Farokhi-Ostad, J., Janfada, A. (2018). Products Of EP Operators On Hilbert C*-Modules. Sahand Communications in Mathematical Analysis, 10(1), 61-71. doi: 10.22130/scma.2017.28402

Javad Farokhi-Ostad; Ali Reza Janfada. "Products Of EP Operators On Hilbert C*-Modules". Sahand Communications in Mathematical Analysis, 10, 1, 2018, 61-71. doi: 10.22130/scma.2017.28402

Farokhi-Ostad, J., Janfada, A. (2018). 'Products Of EP Operators On Hilbert C*-Modules', Sahand Communications in Mathematical Analysis, 10(1), pp. 61-71. doi: 10.22130/scma.2017.28402

Farokhi-Ostad, J., Janfada, A. Products Of EP Operators On Hilbert C*-Modules. Sahand Communications in Mathematical Analysis, 2018; 10(1): 61-71. doi: 10.22130/scma.2017.28402

^{}Department of Mathematics, Faculty of Mathematics and Statistics, University of Birjand, Birjand, Iran.

Abstract

In this paper, the special attention is given to the product of two modular operators, and when at least one of them is EP, some interesting results is made, so the equivalent conditions are presented that imply the product of operators is EP. Also, some conditions are provided, for which the reverse order law is hold. Furthermore, it is proved that $P(RPQ)$ is idempotent, if $RPQ$^{†} has closed range, for orthogonal projections $P,Q$ and $R$.

[1] S. Campbell and C.D. Meyer, Continuity properties of the Drazin pseudo inverse, Linear Algebra and Its Applications, 10 (1975), pp. 77-83.

[2] S. Campbell and C.D. Meyer, EP operators and generalized inverses, Canadian Math. Bull., 18 (1975), pp. 327-333.

[3] C.Y. Deng and H.K. Du, Representations of the Moore-Penrose inverse for a class of 2 by 2 block operator valued partial matrices, Linear and Multilinear Algebra, 58 (2010), pp. 15-26.

[4] D.S. Djordjevic, Further results on the reverse order law for generalized inverses, SIAM J. Matrix Anal. Appl., 29 (2007), pp. 1242-1246.

[5] D.S. Djordjevic and N.C. Dincic, Reverse order law for the Moore-Penrose inverse, J. Math. Anal. Appl., 361 (2010), pp. 252-261.

[6] J. Farokhi-ostad and M. Mohammadzadeh Karizaki, The reverse order law for EP modular operators, J. Math. Computer Sci. 16 (2016), pp. 412-418.

[7] M. Frank, Geometrical aspects of Hilbert C^{*}-modules, Positivity, 1999, pp. 215-243.

[8] M. Frank, Self-duality and C^{*}-reflexivity of Hilbert C^{*}-modules, Z. Anal. Anwendungen, 1990, pp. 165-176.

[9] S. Izumino, The product of operators with closed range and an extension of the revers order law, Tohoku Math. J.,34 (2) (1982), pp. 43-52.

[11] M. Mohammadzadeh Karizaki and D.S. Djordjevic, Commuting C^{*} modular operators, Aequationes Mathematicae 6 (2016), pp. 1103-1114.

[12] M. Mohammadzadeh Karizaki, M. Hassani, and M. Amyari, Moore-Penrose inverse of product operators in Hilbert C^{*}-modules, Filomat, 8 (2016), pp. 3397-3402.

[13] M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari, and M. Khosravi, Operator matrix of Moore-Penrose inverse operators on Hilbert C^{*}-modules, Colloq. Math., 140 (2015), pp. 171-182.

[14] M.S. Moslehian, K. Sharifi, M. Forough, and M. Chakoshi, Moore-Penrose inverse of Gram operator on Hilbert C^{*}-modules, Studia Math., 210 (2012), pp. 189-196.

[16] K. Sharifi, The product of operators with closed range in Hilbert C^{*}-modules, Linear Algebra Appl., 435 (2011), pp. 1122-1130.

[17] K. Sharifi, EP modular operators and their products, J. Math. Anal. Appl., 419 (2014), pp. 870-877.

[18] K. Sharifi and B. Ahmadi Bonakdar, The reverse order law for Moore-Penrose inverses of operators on Hilbert C^{* }modules, Bull. Iran. Math. Soc., 42 (2016), pp. 53- 60.

[19] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert C^{*}-modules, Linear Algebra Appl. 428 (2008), pp. 992-1000.