.6} \vee \chi_{\{b, c\}}$.

Hence, (X, τ) is r-fuzzy e^*-regular.

Example 3.17. Let X be a set containing at least three points. We define the fuzzy topology $\tau : I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda \in \{\overline{0}, \overline{1}\}, \\ \frac{1}{2} & \text{if } \lambda = a_{0.6}, \\ 0 & \text{otherwise.} \end{cases}$$

For $0 < r \leq 1/2$, if $\lambda \leq 0.4$, λ is r-fro and if $\mu \geq 0.6$, μ is r-frc. Let $\lambda \in E_{\tau}(a_t, r)$. Since $\lambda \leq 0.4$, there exists $y \in X$ such that $\lambda(y) > 0.4$, $\lambda(a) + t > 1$. Put $\mu \in I^X$ as

$$\mu(x) = \begin{cases} \lambda(x) & \text{if } x \in \{a, y\}, \\ \min\{0.5, \lambda(x)\} & \text{otherwise.} \end{cases}$$
So, \(\mu \) is \(r \)-feo and \(\mu \in \mathcal{E}_r(a_t, r) \) such that \(eC_r(\mu, r) = \mu \leq \lambda \). Hence \((X, \tau)\) is \(r \)-fuzzy \(ee^* \)-regular. But it is neither \(r \)-fuzzy \(e \)-regular nor \(r \)-fuzzy regular because \(0 \notin Q_r(a_t, r) \) and for all \(\lambda \in Q_r(a_t, r), C_r(\lambda, r) \not\leq 0 \).

4. Strongly \(e \)-irresolute mappings

Definition 4.1. Let \((X, \tau)\) and \((Y, \eta)\) be fts’s, a function \(f : (X, \tau) \to (Y, \eta) \) is called:

(i) strongly \(\theta \)-\(e \)-continuous (resp. strongly \(e \)-irresolute) iff for each \(\mu \in Q_\eta(f(x)_t, r) \) (resp. \(\mu \in \mathcal{E}_\eta(f(x)_t, r) \)), there exists \(\lambda \in \mathcal{E}_\tau(x_t, r) \) such that \(f(eC_r(\lambda, r)) \leq \mu \),

(ii) \(\theta \)-\(e \)-irresolute (resp. quasi \(e \)-irresolute) iff for each \(\mu \in \mathcal{E}_\eta(f(x)_t, r) \), there exists \(\lambda \in \mathcal{E}_\tau(x_t, r) \) such that \(f(eC_r(\lambda, r)) \leq eC_\eta(\mu, r) \) (resp. \(f(\lambda) \leq eC_\eta(\mu, r) \)).

Theorem 4.2. Let \((X, \tau)\) and \((Y, \eta)\) be fts’s and \(f : X \to Y \) a function. Then the following statements are equivalent:

1. \(f \) is \(e \)-irresolute.
2. For each \(\mu \in \mathcal{E}_\eta(f(x)_t, r) \), there exists \(\lambda \in \mathcal{E}_\tau(x_t, r) \) such that \(f(\lambda) \leq \mu \).
3. \(f(eC_r(\lambda, r)) \leq eC_\eta(f(\lambda, r)) \) for each \(\lambda \in I^X \).
4. \(eC_r(f^{-1}(\mu), r) \leq f^{-1}(eC_\eta(\mu, r)) \) for each \(\mu \in I^Y \).

Proof.

(1) \(\Rightarrow \) (2) For \(\mu \in \mathcal{E}_\eta(f(x)_t, r) \), by (1), there exists \(f^{-1}(\mu) \in \mathcal{E}_\tau(x_t, r) \) such that \(f(f^{-1}(\mu)) \leq \mu \).

(2) \(\Rightarrow \) (1) For each \(r \)-feo \(\mu \), we only show that

\[
f^{-1}(\mu) = \bigvee \{ \lambda | \lambda \leq f^{-1}(\mu), \lambda \text{ is } r \text{-feo} \}.
\]

Suppose there exist \(x \in X \) and \(t \in I_0 \) such that

\[
f^{-1}(\mu)(x) = \mu(f(x))
> 1 - t
> \bigvee \{ \lambda(x) | \lambda \leq f^{-1}(\mu), \lambda \text{ is } r \text{-feo} \}.
\]

For each \(\mu \in \mathcal{E}_\eta(f(x)_t, r) \), by (2), there exists \(\lambda \in \mathcal{E}_\tau(x_t, r) \) such that \(f(\lambda) \leq \mu \). Thus \(\lambda \leq f^{-1}(\mu) \) and \(\lambda q x_t \) implies \(1 - t < \lambda(x) \).

It is a contradiction. Hence \(f^{-1}(\mu) \) is \(r \)-feo.
(1) ⇒ (3)
\[eC_\eta(f(\lambda), r) = \bigwedge \{ \mu | f(\lambda) \leq \mu, isr - fec \} \]
\[\geq \bigwedge \{ \mu | f(\lambda) \leq \mu, f^{-1}(\mu)ISR - fec \} \]
\[\geq f \left(\bigwedge \{ f^{-1}(\lambda) | \lambda \leq f^{-1}(\mu), f^{-1}(\mu)ISR - fec \} \right) \]
\[\geq f(eC_\tau(\lambda, r)). \]

(3) ⇒ (4) Put \(\lambda = f^{-1}(\mu) \). Then
\[eC_\tau(f^{-1}(\mu), r) \leq f^{-1}(f(eC_\tau(f^{-1}(\mu), r))) \]
\[\leq f^{-1}(eC_\eta(\mu, r)). \]

(4) ⇒ (1) For each \(r \)-feo \(\mu \in I^Y \), we have \(eC_\eta(\overline{1} - \mu, r) = \overline{1} - \mu \). By (4),
\[eC_\tau(\overline{1} - f^{-1}(\mu), r) \leq f^{-1}(eC_\eta(\overline{1} - \mu, r)) \]
\[= \overline{1} - f^{-1}(\mu). \]

So, \(eC_\tau(\overline{1} - f^{-1}(\mu), r) = \overline{1} - f^{-1}(\mu) \). By Theorem \ref{thm:4.2} (2), \(f^{-1}(\mu) \) is \(r \)-feo.

Corollary 4.3. Let \((X, \tau)\) and \((Y, \eta)\) be fts’s and \(f : X \to Y \) a function. Then the following statements are equivalent:

1. \(f \) is \(e \)-continuous (resp. supercontinuous).
2. \(f(eC_\tau(\lambda, r)) \leq C_\eta(f(\lambda, r)) \) (resp. \(f(RC_\tau(\lambda, r)) \leq C_\eta(f(\lambda, r)) \)), for each \(\lambda \in I^X \).
3. \(eC_\tau(f^{-1}(\mu), r) \leq f^{-1}(C_\eta(\mu, r)) \) (resp. \(RC_\tau(f^{-1}(\mu), r) \leq f^{-1}(C_\eta(\mu, r)) \)), for each \(\mu \in I^Y \).

Theorem 4.4. The following implications hold:

\begin{align*}
\text{strongly } e & \text{- irresolute } \Rightarrow \text{ strongly } \theta & \text{- } e \text{- continuous,} \\
\text{strongly } e & \text{- irresolute } \Rightarrow \text{ } e & \text{- irresolute,} \\
\theta & \text{- } e & \text{- irresolute } \Rightarrow \text{ quasi } - \text{ irresolute.}
\end{align*}

Proof. We show that \(e \)-irresolute \(\Rightarrow \theta\)-e-irresolute. Let \((X, \tau)\) and \((Y, \eta)\) be fts’s and \(f : X \to Y \) a function. For each \(\mu \in E_\eta(f(x), r) \), by e-irresolutity and Theorem \ref{thm:4.2} (4), \(f^{-1}(\mu) \in E_\tau(x, r) \) such that
\[eC_\tau(f^{-1}(\mu), r) \leq f^{-1}(eC_\eta(\mu, r)). \]

It implies
\[f(eC_\tau(f^{-1}(\mu), r)) \leq eC_\eta(\mu, r). \]
Example 4.5. Let $X = \{a\}$ be a set. We define the fuzzy topologies $\tau, \eta : I^X \to I$ as follows:

$$
\tau(\lambda) = \begin{cases}
1 & \text{if } \lambda \in \{0, 1\}, \\
\frac{1}{2} & \text{if } \lambda = 0.6, \\
0 & \text{otherwise.}
\end{cases}
\quad \eta(\lambda) = \begin{cases}
1 & \text{if } \lambda \in \{0, 1\}, \\
\frac{1}{2} & \text{if } \lambda = 0.6, \\
0 & \text{otherwise.}
\end{cases}
$$

For $r = 1/2$, $\lambda = 0.6$ is r-feo in (Y, η) and λ is r-feo in (X, τ). Hence the identity function $id_X : (X, \tau) \to (X, \eta)$ is fuzzy e-irresolute and strongly θ-e-continuous because for $0.6 \in Q_\eta(a_t, r)$, there exists $0.6 \in E_\tau(a_t, r)$ such that $eC_\tau(0.6, r) = 0.6 \leq 0.6$.

But the identity function $id_X : (X, \tau) \to (X, \eta)$ is not strongly e-irresolute because for $0.75 \in E_\eta(a_{0.3}, r)$, and for all $a_s \in E_\tau(a_{0.3}, r)$ we have $eC_\tau(a_s, r) = 1 \not\leq 0.75$. Moreover, id_X is quasi e-irresolute but not θ-e-irresolute.

Theorem 4.6. Let (X, τ) and (Y, η) be fts’s and $f : X \to Y$ a function. If f is e-irresolute, then $f^{-1}(\mu) = eeT_\tau(f^{-1}(\mu), r)$ for each $\mu = eeT_\eta(\mu, r)$.

Proof. Let $\mu = eeT_\eta(\mu, r)$. For each $x_tqT_1 - f^{-1}(\mu)$, we have $f(x_t)qT_1 - f^{-1}(\mu)$.

By Lemma 4.5 (2), there exists $\rho \in e_\eta(f(x_t), r)$ such that $eC_\eta(\rho, r) \leq T_1 - f^{-1}(\mu)$. Since f is e-irresolute, by Theorem 4.4 (4), there exists $f^{-1}(\rho) \in E_\tau(x_t, r)$ such that

$$
eC_\tau(f^{-1}(\rho), r) \leq f^{-1}(eeT_\eta(\rho, r))
\leq T_1 - f^{-1}(\mu).
$$

By Lemma 4.5 (2), $f^{-1}(\mu) = eeT_\tau(f^{-1}(\mu), r)$. \hfill \square

Theorem 4.7. Let (X, τ) and (Y, η) be fts’s and $f : X \to Y$ a function. Then the following statements are equivalent:

1. f is θ-e-irresolute.
2. $f(eeT_\tau(\lambda, r)) \leq eeT_\eta(\lambda, r)$ for each $\lambda \in I^X$.
3. $eeT_\tau(f^{-1}(\mu), r) \leq f^{-1}(eeT_\eta(\mu, r))$ for each $\mu \in I^Y$.
4. $eeT_\tau(f^{-1}(\mu), r) \leq f^{-1}(eeT_\eta(\mu, r))$ for each r-feo $\mu \in I^Y$.

Proof. (1) \Rightarrow (2) Suppose there exist $\lambda \in I^Y$ and $r \in I_0$ such that

$$
f(eeT_\tau(\lambda, r)) \not\leq eeT_\eta(f(\lambda), r).
$$

Then there exist $x \in X$ and $t \in I_0$ such that

$$
f(eeT_\tau(\lambda, r))(f(x)) \geq eeT_\tau(\lambda, r)(x)
> t
> eeT_\eta(f(\lambda), r)(f(x)).
$$
Let \(f(x)_t \notin eeT_\eta(f(\lambda, r)) \). Then there exists \(\rho \in E_\eta(f(x)_t, r) \) such that \(eC_\eta(\rho, r) \leq \bar{T} - f(\lambda) \). Since \(f \) is \(\theta \)-irresolute, for \(\rho \in E_\eta(f(x)_t, r) \), there exists \(\mu \in E_\tau(x_t, r) \) such that

\[
\begin{align*}
 f(eC_\tau(\mu, r)) \leq eC_\eta(\rho, r) \\
 \leq \bar{T} - f(\lambda).
\end{align*}
\]

It implies

\[
\begin{align*}
 eC_\tau(\mu, r) \leq f^{-1}(f(eC_\tau(\mu, r))) \\
 \leq f^{-1}(eC_\eta(\rho, r)) \\
 \leq \bar{T} - f^{-1}(f(\lambda)) \\
 \leq \bar{T} - \lambda.
\end{align*}
\]

Hence \(x_t \) is not an \(r \)-\(\theta \)-e cluster point of \(\lambda \). It is a contradiction. Thus (2) holds.

\((2) \Rightarrow (3) \) Put \(\lambda = f^{-1}(\mu) \). It is easy.

\((3) \Rightarrow (4) \) Since \(eeT_\eta(\mu, r) = eC_\eta(\mu, r) \) for each \(r \)-feo \(\mu \in I^Y \) from Theorem 3.5 (9), it is trivial.

\((4) \Rightarrow (1) \) Let \(\mu \in e_\eta(f(x)_t, r) \). Then \(eC_\eta(\mu, r) \) is not an \(r \)-\(\theta \)-e cluster point of \(\bar{T} - eC_\eta(\mu, r) \). Hence \(f(x)_t \) is not an \(r \)-\(\theta \)-e cluster point of \(\bar{T} - eC_\eta(\mu, r) \). By Theorem, \(f(x)_t \) is not an \(r \)-e-cluster point of \(\bar{T} - eC_\eta(\mu, r) \). Thus,

\[
t > eC_\eta(\bar{T} - eC_\eta(\mu, r), r)(f(x)) \\
 = f^{-1}(eC_\eta(\bar{T} - eC_\eta(\mu, r), r))(x).
\]

Since \(\bar{T} - eC_\eta(\mu, r) \) is \(r \)-feo, by (4),

\[
f^{-1}(eC_\eta(\bar{T} - eC_\eta(\mu, r), r)) \geq eeT_\tau(f^{-1}(\bar{T} - eC_\eta(\mu, r)), r).
\]

It implies

\[
t > eeT_\tau(f^{-1}(\bar{T} - eC_\eta(\mu, r)), r)(x).
\]

Hence \(x_t \) is not an \(r \)-\(\theta \)-e-cluster point of \(f^{-1}(\bar{T} - eC_\eta(\mu, r)) \).

There exists \(\rho \in E_\tau(x_t, r) \) such that

\[
eC_\tau(\rho, r) \leq \bar{T} - f^{-1}(\bar{T} - eC_\eta(\mu, r)) \\
 = f^{-1}(eC_\tau(\mu, r)).
\]

Thus,

\[
f(eC_\tau(\rho, r)) \leq eC_\eta(\mu, r).
\]

\(\square \)

Theorem 4.8. Let \((X, \tau)\) and \((Y, \eta)\) be fts’s and \(f : X \to Y \) a function. Then the following statements are equivalent:

1. \(f \) is strongly \(\theta \)-e-continuous.
2. \(\bar{T} - f^{-1}(\mu) = eeT_\tau(\bar{T} - f^{-1}(\mu), r) \) for each \(\eta(\mu) \geq r \).
3. \(f^{-1}(\mu) = eeT_\tau(f^{-1}(\mu), r) \) for each \(\eta(\bar{T} - \mu) \geq r \).
(4) \(f(eeT_\tau(\lambda, r)) \leq C_\eta(f(\lambda), r) \) for each \(\lambda \in I^X \).

(5) \(eeT_\eta(f^{-1}(\mu), r) \leq f^{-1}(C_\tau(\mu, r)) \) for each \(\mu \in I^Y \).

Proof.

(1) \(\Rightarrow \) (2) Suppose there exists \(\mu \in I^Y \) with \(\eta(\mu) \geq r \) such that

\[
\mathcal{T} - f^{-1}(\mu) \neq eeT_\tau(\mathcal{T} - f^{-1}(\mu), r).
\]

Then there exist \(x \in X \) and \(t \in I_0 \) such that

\[
(4.1) \quad (\mathcal{T} - f^{-1}(\mu))(x) < t < eeT_\tau(\mathcal{T} - f^{-1}(\mu), r)(x).
\]

Since \(x_tq f^{-1}(\mu) \) implies \(f(x)_tq \mu \); we have \(\mu \in Q_\eta(f(x)_t, r) \).

Since \(f \) is strongly \(\theta \)-e-continuous, for \(\mu \in Q_\eta(f(x)_t, r) \), there exists \(\lambda \in E_\tau(x_t, r) \) such that \(f(eC_\tau(\lambda, r)) \leq \mu \). It implies \(eC_\tau(\lambda, r) \leq f^{-1}(\mu) \). Thus, \(eC_\tau(\lambda, r)q(\mathcal{T} - f^{-1}(\mu)) \). Hence \(x_t \) is not an \(r-e-q \) cluster point of \(\mathcal{T} - f^{-1}(\mu) \). Hence \(eeT_\tau(\mathcal{T} - f^{-1}(\mu), r)(x) < t \). It is a contradiction. Hence (2) holds.

(2) and (3) are equivalent.

(3) \(\Rightarrow \) (4) Suppose there exist \(\lambda \in I^X \) and \(t \in I_0 \) such that

\[
f(eeT_\tau(\lambda, r)) \not\in C_\eta(f(\lambda), r).
\]

Then there exist \(y \in Y \) and \(t \in I_0 \) such that

\[
f(eeT_\tau(\lambda, r))(y) > t > C_\eta(f(\lambda), r)(y).
\]

By the definition of \(f(eeT_\tau(\lambda, r)) \), there exists \(x \in X \) with \(f(x) = y \) such that

\[
f(eeT_\tau(\lambda, r))(f(x)) \geq eeT_\tau(\lambda, r)(x)
\]

\[
> t
\]

\[
> C_\eta(f(\lambda), r)(f(x)).
\]

By the definition of \(C_\eta(f(\lambda), r) \), there exists \(\mu \in I^Y \) with \(f(\lambda) \leq \mu, \eta(\mathcal{T} - \mu) \geq r \) such that

\[
(4.2) \quad f(eeT_\tau(\lambda, r))(f(x)) \geq eeT_\tau(\lambda, r)(x)
\]

\[
> t
\]

\[
> \mu(f(x)).
\]

On the other hand, by (3), \(f^{-1}(\mu) = eeT_\tau(f^{-1}(\mu), r) \) for each \(\eta(\mathcal{T} - \mu) \geq r \). Then \(\lambda \leq \mu \) implies

\[
eeT_\tau(\lambda, r)(x) \leq eeT_\tau(f^{-1}(\mu), r)(x)
\]

\[
= \mu(f(x))
\]

\[
< t.
\]

It is a contradiction. Hence (4) holds.

(4) \(\Rightarrow \) (5) Put \(\lambda = f^{-1}(\mu) \). It is easy.
(5) \implies (1) For each \(\mu \in \mathcal{Q}_\eta(f(x)_t, r) \), \(C_\eta(\bar{I} - \mu, r) = \Sigma - \mu \). By (5),
\[e \in T_\eta(\bar{I} - f^{-1}(\mu), r) = \bar{I} - f^{-1}(\mu). \]
Since \(f(x)_t q \mu \) implies \(x_q f^{-1}(\mu) \), by Lemma \(\Box \Box \) (2), there exists \(\lambda \in \mathcal{E}_\tau(x_t, r) \) such that \(e C_\tau(\lambda, r) \leq f^{-1}(\mu) \). It implies \(f(e C_\tau(\lambda, r)) \leq \mu \). Hence \(f \) is strongly \(\theta \)-e-continuous.

Theorem 4.9. Let \((X, \tau)\) and \((Y, \eta)\) be fts’s and \(f : X \rightarrow Y \) a function. Let \((Y, \eta)\) be a fuzzy regular space. Then the following statements are equivalent:

1. \(f \) is weakly \(e \)-continuous.
2. \(f \) is \(e \)-continuous.
3. \(f \) is strongly \(\theta \)-e-continuous.

Proof.

(1) \implies (2) For \(\mu \in \mathcal{Q}_\eta(f(x)_t, r) \), since \((Y, \eta)\) is a fuzzy regular space, there exists \(\omega \in \mathcal{Q}_\eta(x_t, r) \) such that \(\mu \leq C_\eta(\omega, r) \leq \mu \).
Since \(f \) is weakly \(e \)-continuous, there exists \(\lambda \in \mathcal{E}_\tau(x_t, r) \) such that \(f(\lambda) \leq C_\eta(\omega, r) \leq \mu \).

(2) \implies (3) For \(\mu \in \mathcal{Q}_\eta(f(x)_t, r) \), since \((Y, \eta)\) is a fuzzy regular space, there exists \(\mu \in \mathcal{Q}_\eta(x_t, r) \) such that \(\mu \leq C_\eta(\mu, r) \leq \mu \). Since \(f \) is \(e \)-continuous, there exists \(\lambda \in \mathcal{E}_\tau(x_t, r) \) such that \(f(\lambda) \leq \mu \). We will show that \(f(e C_\tau(\lambda, r)) \leq C_\eta(\mu, r) \).

Suppose
\[f(e C_\tau(\lambda, r))(y) > t > C_\eta(\mu, r)(y). \]
Then there exist \(x \in X \) with \(f(x) = y \) and \(\rho \in \bar{I}^Y \), \(\mu \leq \rho \) with \(\eta(\bar{I} - \rho) \geq r \) such that
\[f(e C_\tau(\lambda, r))(y) \geq e C_\tau(\lambda, r)(x) \]
\[> t \]
\[> \rho(f(x)) \]
\[\geq C_\eta(\mu, r)(y). \]

On the other hand, since \(f \) is \(e \)-continuous, for \(\eta(\bar{I} - \rho) \geq r \), there exists \(\omega \in \mathcal{E}_\tau(x_t, r) \) such that \(f(\omega) \leq \bar{I} - \rho \). Thus
\[\lambda \leq f^{-1}(\mu) \leq f^{-1}(\rho) \leq \bar{I} - \omega. \]
So, \(e C_\tau(\lambda, r)(x) \leq (\bar{I} - \omega)(x) < t \). It is a contradiction. Thus, \(f(e C_\tau(\lambda, r)) \leq C_\eta(\mu, r) \). Hence \(f \) is strongly \(\theta \)-e-continuous.

(3) \implies (1) It is trivial.

Theorem 4.10. Let \((X, \tau)\) and \((Y, \eta)\) be fts’s.

1. Every fuzzy continuous function \(f : X \rightarrow Y \) is strongly \(\theta \)-e-continuous iff \((X, \tau)\) is fuzzy \(\epsilon \)-regular.
(2) Every e-continuous function \(f : X \to Y \) is strongly \(\theta \)-e-continuous iff \((X, \tau)\) is fuzzy ee*-regular.

(3) Every supercontinuous function \(f : X \to Y \) is strongly \(\theta \)-e-continuous iff \((X, \tau)\) is fuzzy almost ee*-regular.

Proof.

(1) \((\Rightarrow)\) For an identity function \(f : (X, \tau) \to (Y, \sigma) \), by hypothesis, \(f \) is fuzzy continuous and strongly \(\theta \)-e-continuous. For each \(\mu \in Q_\eta(f(x)_t, r) \), there exists \(\lambda \in E_\tau(x_t, r) \) such that
\[
 f(eC_\tau(\lambda, r)) \leq \mu.
\]
Since \(eC_\tau(\lambda, r) \leq C_\tau(\lambda, r) \) then
\[
f(eC_\tau(\lambda, r)) \leq f(C_\tau(\lambda, r)) \leq \mu.
\]
We have
\[
f^{-1}(\mu) = f(Q_\eta(f(x)_t, r)) = Q_\tau(f^{-1}f(x)_t, r) = Q_\tau(x_t, r).
\]
Since \(f \) is fuzzy continuous, then we have
\[
f(eC_\tau(\lambda, r)) \leq \mu \quad \Rightarrow \quad eC_\tau(\lambda, r) \leq f^{-1}(\mu)
\]
\[
\Rightarrow \quad eC_\tau(\lambda, r) \leq C_\tau(\lambda, r) \leq f^{-1}(\mu).
\]
By Corollary \(4.14\), \((X, \tau)\) is fuzzy e-regular.

\((\Leftarrow)\) Let \(f \) be fuzzy continuous. For each \(\nu \in Q_\eta(f(x)_t, r) \), \(f^{-1}(\nu) \in Q_\tau(x_t, r) \). Since \((X, \tau)\) is fuzzy e-regular, there exists \(\mu \in E_\tau(x_t, r) \) such that \(\mu \leq eC_\tau(\mu, r) \leq f^{-1}(\nu) \). Thus, \(f(eC_\tau(\mu, r)) \leq \nu \). Hence \(f \) is strongly \(\theta \)-e-continuous.

(2) \((\Rightarrow)\) Since every fuzzy continuous function is fuzzy e-continuous then the proof followed by the necessary part of (1).

\((\Leftarrow)\) By Remark \(4.15\), since every fuzzy e-regular space is fuzzy ee*-regular. Then the proof followed by the sufficiency part of (1).

(3) Proof is similar from the above (1) and (2).

\(\square\)

Theorem 4.11. Let \((X, \tau)\) and \((Y, \eta)\) be fts’s and \(f : X \to Y \) a function. Let \((Y, \eta)\) be a ee*-regular space. Then the following statements are equivalent:

(1) \(f \) is strongly e-irresolute.

(2) \(f \) is e-irresolute.

(3) \(f \) is \(\theta \)-e-irresolute.

(4) \(f \) is quasi-e-irresolute.

Proof.

(1) \((\Rightarrow)\) (2), (2) \((\Rightarrow)\) (3) and (3) \((\Rightarrow)\) (4) are trivial from Theorem \(4.14\).

(3) \((\Rightarrow)\) For each \(\nu \in E_\eta(f(x)_t, r) \), since \((X, \eta)\) is fuzzy ee*-regular, there exists \(\mu \in e_\tau(f(x)_t, r) \) such that \(\mu \leq eC_\eta(\mu_t, r) \leq \nu \). for
\[\mu \in e_*(f(x)_t, r), \text{ by (3), there exists } \lambda \in \mathcal{E}_r(x_t, r) \text{ such that } f(eC_\eta(\lambda, r)) \leq eC_\eta(\mu, r) \leq \nu. \text{ Hence } f \text{ is strongly } e\text{-irresolute.} \]

(4) \Rightarrow (2) For each \(r \)-feo \(\nu \), we only show that

\[f^{-1}(\nu) = \nu(f(x)) \]

Then there exist \(x \in X \) and \(t \in I_0 \) such that

\[f^{-1}(\nu)(x) = \nu(f(x)) \]

\[> 1 - t \]

\[> \nu(\lambda|x_t|) \leq f^{-1}(\nu), \lambda \text{ is } r \text{-feo}\} \]

For each \(\nu \in \mathcal{E}_\eta(f(x)_t, r) \), since \((Y, \eta) \) is fuzzy \(ee^* \)-regular, there exists \(\mu \in \mathcal{E}_\eta(f(x)_t, r) \) such that \(\mu \leq eC_\eta(\mu, r) \leq \nu \). By (4), there exists \(\lambda \in \mathcal{E}_r(x_t, r) \) such that \(f(\lambda) \leq eC_\eta(\mu, r) \leq \nu \). Thus \(\lambda \leq f^{-1}(\nu) \) and \(\lambda \in \mathcal{E}_r(x_t, r) \) implies \(1 - t < \lambda(x) \). It is a contradiction. Thus \(f^{-1}(\nu) \) is \(r \)-feo.

\[\square \]

Theorem 4.12. Let \((X, \tau)\) and \((Y, \eta)\) be fts’s and \(f : X \rightarrow Y \) a function. Let \((X, \tau)\) be a fuzzy \(ee^* \)-regular space. Then \(f \) is \(\theta \)-e-irresolute iff \(f \) is quasi \(e \)-irresolute.

Proof. Let \(f \) be quasi-\(e \)-irresolute. For each \(\nu \in \mathcal{E}_\eta(f(x)_t, r) \), there exists \(\lambda \in \mathcal{E}_r(x_t, r) \) such that \(f(\lambda) \leq eC_\eta(\nu, r) \). Since \((X, \tau)\) is fuzzy \(e^* \)-regular, there exists \(\mu \in \mathcal{E}_r(x_t, r) \) such that \(\mu \leq eC_\tau(\mu, r) \leq \lambda \). Hence \(f(eC_\tau(\mu, r)) \leq eC_\eta(\nu, r) \). Then \(f \) is \(\theta \)-e-irresolute.

\[\square \]

Acknowledgment. The authors would like to thank the referees for their valuable comments and suggestions.

References

1 Department of Mathematics, Kandaswami Kandar’s College, P-velur-638 182, Tamil Nadu, India.
E-mail address: vckkc3895@gmail.com

2 Research Scholar (Part Time), Department of Mathematics, Kandaswami Kandar’s College, P-velur-638 182, Tamil Nadu, India.
E-mail address: pspmaths@gmail.com