(-1)-Weak Amenability of Second Dual of Real Banach Algebras

Hamidreza Alihoseini1 and Davood Alimohammadi2*

Abstract. Let \((A, \norm{\cdot})\) be a real Banach algebra, a complex algebra \(A_C\) be a complexification of \(A\) and \(\norm{\cdot}_1\) be an algebra norm on \(A_C\) satisfying a simple condition together with the norm \(\norm{\cdot}\) on \(A\). In this paper we first show that \(A\) is a real Banach \(A\)-module if and only if \((A_C)\) is a complex Banach \((A_C)\)-module. Next we prove that \(A\) is \((-1)\)-weakly amenable if and only if \((A_C)\) is \((-1)\)-weakly amenable. Finally, we give some examples of real Banach algebras which their second duals of some them are and of others are not \((-1)\)-weakly amenable.

1. Introduction and Preliminaries

The symbol \(\mathbb{F}\) denotes a field that can be either \(\mathbb{R}\) or \(\mathbb{C}\). For a Banach space \(\mathcal{X}\) over \(\mathbb{F}\) we denote by \(\mathcal{X}^*\) and \(\mathcal{X}^{**}\) the dual space and the second dual space of \(\mathcal{X}\), respectively.

Let \(B\) be an algebra over \(\mathbb{F}\) and \(\mathcal{X}\) be a \(B\)-module over \(\mathbb{F}\) with the module operations \((a, x) \mapsto a \cdot x, (a, x) \mapsto x \cdot a : B \times \mathcal{X} \to \mathcal{X}\). A linear map \(D : B \to \mathcal{X}\) over \(\mathbb{F}\) is called an \(\mathcal{X}\)-derivation on \(B\) over \(\mathbb{F}\) if \(D(ab) = D(a) \cdot b + a \cdot D(b)\) for all \(a, b \in B\). For each \(x \in \mathcal{X}\), the map \(\delta_x : B \to \mathcal{X}\) defined by \(\delta_x(a) = a \cdot x - x \cdot a\) \((a \in B)\), is an \(\mathcal{X}\)-derivation on \(B\) over \(\mathbb{F}\). An \(\mathcal{X}\)-derivation \(D\) on \(B\) is called inner if \(D = \delta_x\) for some \(x \in \mathcal{X}\).

Let \((B, \norm{\cdot})\) be a Banach algebra over \(\mathbb{F}\). A \(B\)-module \(\mathcal{X}\) over \(\mathbb{F}\) is called a Banach \(B\)-module if \(\mathcal{X}\) is a Banach space with a norm \(\norm{\cdot}\) and
Then respectively. The Banach algebra B is a Banach B-module over \mathbb{F} with the module operations $a \cdot b = ab$ and $b \cdot a = ba$ for all $a, b \in B$. Let \mathcal{X} be a Banach B-module over \mathbb{F} with the module operations $(a, x) \mapsto a \cdot x$, $(a, x) \mapsto x \cdot a : B \times \mathcal{X} \to \mathcal{X}$. Then \mathcal{X}^* is a Banach B-module over \mathbb{F} with the natural module operations $(\lambda, a) \mapsto a \cdot \lambda$, $(\lambda, a) \mapsto \lambda \cdot a : B \times \mathcal{X}^* \to \mathcal{X}^*$ given by

$$(a \cdot \lambda)(x) = \lambda(a \cdot x), \quad (\lambda \cdot a)(x) = \lambda(a \cdot x), \quad (a \in B, \lambda \in \mathcal{X}^*, x \in \mathcal{X}),$$

and with the operator norm $\| \cdot \|_{op}$. In particular, B^* is a Banach B-module over \mathbb{F}. We denote by $Z^2_{op}(B, \mathcal{X})$ the set of all continuous \mathcal{X}-derivations on B over \mathbb{F}. Clearly, $Z^2_{op}(B, \mathcal{X})$ is a linear space over \mathbb{F} which contains all inner \mathcal{X}-derivations on B over \mathbb{F}. We denote by $N^1_{op}(B, \mathcal{X})$ the set of all inner \mathcal{X}-derivations on B over \mathbb{F}. Clearly, $N^1_{op}(B, \mathcal{X})$ is a linear subspace of $Z^2_{op}(B, \mathcal{X})$ over \mathbb{F}. We denote by $H^1_{op}(B, \mathcal{X})$ the quotient space $Z^2_{op}(B, \mathcal{X})/N^1_{op}(B, \mathcal{X})$ which it is called the first cohomology group of B over \mathbb{F} with coefficients in \mathcal{X}.

A Banach algebra B over \mathbb{F} is called amenable if $H^1_{op}(B, \mathcal{X}^*) = \{0\}$ for all Banach B-module \mathcal{X} over \mathbb{F}. This concept was first introduced by Johnson in [12]. The notion of weak amenability was first introduced by Bade, Curtis and Dales for commutative Banach algebras in [13] and later defined for Banach algebras, not necessarily commutative, by Johnson in [13]. In fact, a Banach algebra B over \mathbb{F} is called weakly amenable if $H^1_{op}(B, B^*) = \{0\}$.

Let B be a Banach algebra over \mathbb{F}. For each $(\lambda, \Lambda) \in B^* \times B^{**}$ the \mathbb{F}-valued functions $\lambda \cdot \Lambda$ and $\Lambda \cdot \lambda$ on B are defined by

$$(\lambda \cdot \Lambda)(a) = \Lambda(a \cdot \lambda), \quad (a \in B),$$

$$(\Lambda \cdot \lambda)(a) = \Lambda(\lambda \cdot a), \quad (a \in B).$$

Then $\lambda \cdot \Lambda \in B^*$, $\|\lambda \cdot \Lambda\|_{op} \leq \|\lambda\|_{op} \|\Lambda\|_{op}$, $\Lambda \cdot \lambda \in B^*$ and $\|\Lambda \cdot \lambda\|_{op} \leq \|\Lambda\|_{op} \|\lambda\|_{op}$ for each $\Lambda, \Gamma \in B^{**}$, the \mathbb{F}-valued functions $\Lambda \Box \Gamma$ and $\Lambda \rhd \Gamma$ on B^* are defined by

$$(\Lambda \Box \Gamma)(\lambda) = \Lambda(\Gamma \cdot \lambda), \quad (\lambda \in B^*),$$

$$(\Lambda \rhd \Gamma)(\lambda) = \Gamma(\lambda \cdot \Lambda), \quad (\lambda \in B^*).$$

Then $\Lambda \Box \Gamma \in B^{**}$, $\|\Lambda \Box \Gamma\|_{op} \leq \|\Lambda\|_{op} \|\Gamma\|_{op}$, $\Lambda \rhd \Gamma \in B^{**}$ and $\|\Lambda \rhd \Gamma\|_{op} \leq \|\Lambda\|_{op} \|\Gamma\|_{op}$. Moreover, B^{**} is a Banach algebra over \mathbb{F} with respect to either of the products \Box and \rhd, and with the operator norm $\| \cdot \|_{op}$.

These products are called the first and second Arens products on B^{**}, respectively. The Banach algebra B over \mathbb{F} is called Arens regular if two products \Box and \rhd coincide on B^{**}. For the general theory of Arens
products, see [3, 7, 18], for example. For the product □ on B^{**} one can show that B^* is a Banach B^{**}-module over F if and only if the following statements hold:

(i) $(\Lambda \cdot \lambda) \cdot \Gamma = \Lambda \cdot (\lambda \cdot \Gamma)$ for all $(\Lambda, \lambda, \Gamma) \in B^{**} \times B^* \times B^{**}$,

(ii) $\lambda \cdot (\Lambda \square \Gamma) = (\Lambda \cdot \lambda) \cdot \Gamma$ for all $(\Lambda, \lambda, \Gamma) \in B^* \times B^{**} \times B^{**}$,

(iii) $(\Lambda \square \Gamma) \cdot \lambda = \Lambda \cdot (\Gamma \cdot \lambda)$ for all $(\Lambda, \Gamma, \lambda) \in B^{**} \times B^{**} \times B^*$.

Definition 1.1. Let $(B, \| \cdot \|)$ be a Banach algebra over F and \times be one of the Arens products □ and \triangle on B^{**}. We say that B^{**} (with the product \times) is (-1)-weakly amenable if B^* is a Banach B^{**}-module over F and $H^{1}_E(B^{**}, B^*) = \{0\}$.

Medghalchi and Yazdanpanah introduced the concept of (-1)-weak amenability for Banach algebras in [17] and obtained some results in this area. Eshaghi Gordji, Hosseinioun and Valadkhani in [8] gave some examples of complex Banach algebras that their second duals which are and some others which are not (-1)-weakly amenable. Hosseinioun and Valadkhani obtained interesting results in (-1)-weak amenability of complex Banach algebras in [11, 13].

Let E be a real linear space (real algebra, respectively). A complex linear space (complex algebra, respectively) E_C is called a complexification of E if there exists an injective real linear map (real algebra homomorphism, respectively) $J : E \rightarrow E_C$ such that $E_C = J(E) \oplus iJ(E)$.

If X is a real linear space, then $X \times X$ with the additive operation and scalar multiplication defined by

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad (x_1, x_2, y_1, y_2 \in X),$$

$$(\alpha + i\beta)(x, y) = (\alpha x - \beta y, \alpha y + \beta x), \quad (\alpha, \beta \in \mathbb{R}, x, y \in X),$$

is a complexification of X with respect to the injective linear map $J : X \rightarrow X \times X$ defined by $J(x) = (x, 0), x \in X$.

If A is a real algebra, then $A \times A$ with the algebra operations

$$(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2), \quad (a_1, a_2, b_1, b_2 \in A),$$

$$(\alpha + i\beta)(a, b) = (\alpha a - \beta b, \alpha b + \beta a), \quad (\alpha, \beta \in \mathbb{R}, a, b \in A),$$

$$(a_1, b_1)(a_2, b_2) = (a_1 a_2 - b_1 b_2, a_1 b_2 + b_1 a_2), \quad (a_1, b_1, a_2, b_2 \in A),$$

is a complexification of A with the injective real algebra homomorphism $J : A \rightarrow A \times A$ defined by $J(a) = (a, 0), a \in A$.

It is known [3, Proposition I.1.13] that if $(E, \| \cdot \|)$ is a real normed algebra (real normed space, respectively), then there exists an algebra norm (a norm, respectively) $\| \cdot \|$ on $E \times E$ satisfying $\|(a, 0)\| = ||a||$ for all $a \in E$ and

$$\max\{||a||, ||b||\} \leq ||(a, b)|| \leq 2 \max\{||a||, ||b||\},$$

for all $a, b \in E$.

Definition 1.2. Let \((E, \| \cdot \|)\) be a real normed linear space (real normed algebra, respectively), let a complex linear space (algebra, respectively) \(E_C\) be a complexification of \(E\) with respect to an injective real linear map (real algebra homomorphism, respectively) \(J : E \rightarrow E_C\) and let \(|| \cdot ||\) be a norm (an algebra norm, respectively) on \(E_C\). We say that \(|| \cdot ||\) satisfies the (*) condition if there exist positive constants \(k_1\) and \(k_2\) such that
\[
\max\{||a||, ||b||\} \leq k_1 ||J(a) + iJ(b)|| \leq k_2 \max\{||a||, ||b||\},
\]
for all \(a, b \in E\).

Note that the (*) condition implies that \((E, \| \cdot \|)\) is a Banach space (Banach algebra, respectively) if and only if \((E_C, || \cdot ||)\) is Banach space (Banach algebra, respectively). Moreover, the existence of a norm (an algebra norm, respectively) \(|| \cdot ||\) on \(E_C\) satisfying the (*) condition guarantees by [3, Proposition I.1.13].

It is shown [2] that if \((A, \| \cdot \|)\) is a real Banach algebra and if \(|| \cdot ||\) is an algebra norm on complex algebra \(A \times A\) satisfying
\[
\max\{||a||, ||b||\} \leq k_1 ||(a, b)|| \leq k_2 \max\{||a||, ||b||\}
\]
for some positive constants \(k_1\) and \(k_2\) and for all \(a, b \in A\), then
\begin{enumerate}
\item[(i)] \(A\) is amenable if and only if \(A \times A\) is amenable [2, Theorem 2.4].
\item[(ii)] \(A\) is weakly amenable if and only if \(A \times A\) is weakly amenable [2, Theorem 2.5].
\end{enumerate}

In Section 2 we assume that \((A, \| \cdot \|)\) is a real Banach algebra, a complex algebra \(A_C\) is the complexification of \(A\) with respect to an injective real algebra homomorphism \(J : A \rightarrow A_C\), \(|| \cdot ||\) is an algebra norm on \(A_C\) satisfying the (*) condition and \((A_C)^*\) is the dual space of \((A_C, || \cdot ||)\). We first show that \(A\) is Arens regular if and only if \(A_C\) is Arens regular. Next we prove that \(A^*\) is a real Banach \(A^{**}\)-module if and only if \((A_C)^*\) is a complex Banach \((A_C)^{**}\)-module. Moreover, we prove that if \(A\) is a real Banach algebra such that \(A^*\) is a real Banach \(A^{**}\)-module, then \(A^{**}\) is \((-1)\)-weakly amenable if and only if \((A_C)^{**}\) is \((-1)\)-weakly amenable. Finally, we give some examples of real Banach algebras which their second duals of some them are and of others are not \((-1)\)-weakly amenable.

2. Main Results and Applications

We first give some lemmas which they will use in the sequel to prove of the main results.

Lemma 2.1. Let \((X, \| \cdot \|)\) be a real Banach space, let \(X_C\) be a complexification of \(X\) with respect to an injective real linear map \(J : X \rightarrow X_C\),
let \(\| \cdot \| \) be a norm on \(X_C \) satisfying the (*) condition with respect to positive constants \(k_1 \) and \(k_2 \) and let \((X_C)^*\) be the dual space of the complex Banach space \((X_C, \| \cdot \|)\).

(i) Let \(\varphi \in X^* \) and define the map \(\varphi_C : X_C \rightarrow \mathbb{C} \) by
\[
\varphi_C(J(x) + iJ(y)) = \varphi(x) + i\varphi(y) \quad (x, y \in X).
\]
Then \(\varphi_C(J(x)) = \varphi(x) \) for all \(x \in X \), \(\varphi_C \in (X_C)^* \), \(\| \varphi_C \|_{op} \leq 2k_1\|\varphi\|_{op} \) and \(\| \varphi \|_{op} \leq \frac{k_2}{k_1}\| \varphi_C \|_{op} \).

(ii) Let \(\lambda \in (X_C)^* \) and define the map \(\lambda_R : X \rightarrow \mathbb{R} \) by
\[
\lambda_R(x) = \text{Re} \lambda(J(x)) \quad (x \in X).
\]
Then \(\lambda_R \in X^* \) and \(\| \lambda_R \|_{op} \leq \frac{k_2}{k_1}\| \lambda \|_{op} \).

(iii) Let \(\lambda \in (X_C)^* \) and define the map \(\lambda_I : X \rightarrow \mathbb{R} \) by
\[
\lambda_I(x) = \text{Im} \lambda(J(x)) \quad (x \in X).
\]
Then \(\lambda_I \in X^* \) and \(\| \lambda_I \|_{op} \leq \frac{k_2}{k_1}\| \lambda \|_{op} \).

Proof. Let \(x \in X \). Then
\[
\varphi_C(J(x)) = \varphi_C(J(x) + iJ(0))
\]
\[
= \varphi(x) + i\varphi(0)
\]
\[
= \varphi(x) + i0
\]
\[
= \varphi(x).
\]
It is easy to see that \(\varphi_C \) is a complex linear functional on \(X_C \). Since
\[
|\varphi_C(J(x) + iJ(y))| = |\varphi(x) + i\varphi(y)|
\]
\[
\leq |\varphi(x)| + |\varphi(y)|
\]
\[
\leq 2\|\varphi\|_{op} \max\{|x|, |y|\}
\]
\[
\leq 2k_1\|\varphi\|_{op}\|J(x) + iJ(y)\|
\]
for all \(x, y \in X \), we deduce that \(\varphi_C \in (X_C)^* \) and \(\| \varphi_C \|_{op} \leq 2k_1\| \varphi \|_{op} \).

On the other hand, we have
\[
|\varphi(x)| = |\varphi_C(J(x))|
\]
\[
\leq \| \varphi_C \|_{op}\|J(x)\|
\]
\[
\leq \| \varphi_C \|_{op}\frac{k_2}{k_1}\|x\|,
\]
for all \(x \in X \). Hence, \(\| \varphi \|_{op} \leq \frac{k_2}{k_1}\| \varphi_C \|_{op} \). Therefore, (i) holds.

Clearly, \(\lambda_R \) is a real linear functional on \(X \). Since
\[
|\lambda_R(x)| = |\text{Re} \lambda(J(x))|
\]
\[
\leq |\lambda(J(x))|
\]
\[
\leq \| \lambda \|_{op}\|J(x)\|
\]
for all $x \in X$, we deduce that $\lambda_R \in X^*$ and $\|\lambda_R\|_{op} \leq \frac{k_2}{k_1} \|\lambda\|$. Hence, (ii) holds.

It is easy to see that λ_I is a real linear functional on X. Moreover, for each $x \in X$ we have

$$|\lambda_I(x)| = |\text{Im} \lambda(J(x))|$$

$$\leq |\lambda(J(x))|$$

$$\leq \|\lambda\|_{op} \|J(x)\|$$

$$\leq \|\lambda\|_{op} \frac{k_2}{k_1} \|x\|.$$

Hence, $\lambda_I \in X^*$ and $\|\lambda_I\|_{op} \leq \frac{k_2}{k_1} \|\lambda\|_{op}$. Therefore, (iii) holds.

\[\square\]

Lemma 2.2. Let $(X, \| \cdot \|)$ be a real Banach space, let X_C be a complexification of X with respect to an injective real linear map $J : X \to X_C$, let $\| \cdot \|$ be a norm on X_C satisfying (**) condition with respect to positive constants k_1 and k_2 and let $(X_C)^*$ be the dual space of the complex Banach space $(X_C, \| \cdot \|)$. Define the map $J_1 : X^* \to (X_C)^*$ by

$$(2.1) \quad J_1(\varphi) = \varphi_C, \quad (\varphi \in X^*).$$

Then:

(i) $J_1(\varphi)(J(x) + iJ(y)) = \varphi(x) + i\varphi(y)$ for all $\varphi \in X^*$ and $x, y \in X$.

(ii) J_1 is a real linear map from X^* into $(X_C)^*$.

(iii) If $\lambda \in (X_C)^*$, then $\lambda = J_1(\lambda_R) + iJ_1(\lambda_I)$.

(iv) J_1 is injective and $(X_C)^* = J_1(X^*) \oplus iJ_1(X^*)$.

(v) $(X_C)^*$ is a complexification of X^* with respect to the map $J_1 : X^* \to (X_C)^*$ defined by (2.1) and

$$\max\{ \|\varphi\|_{op}, \|\psi\|_{op} \} \leq \frac{k_2}{k_1} \|J_1(\varphi) + iJ_1(\psi)\|_{op}$$

$$\leq 4k_2 \max\{ \|\varphi\|_{op}, \|\psi\|_{op} \},$$

for all $\varphi, \psi \in X^*$.

Proof. By part (i) of Lemma 2.1, J_1 is well-defined. Let $\varphi \in X^*$ and $x, y \in X$. Then, by part (i) of Lemma 2.1, we have

$$J_1(\varphi)(J(x) + iJ(y)) = \varphi_C(J(x) + iJ(y))$$

$$= \varphi_C(J(x)) + i\varphi_C(J(y))$$

$$= \varphi(x) + i\varphi(y).$$

Hence, (i) holds.
It is easy to see that \((\varphi + \psi)_C = \varphi_C + \psi_C\) for all \(\varphi, \psi \in \mathcal{X}^*\) and \((\alpha \varphi)_C = \alpha \varphi_C\) for all \(\alpha \in \mathbb{R}\) and \(\varphi \in \mathcal{X}^*\). Hence, (ii) holds.

Let \(\lambda \in (\mathcal{X}_C)^*\). By parts (ii) and (iii) of Lemma 2.1, \(\lambda_R, \lambda_I \in \mathcal{X}^*\). Since

\[
\lambda(J(x) + iJ(y)) = \lambda(J(x)) + \lambda(iJ(y)) \\
= (\text{Re} \lambda(J(x)) + i\text{Im} \lambda(J(x))) \\
+ i(\text{Re} \lambda(J(y)) + i\text{Im} \lambda(J(y))) \\
= (\lambda_R(x) + i\lambda_I(x)) + i(\lambda_R(y) + i\lambda_I(y)) \\
= (\lambda_R(x) + i\lambda_R(y)) + i(\lambda_I(x) + i\lambda_I(y)) \\
= (\lambda_R)(J(x) + iJ(y)) + i(\lambda_I)(J(x) + iJ(y)) \\
= ((\lambda_R) + i((\lambda_I))(J(x) + iJ(y)) \\
= (J_1(\lambda_R) + iJ_1(\lambda_I))(J(x) + iJ(y)),
\]

for all \(x, y \in \mathcal{X}\), we have \(\lambda = J_1(\lambda_R) + iJ_1(\lambda_I)\). Hence, (iii) holds.

Let \(\varphi \in \mathcal{X}^*\) and \(J_1(\varphi) = 0\). Then \(\varphi_C = 0\) and so \(\varphi_C(J(x)) = 0\) for all \(x \in \mathcal{X}\). This implies that \(\varphi(x) = 0\) for all \(x \in \mathcal{X}\) by part (ii) of Lemma 2.1. Hence, \(\varphi = 0\) and so \(J_1\) is injective.

By the definition of the map \(J_1 : \mathcal{X}^* \rightarrow (\mathcal{X}_C)^*\) and (iii), we conclude that

\[\tag{2.2} (\mathcal{X}_C)^* = J_1(\mathcal{X}^*) + iJ_1(\mathcal{X}^*).\]

Let \(\lambda \in J_1(\mathcal{X}^*) \cap iJ_1(\mathcal{X}^*)\). Then there exist \(\varphi, \psi \in \mathcal{X}^*\) such that \(\lambda = J_1(\varphi) = iJ_1(\psi)\). This implies that \(\varphi(x) = i\psi(x)\) for all \(x \in \mathcal{X}\) and so \(\varphi(x) = 0\) for all \(x \in \mathcal{X}\) since \(\varphi\) and \(\psi\) are real-valued functions on \(\mathcal{X}\). Hence, \(\varphi = 0\) and so \(\lambda = J_1(\varphi) = 0\). Thus

\[\tag{2.3} J_1(\mathcal{X}^*) \cap iJ_1(\mathcal{X}^*) = \{0\}.\]

From (2.2) and (2.3) we have \((\mathcal{X}_C)^* = J_1(\mathcal{X}^*) \oplus iJ_1(\mathcal{X}^*)\). Therefore, (iv) holds.

Applying (ii) and (iv), we deduce that \((\mathcal{X}_C)^*\) is a complexification of \(\mathcal{X}^*\) with respect to the injective real linear map \(J_1 : \mathcal{X}^* \rightarrow (\mathcal{X}_C)^*\) which is defined by (2.1).

Let \(\varphi, \psi \in \mathcal{X}^*\). Since

\[
|\varphi(x)| \leq |\varphi(x) + i\psi(x)| \\
= |(J_1(\varphi)(J(x)) + iJ_1(\psi)(J(x))| \\
= |(J_1(\varphi) + iJ_1(\psi))(J(x))| \\
\leq \|J_1(\varphi) + iJ_1(\psi)\|_\text{op} \|J(x)\| \\
\leq \|J_1(\varphi) + iJ_1(\psi)\|_\text{op} \frac{k_2}{k_1} \|x\|,
\]

\[-1\)-weak amenability of real Banach algebras 65
for all $x \in \mathfrak{X}$, we deduce that $\|\varphi\|_{op} \leq \frac{k_2}{k_1} \|J_1(\varphi) + iJ_1(\psi)\|_{op}$. Similarly, we have $\|\psi\|_{op} \leq \frac{k_2}{k_1} \|J_1(\varphi) + iJ_1(\psi)\|_{op}$. Hence,

\begin{equation}
2.4 \quad \max\{\|\varphi\|_{op}, \|\psi\|_{op}\} \leq \frac{k_2}{k_1} \|J_1(\varphi) + iJ_1(\psi)\|_{op}.
\end{equation}

Since

\[
|\langle J_1(\varphi) + iJ_1(\psi), J(x) + iJ(y) \rangle| \\
= |J_1(\varphi)J(x) + iJ(y) + iJ(\psi)(J(x) + iJ(y))| \\
= |(\varphi(x) + i\varphi(y)) + i(\psi(x) + i\psi(y))| \\
\leq |\varphi(x)| + |\varphi(y)| + |\psi(x)| + |\psi(y)| \\
\leq \|\varphi\|_{op}\|x\| + \|\varphi\|_{op}\|y\| + \|\psi\|_{op}\|x\| + \|\psi\|_{op}\|y\| \\
\leq 2\|\varphi\|_{op}\max\{\|x\|, \|y\|\} + 2\|\psi\|_{op}\max\{\|x\|, \|y\|\}
\leq 4k_1\max\{\|\varphi\|_{op}, \|\psi\|_{op}\}\]

for all $x, y \in \mathfrak{X}$, we deduce that

\begin{equation}
2.5 \quad \|J_1(\varphi) + iJ_1(\psi)\|_{op} \leq 4k_1\max\{\|\varphi\|_{op}, \|\psi\|_{op}\}.
\end{equation}

From (2.4) and (2.5) we have

\[
\max\{\|\varphi\|_{op}, \|\psi\|_{op}\} \leq \frac{k_2}{k_1} \|J_1(\varphi) + iJ_1(\psi)\|_{op} \\
\leq 4k_2\max\{\|\varphi\|_{op}, \|\psi\|_{op}\}.
\]

Hence, (v) holds. \hfill \Box

Lemma 2.3. Let $(\mathfrak{X}, \| \cdot \|)$ be a real Banach space, let $\mathfrak{X}_{\mathbb{C}}$ be a complexification of \mathfrak{X} with respect to an injective real linear map $J : \mathfrak{X} \to \mathfrak{X}_{\mathbb{C}}$, let $\| \cdot \|$ be a norm on $\mathfrak{X}_{\mathbb{C}}$ satisfying (∗) condition with positive constants k_1 and k_2 and let $(\mathfrak{X}_{\mathbb{C}})^*$ be the dual space of $(\mathfrak{X}_{\mathbb{C}}, \| \cdot \|)$. Define the map $J_2 : \mathfrak{X}^* \to (\mathfrak{X}_{\mathbb{C}})^*$ by

\begin{equation}
2.6 \quad J_2(\Phi) = \Phi_{\mathbb{C}} \quad (\Phi \in \mathfrak{X}^*).
\end{equation}

Then:

(i) $J_2(\Phi)(J_1(\varphi) + iJ_1(\psi)) = \Phi(\varphi) + i\Phi(\psi)$ for all $\Phi \in \mathfrak{X}^*$ and $\varphi, \psi \in \mathfrak{X}^*$.

(ii) J_2 is a real linear map from \mathfrak{X}^* into $(\mathfrak{X}_{\mathbb{C}})^*$.

(iii) If $\Lambda \in (\mathfrak{X}_{\mathbb{C}})^*$, then the maps $\Lambda R, \Lambda I : \mathfrak{X}^* \to \mathbb{R}$ defined by

$\Lambda R(\varphi) = \Re \Lambda(J_1(\varphi)) \quad (\varphi \in \mathfrak{X}^*)$,

$\Lambda I(\varphi) = \Im \Lambda(J_1(\varphi)) \quad (\varphi \in \mathfrak{X}^*)$,

belong to \mathfrak{X}^* and

$\Lambda = J_2(\Lambda R) + iJ_2(\Lambda I)$.

(iv) J_2 is injective and $(\mathfrak{X}_C)^{**} = J_2(\mathfrak{X}^{**}) \oplus iJ_2(\mathfrak{X}^{**})$.

(vi) $(\mathfrak{X}_C)^{**}$ is a complexification of \mathfrak{X}^{**} with respect to the map $J_2 : \mathfrak{X}^{**} \to (\mathfrak{X}_C)^{**}$ defined by (2.10) and
\[
\max\{\|\Phi\|_{op}, \|\Psi\|_{op}\} \leq 4k_1\|J_2(\Phi) + iJ_2(\Psi)\|_{op}
\]
\[
\leq 16k_2\max\{\|\Phi\|_{op}, \|\Psi\|_{op}\},
\]
for all $\Phi, \Psi \in \mathfrak{X}^{**}$.

(vi) $J_2 \circ \pi_X = \pi_{\mathfrak{X}_C} \circ J$, whenever $\pi_Y : Y \to Y^{**}$ is the natural embedding Y in Y^{**} defined by
\[
\pi_Y(y)(\lambda) = \lambda(y) \quad (y \in Y, \lambda \in Y^*)
\]

(vii) \mathfrak{X} is reflexive if and only if \mathfrak{X}_C is reflexive.

Proof. By Lemma 2.2, we deduce that the map $J_1 : \mathfrak{X}^* \to (\mathfrak{X}_C)^*$ defined by (2.10) is an injective real linear map, the complex linear space $(\mathfrak{X}_C)^*$ is a complexification of \mathfrak{X}^* with respect to J_1,
\[
\lambda = J_1(\lambda_R) + iJ_1(\lambda_I) \quad (\lambda \in (\mathfrak{X}_C)^*),
\]
\[
\max\{\|\varphi\|_{op}, \|\psi\|_{op}\} \leq \frac{k_2}{k_1}\|J_1(\varphi) + iJ_1(\psi)\|_{op}
\]
\[
\leq 4k_2\max\{\|\varphi\|_{op}, \|\psi\|_{op}\},
\]
for all $\varphi, \psi \in \mathfrak{X}^*$, and
\[
J_1(\varphi)(J(x) + iJ(y)) = \varphi(x) + i\varphi(y)
\]
for all $\varphi \in \mathfrak{X}^*$ and $x, y \in \mathfrak{X}$. Hence, by the definition of J_2, we deduce that (i), (ii), (iii), (iv) and (v) hold.

To prove (vi), suppose that $x \in \mathfrak{X}$. Then for each $\lambda \in (\mathfrak{X}_C)^*$ we have
\[
((\pi_{\mathfrak{X}_C} \circ J)(x))(\lambda) = (\pi_{\mathfrak{X}_C}(J(x)))(\lambda)
\]
\[
= (J_1(\lambda_R) + iJ_1(\lambda_I))(J(x))
\]
\[
= (J_1(\lambda_R))(J(x)) + i(J_1(\lambda_I))(J(x))
\]
\[
= \lambda_R(x) + i\lambda_I(x)
\]
\[
= \pi_X(x)(\lambda_R) + i\pi_X(x)(\lambda_I)
\]
\[
= J_2(\pi_X(x)(J_1(\lambda_R)) + iJ_2(\pi_X(x))(J_1(\lambda_I))
\]
\[
= J_2(\pi_X(x)(J_1(\lambda_R) + iJ_1(\lambda_I))
\]
\[
= (J_2 \circ \pi_X)(x)(\lambda).
\]

This implies that
\[
(2.7) \quad (\pi_{\mathfrak{X}_C} \circ J)(x) = (J_2 \circ \pi_X)(x).
\]
Since (2.7) holds for all \(x \in \mathcal{X} \), we deduce that \(\pi_{\mathcal{X}^c} \circ J = J_2 \circ \pi_{\mathcal{X}} \). Hence (vi) holds.

To prove (vii) we first assume that \(\mathcal{X} \) is reflexive. Then \(\pi_{\mathcal{X}}(\mathcal{X}) = \mathcal{X}^{**} \).

Let \(\Lambda \in (\mathcal{X}_C)^{**} \). By part (iii) we have

\[
\Lambda = J_2(\Lambda_R) + i J_2(\Lambda_I).
\]

Since \(\Lambda_R, \Lambda_I \in \mathcal{X}^{**} \), there exist \(x, y \in \mathcal{X} \) such that \(\pi_{\mathcal{X}}(x) = \Lambda_R \) and \(\pi_{\mathcal{X}}(y) = \Lambda_I \). Hence, by part (vi) we have

\[
\Lambda = J_2(\pi_{\mathcal{X}}(x)) + i J_2(\pi_{\mathcal{X}}(y)) = (J_2 \circ \pi_{\mathcal{X}})(x) + i(J_2 \circ \pi_{\mathcal{X}})(y) = (\pi_{\mathcal{X}^c} \circ J)(x) + i(\pi_{\mathcal{X}^c} \circ J)(y) = \pi_{\mathcal{X}^c}(J(x) + iJ(y)),
\]

and so \(\Lambda \in \pi_{\mathcal{X}^c}(\mathcal{X}_C) \). Therefore, \(\pi_{\mathcal{X}^c} \) is surjective and so \(\mathcal{X}_C \) is reflexive.

We now assume that \(\mathcal{X} \) is reflexive. Then \(\pi_{\mathcal{X}^c}(\mathcal{X}_C) = (\mathcal{X}_C)^{**} \). Let \(\Phi \in \mathcal{X}^{**} \). Then \(J_2(\Phi) \in (\mathcal{X}_C)^{**} \) and so there exist \(x, y \in \mathcal{X} \) such that

\[
J_2(\Phi) = \pi_{\mathcal{X}^c}(J(x) + iJ(y)).
\]

Hence, by part (vi) we have

\[
J_2(\Phi) + i J_2(0) = J_2(\Phi) = (\pi_{\mathcal{X}^c} \circ J)(x) + i(\pi_{\mathcal{X}^c} \circ J)(y) = (J_2 \circ \pi_{\mathcal{X}})(x) + i(J_2 \circ \pi_{\mathcal{X}})(y) = J_2(\pi_{\mathcal{X}}(x)) + i J_2(\pi_{\mathcal{X}}(y)).
\]

This implies that \(J_2(\Phi) = J_2(\pi_{\mathcal{X}}(x)) \) since \((\mathcal{X}_C)^{**} = J_2(\mathcal{X}^{**}) \oplus i J_2(\mathcal{X}^{**}) \).

Therefore, \(\Phi = \pi_{\mathcal{X}}(x) \) since \(J_2 \) is injective. Hence, \(\pi_{\mathcal{X}} \) is surjective and so \(\mathcal{X} \) is reflexive. Thus, (vii) holds.

\[\Box\]

Lemma 2.4. Let \((A, \| \cdot \|) \) be a real Banach algebra, let \(A_C \) be a complexification of \(A \) with respect to an injective real algebra homomorphism \(J : A \rightarrow A_C \), let \(\| \cdot \| \) be an algebra norm on \(A_C \) satisfying the (\(* \)) condition and let \((A_C)^* \) be the dual space of \((A_C, \| \cdot \|) \).

(i) If \(a \in A \) and \(\varphi \in A^* \), then

\[
J_1(a \cdot \varphi) = J(a) \cdot J_1(\varphi), \quad J_1(\varphi \cdot a) = J_1(\varphi) \cdot J(a).
\]

(ii) If \(\varphi \in A^* \) and \(\Phi \in A^{**} \), then

\[
J_1(\varphi \cdot \Phi) = J_1(\varphi) \cdot J_2(\Phi), \quad J_1(\Phi \cdot \varphi) = J_2(\Phi) \cdot J_1(\varphi).
\]

(iii) If \(\Phi, \Psi \in A^{**} \), then

\[
J_2(\Phi \square \Psi) = J_2(\Phi) \square J_2(\Psi), \quad J_2(\Phi \triangle \Psi) = J_2(\Phi) \triangle J_2(\Psi).
\]
(iv) If $\Lambda \in (A_C)^{**}$ and $\lambda \in (A_C)^*$, then

$$\Lambda \cdot \lambda = J_1(\Lambda_R \cdot \lambda_R - \Lambda_I \cdot \lambda_I) + i J_1(\Lambda_R \cdot \lambda_I + \Lambda_I \cdot \lambda_R),$$

$$\lambda \cdot \Lambda = J_1(\lambda_R \cdot \Lambda_R - \lambda_I \cdot \Lambda_I) + i J_1(\lambda_R \cdot \Lambda_I + \lambda_I \cdot \Lambda_R).$$

Proof. Let $a \in A$ and $\varphi \in A^*$. Then, by Lemma 2.3, we have

$$J_1(a \cdot \varphi)(J(b)) = (a \cdot \varphi)(b)$$

$$= \varphi(ba)$$

$$= J_1(\varphi)(ba)$$

$$= J_1(\varphi)(J(b)J(a))$$

$$= (J(a) \cdot J_1(\varphi))(J(b)),$$

for all $b \in A$. This implies that

$$J_1(a \cdot \varphi)(J(b) + iJ(c)) = J_1(a \cdot \varphi)(J(b)) + i J_1(a \cdot \varphi)(J(c))$$

$$= (J(a) \cdot J_1(\varphi))(J(b)) + i (J(a) \cdot J_1(\varphi))(J(c))$$

$$= (J(a) \cdot J_1(\varphi))(J(b) + iJ(c)),$$

for all $b,c \in A$. Hence,

$$J_1(a \cdot \varphi) = J(a) \cdot J_1(\varphi).$$

Similarly, we can show that

$$J_1(\varphi \cdot a) = J_1(\varphi) \cdot J(a).$$

Therefore, (i) holds.

Let $\varphi \in A^*$ and $\Phi \in A^{**}$. Then, by (i), we have

$$J_1(\varphi \cdot \Phi)(J(a)) = J_1(\varphi \cdot \Phi)(a)$$

$$= \Phi(a \cdot \varphi)$$

$$= J_2(\Phi)(J_1(a \cdot \varphi))$$

$$= J_2(\Phi)(J(a) \cdot J_1(\varphi))$$

$$= (J_1(\varphi \cdot \Phi))(J(a))$$

for all $a \in A$. This implies that

$$J_1(\varphi \cdot \Phi)(J(a) + iJ(b)) = J_1(\varphi \cdot \Phi)(J(a)) + i J_1(\varphi \cdot \Phi)(J(b))$$

$$= (J_1(\varphi \cdot \Phi)(J(a))$$

$$+ i(J_1(\varphi \cdot \Phi))(J(b))$$

$$= (J_1(\varphi \cdot \Phi))(J(a) + iJ(b)),$$

for all $a,b \in A$. Hence,

$$J_1(\varphi \cdot \Phi) = J_1(\varphi) \cdot J_2(\Phi).$$
Similarly, we can show that
\[J_1(\Phi \cdot \varphi) = J_2(\Phi) \cdot J_1(\varphi). \]
Therefore, (ii) holds.

Let \(\Phi, \Psi \in A^{**} \). Then, by (ii), we have
\[J_2(\Phi \square \Psi)(J_1(\varphi)) = (\Phi \square \Psi)(\varphi) = \Phi(\Psi \cdot \varphi) = J_2(\Phi)(J_1(\Psi \cdot \varphi)) = J_2(\Phi)(J_2(\Psi) \cdot J_1(\varphi)) = (J_2(\Phi) \square J_2(\Psi))(J_1(\varphi)), \]
for all \(\varphi \in A^* \). This implies that
\[J_2(\Phi \square \Psi)(J_1(\varphi) + iJ_1(\psi)) = J_2(\Phi \square \Psi)(J_1(\varphi)) + iJ_2(\Phi \square \Psi)(J_1(\psi)) = (J_2(\Phi) \square J_2(\Psi))(J_1(\varphi)) + iJ_2(\Phi) \square J_2(\Psi)(J_1(\psi)) = (J_2(\Phi) \square J_2(\Psi))(J_1(\varphi) + iJ_1(\psi)), \]
for all \(\varphi, \psi \in A^* \). Hence,
\[J_2(\Phi \square \Psi) = J_2(\Phi) \square J_2(\Psi). \]
Similarly, we can show that
\[J_2(\Phi \triangle \Psi) = J_2(\Phi) \triangle J_2(\Psi). \]
Therefore, (iii) holds.

Let \(\Lambda \in (A_C)^{**} \) and \(\lambda \in (A_C)^* \). Then by part (iii) of Lemma 2.3 and part (iii) of Lemma 2.2, we have
\[(2.8) \quad \Lambda = J_2(\Lambda_R) + iJ_2(\Lambda_I), \quad \lambda = J_1(\lambda_R) + iJ_1(\lambda_I). \]
Applying (2.8) and (ii), we get
\[
\begin{align*}
\Lambda \cdot \lambda &= (J_2(\Lambda_R) + iJ_2(\Lambda_I)) \cdot (J_1(\lambda_R) + iJ_1(\lambda_I)) \\
&= (J_2(\Lambda_R) \cdot J_1(\lambda_R) - J_2(\Lambda_I) \cdot J_1(\lambda_I)) + i(J_2(\Lambda_R) \cdot J_1(\lambda_I) + J_2(\Lambda_I) \cdot J_1(\lambda_R)) \\
&= (J_1(\Lambda_R \cdot \lambda_R) - J_1(\Lambda_I \cdot \lambda_I)) + i(J_1(\Lambda_R \cdot \lambda_I) + J_1(\Lambda_I \cdot \lambda_R)) \\
&= J_1(\Lambda_R \cdot \lambda_R - \Lambda_I \lambda_I) + iJ_1(\Lambda_R \cdot \lambda_I + \Lambda_I \cdot \lambda_R).
\end{align*}
\]
Similarly, we can show that
\[\lambda \cdot \Lambda = J_1(\lambda_R \cdot \Lambda_R - \lambda_I \cdot \Lambda_I) + iJ_1(\lambda_R \cdot \Lambda_I + \lambda_I \cdot \Lambda_R). \]
Hence, (iv) holds. \(\square \)
Theorem 2.5. Let \((A, \| \cdot \|) \) be a real Banach algebra, let \(A_C \) be a complexification of \(A \) with respect to an injective real algebra homomorphism \(J : A \rightarrow A_C \), let \(\| \cdot \| \) be an algebra norm on \(A_C \) satisfying the \((*)\) condition and let \((A_C)^* \) be the dual space of \((A_C, \| \cdot \|) \). Then \(A \) is Arens regular if and only if \(A_C \) is Arens regular.

Proof. We first assume that \(A \) is Arens regular. Then

\[
\Phi \square \Psi = \Phi \triangle \Psi,
\]

for all \(\Phi, \Psi \in A^{**} \). Let \(\Lambda, \Gamma \in (A_C)^{**} \). Then, by part (iii) of Lemma 2.9, we have \(\Lambda_R, \Lambda_I, \Gamma_R, \Gamma_I \in A^{**} \) and

\[
\Lambda = J_2(\Lambda_R) + iJ_2(\lambda_I), \quad \Gamma = J_2(\Gamma_R) + iJ_2(\Gamma_I).
\]

Since (2.10) holds for all \(\Phi, \Psi \in A^{**} \), we have

\[
\Lambda_R \square \Gamma_R = \Lambda_R \triangle \Gamma_R, \quad \Lambda_R \square \Gamma_I = \Lambda_R \triangle \Gamma_I,
\]

(2.11)

\[
\Lambda_I \square \Gamma_R = \Lambda_I \triangle \Gamma_R, \quad \Lambda_I \square \Gamma_I = \Lambda_I \triangle \Gamma_I.
\]

By Lemma 2.3 and according to (2.10) and (2.11), we get

\[
\Lambda \square \Gamma = (J_2(\Lambda_R) + iJ_2(\lambda_I)) \square (J_2(\Gamma_R) + iJ_2(\Gamma_I))
\]

\[
= (J_2(\Lambda_R) \square J_2(\Gamma_R) - J_2(\Lambda_I) \square J_2(\Gamma_I))
+ i ((J_2(\Lambda_R) \square J_2(\Gamma_I)) + (J_2(\Lambda_I) \square J_2(\Gamma_R)))
\]

\[
= (J_2(\Lambda_R \square \Gamma_R) - J_2(\Lambda_I \square \Gamma_I))
+ i (J_2(\Lambda_R \square \Gamma_I) + J_2(\Lambda_I \square \Gamma_R))
\]

\[
= (J_2(\Lambda_R \triangle \Gamma_R) - J_2(\Lambda_I \triangle \Gamma_I))
+ i (J_2(\Lambda_R \triangle \Gamma_I) + J_2(\Lambda_I \triangle \Gamma_R))
\]

\[
= (J_2(\Lambda_R \triangle \Gamma_R) - J_2(\Lambda_I \triangle \Gamma_I))
+ i (J_2(\Lambda_R \triangle \Gamma_I) + J_2(\Lambda_I \triangle \Gamma_R))
\]

\[
= (J_2(\Lambda_R \triangle \Gamma_R) - J_2(\Lambda_I \triangle \Gamma_I))
+ i (J_2(\Lambda_R \triangle \Gamma_I) + J_2(\Lambda_I \triangle \Gamma_R))
\]

\[
\triangle \Lambda \Gamma.
\]

Therefore, \((A_C)^{**} \) is Arens regular.

We now assume that \(A_C \) is Arens regular. Then

\[
\Lambda \square \Gamma = \Lambda \triangle \Gamma,
\]

for all \(\Lambda, \Gamma \in (A_C)^{**} \). Let \(\Phi, \Psi \in A^{**} \). Then, by Lemma 2.3, we have \(J_2(\Phi), J_2(\Psi) \in (A_C)^{**} \) and so by (2.12) we have

\[
J_2(\Phi) \square J_2(\Psi) = J_2(\Phi) \triangle J_2(\Psi).
\]

Moreover,

\[
J_2(\Phi \square \Psi) = J_2(\Phi) \square J_2(\Psi), \quad J_2(\Phi) \triangle J_2(\Psi) = J_2(\Phi \triangle \Psi),
\]
We prove the result for the first Arens product \((2.16)\) and \((2.17)\) we get \(J_2(\Phi \square \Psi) = J_2(\Phi \triangle \Psi)\). This implies that \(\Phi \square \Psi = \Phi \triangle \Psi\), since \(J_2\) is injective. Therefore, \(A\) is Arens regular. \(\square\)

Theorem 2.6. Let \((A, \| \cdot \|)\) be a real Banach algebra, let \(A_C\) be a complexification of \(A\) with respect to an injective real algebra homomorphism \(J: A \to A_C\), let \(\| \cdot \|\) be an algebra norm on \(A_C\) satisfying the \((*)\) condition and let \((A_C)^*\) be the dual space of \((A_C, \| \cdot \|)\). Then \(A^*\) is a real Banach \(A^{**}\)-module if and only if \((A_C)^*\) is a complex Banach \((A_C)^{**}\)-module.

Proof. We prove the result for the first Arens product \(\square\) on \(A^{**}\) and \((A_C)^{**}\). Similarly, one can show that the result hold for the second Arens product \(\triangle\) on \(A^{**}\) and \((A_C)^{**}\).

We first assume that \(A^*\) is a real Banach \(A^{**}\)-module. Then

\[
(\Phi \cdot \varphi) \cdot \Psi = \Phi \cdot (\varphi \cdot \Psi),
\]

and

\[
\varphi \cdot (\Phi \square \Psi) = (\varphi \cdot \Phi) \cdot \Psi,
\]

\[
\Phi \square (\varphi \Psi) = \Phi \cdot (\varphi \cdot \Psi),
\]

for all \((\varphi, \Phi, \Psi) \in A^* \times A^{**} \times A^{**}\). Let \((\Lambda, \lambda, \Gamma) \in (A_C)^{**} \times (A_C)^* \times (A_C)^{**}\). Then \(\Lambda R_1, \Lambda I, \Gamma R, \Gamma I \in A^{**}\). Applying part (iv) of Lemma 2.4 and (2.15), we get

\[
(\Lambda \cdot \lambda) \cdot \Gamma
\]

\[
= (J_1(\Lambda R \cdot \lambda R - \Lambda I \cdot \lambda I) + iJ_1(\Lambda R \cdot \lambda I + \Lambda I \cdot \lambda R)) \cdot \Gamma
\]

\[
= J_1((\Lambda R \cdot \lambda R - \Lambda I \cdot \lambda I) \cdot \Gamma R - (\Lambda R \cdot \lambda I + \Lambda I \cdot \lambda R) \cdot \Gamma I)
\]

\[
+ iJ_1((\Lambda R \cdot \lambda R - \Lambda I \cdot \lambda I) \cdot \Gamma I + (\Lambda R \cdot \lambda I + \Lambda I \cdot \lambda R) \cdot \Gamma R)
\]

\[
= J_1(\Lambda R \cdot (\lambda R \cdot \Gamma R) - \Lambda I \cdot (\lambda I \cdot \Gamma R) - \Lambda R \cdot (\lambda I \cdot \Gamma I) - \Lambda I \cdot (\lambda R \cdot \Gamma I))
\]

\[+ iJ_1(\Lambda R \cdot (\lambda R \cdot \Gamma I) - \Lambda I \cdot (\lambda I \cdot \Gamma I) + \Lambda R \cdot (\lambda I \cdot \Gamma R) + \Lambda I \cdot (\lambda R \cdot \Gamma R))
\]

\[
= \Lambda \cdot (J_1(\lambda R \cdot \Gamma R - \lambda I \cdot \lambda I) + iJ_1(\lambda R \cdot \Gamma I + \lambda I \cdot \Gamma R))
\]

\[
= \Lambda \cdot (\lambda \cdot \Gamma)\]

Applying part (ii) of Lemma 2.4 and (2.16), we get

\[
\lambda \cdot (\lambda \cdot \Gamma)
\]

\[
= (J_1(\lambda R) + iJ_1(\lambda I))\]
\[J(\Lambda_{R} \Gamma R - \Lambda_{I} \Gamma I) + iJ(\Lambda_{I} \Gamma R - \Lambda_{R} \Gamma I) \]
\[= J_{2}(\Lambda_{R} \Gamma R - \Lambda_{I} \Gamma I) - \lambda_{I} \Lambda \cdot (\Lambda_{I} \Gamma R - \Lambda_{R} \Gamma I) \]
\[+ iJ(\Lambda_{R} \Gamma R - \Lambda_{I} \Gamma I) \]
\[= J_{1}(\lambda_{R} \cdot (\Lambda_{R} \Gamma R - \Lambda_{I} \Gamma I) - \lambda_{I} \cdot (\Lambda_{I} \Gamma R - \Lambda_{R} \Gamma I)) \]
\[+ iJ_{1}(\lambda_{R} \cdot (\Lambda_{R} \Gamma R - \Lambda_{I} \Gamma I) + \lambda_{I} \cdot (\Lambda_{I} \Gamma R - \Lambda_{R} \Gamma I)) \]
\[+ iJ_{1}(\lambda_{R} \cdot (\Lambda_{R} \Gamma R - \Lambda_{I} \Gamma I) - \lambda_{I} \cdot (\Lambda_{I} \Gamma R - \Lambda_{R} \Gamma I)) \]
\[= J_{1}(\lambda_{R} \cdot (\Lambda_{R} \Gamma R - \Lambda_{I} \Gamma I) + \lambda_{R} \cdot (\Lambda_{I} \Gamma R - \Lambda_{I} \Gamma I) + \lambda_{I} \cdot (\Lambda_{I} \Gamma R - \Lambda_{I} \Gamma I)) \]
\[+ iJ_{1}(\lambda_{R} \cdot (\Lambda_{R} \Gamma R - \Lambda_{I} \Gamma I) - \lambda_{I} \cdot (\Lambda_{I} \Gamma R - \Lambda_{I} \Gamma I)) \]
\[= J_{1}(\lambda_{R} \cdot (\Lambda_{R} \Gamma R - \Lambda_{I} \Gamma I) + \lambda_{R} \cdot (\Lambda_{I} \Gamma R - \Lambda_{I} \Gamma I) + \lambda_{I} \cdot (\Lambda_{I} \Gamma R - \Lambda_{I} \Gamma I)) \]
\[\cdot (J_{2}(\Gamma R) + iJ_{2}(\Gamma I)) \]
\[= (\lambda \cdot \Lambda) \cdot \Gamma. \]

Similarly, applying part (ii) of Lemma 2.17 and (2.19) we get
\[(\Lambda \square \Gamma) \cdot \lambda = \Lambda \cdot (\Gamma \cdot \lambda). \]

Therefore, \((A_{C})^{\ast}\) is a complex Banach \((\Lambda_{C})^{\ast\ast}\)-module.

We now assume that \((A_{C})^{\ast}\) is a complex Banach \((\Lambda_{C})^{\ast\ast}\)-module. Then
\[(2.18) \quad (\Lambda \cdot \lambda) \cdot \Gamma = \Lambda \cdot (\lambda \cdot \Gamma), \]
\[(2.19) \quad \lambda \cdot (\Lambda \square \Gamma) = (\lambda \cdot \Lambda) \cdot \Gamma, \]
\[(2.20) \quad (\Lambda \square \Gamma) \cdot \lambda = \Lambda \cdot (\Gamma \cdot \lambda), \]
for all \((\Lambda, \lambda, \Gamma) \in (A_{C})^{\ast\ast} \times (A_{C})^{\ast} \times (A_{C})^{\ast}\). Let \((\Phi, \varphi, \Psi) \in A^{\ast\ast} \times A^{\ast} \times A^{\ast}\). Then \((J_{2}(\Phi), J_{1}(\varphi), J_{2}(\Psi)) \in (A_{C})^{\ast\ast} \times (A_{C})^{\ast} \times (A_{C})^{\ast}\). By (2.18), we have
\[(2.21) \quad (J_{2}(\Phi) \cdot J_{1}(\varphi)) \cdot J_{2}(\Psi) = J_{2}(\Phi) \cdot (J_{1}(\varphi) \cdot J_{2}(\Psi)). \]

Applying part (ii) of Lemma 2.17 and (2.21), we get
\[J_{1}((\Phi \cdot \varphi) \cdot \Psi) = J_{1}(\Phi \cdot \varphi) \cdot J_{2}(\Psi) \]
\[= J_{2}(\Phi) \cdot J_{1}(\varphi) \cdot J_{2}(\Psi). \]

This implies that \((\Phi \cdot \varphi) \cdot \Psi = \Phi \cdot (\varphi \cdot \Psi)\), since \(J_{1}\) is injective.

By (2.19), we have
\[(2.22) \quad J_{1}(\varphi) \cdot (J_{2}(\Phi) \cdot J_{2}(\Psi)) = (J_{1}(\varphi) \cdot J_{2}(\Phi)) \cdot J_{2}(\Psi). \]
Applying part (iii) of Lemma 2.6 and (2.7), we get
\[
J_1(\varphi \cdot (\Phi \square \Psi)) = J_1(\varphi) \cdot J_2(\Phi \square \Psi)
\]
\[
= J_1(\varphi) \cdot (J_2(\Phi) \square J_2(\Psi))
\]
\[
= (J_1(\varphi) \cdot J_2(\Phi)) \cdot J_2(\Psi)
\]
\[
= J_1(\varphi \cdot \Phi) \cdot J_2(\Psi).
\]
This implies that \(\varphi \cdot (\Phi \square \Psi) = (\varphi \cdot \Phi) \cdot \Psi\), since \(J_1\) is injective. Similarly, we can show that
\[
(\Phi \square \Psi) \cdot \varphi = \Phi \cdot (\Psi \cdot \varphi).
\]
Therefore, \(A^*\) is a real Banach \(A^{**}\)-module. \(\square\)

Applying Theorem 2.5 and [11, Example 2], we give an example of a real Banach algebra \(A\) for which \(A^\ast\) is not a real Banach \(A^{**}\)-module.

Example 2.7. Let \(Z\) be the set of all integer numbers and \(l^1(Z)\) denote the complex Banach algebra consisting of all sequence \(\{a_n\}_{n=-\infty}^{\infty}\) in \(\mathbb{C}\) for which \(\sum_{n=-\infty}^{\infty} |a_n| < \infty\) with convolution product \(*\) defined by
\[
a \ast b = \{c_n\}_{n=-\infty}^{\infty}, \quad a = \{a_n\}_{n=-\infty}^{\infty}, b = \{b_n\}_{n=-\infty}^{\infty} \in l^1(Z),
\]
where \(c_n = \sum_{j=-\infty}^{\infty} a_{n-j}b_j\) for all \(n \in Z\) and with the \(l^1\)-norm \(\| \cdot \|_1\) defined by
\[
\|a\|_1 = \sum_{n=-\infty}^{\infty} |a_n|, \quad a = \{a_n\}_{n=-\infty}^{\infty} \in l^1(Z).
\]
It is shown [11, Example 2] that \((l^1(Z))^\ast\) is not a complex Banach \((l^1(Z))^{**}\)-module.

Let \(\tau : Z \rightarrow Z\) be a bijection additive map. Define
\[
l^1(Z, \tau) = \{ \{a_n\}_{n=-\infty}^{\infty} \in l^1(Z) : a_{\tau(n)} = \overline{a_n} \ (n \in Z) \}.
\]
It is easy to see that \(l^1(Z, \tau)\) is a real closed subalgebra of \(l^1(Z)\) and
\[
l^1(Z) = l^1(Z, \tau) \oplus il^1(Z, \tau).
\]
Hence, \(l^1(Z, \tau)\) is a real Banach algebra with the algebra norm \(\| \cdot \|_1\) and \(l^1(Z)\) is the complexification of \(l^1(Z, \tau)\) with respect to the injective real algebra homomorphism \(J : l^1(Z, \tau) \rightarrow l^1(Z)\) defined by
\[
J(a) = a, \quad a = \{a_n\}_{n=-\infty}^{\infty} \in l^1(Z, \tau).
\]
Since \(\|a - ib\|_1 = \|a + ib\|_1\) for all \(a = \{a_n\}_{n=-\infty}^{\infty}, b = \{b_n\}_{n=-\infty}^{\infty} \in l^1(Z, \tau)\), we deduce that
\[
\max\{\|a\|_1, \|b\|_1\} \leq \|a + ib\|_1 \leq 2 \max\{\|a\|_1, \|b\|_1\}
\]
for all \(a = \{a_n\}_{n=-\infty}^{\infty}, b = \{b_n\}_{n=-\infty}^{\infty} \in l^1(\mathbb{Z}, \tau) \). Therefore, \((l^1(\mathbb{Z}, \tau))^*\) is not a real Banach \((l^1(\mathbb{Z}, \tau))^*)\)-module by Theorem 2.10.

Note that the map \(\tau: \mathbb{Z} \rightarrow \mathbb{Z} \) is a bijection additive map if and only if either \(\tau(n) = n \) for all \(n \in \mathbb{Z} \) or \(\tau(n) = -n \) for all \(n \in \mathbb{Z} \).

We now discuss the relationship between the \((-1)\)-weak amenability of \(A^{**} \) and \((-1)\)-weak amenability of \((A_C)^{**}\). For this purpose we need the following lemma.

Lemma 2.8. Let \((A, \| \cdot \|)\) be a real Banach algebra, let \(A_C \) be a complexification of \(A \) with respect to an injective real algebra homomorphism \(J: A \rightarrow A_C \), let \(\| \cdot \| \) be an algebra norm on \(A_C \) satisfying (*) condition and let \((A_C)^{**}\) be the second dual of \((A_C, \| \cdot \|)\). Suppose that \(A^* \) is a real Banach \(A^{**}\)-module. Then:

(i) If \(d \in Z^1_{\mathbb{R}}(A^{**}, A^*) \) and \(\Phi \in A^{**} \), then \(J_1(d(\Phi)) \in (A_C)^* \).

(ii) If \(d \in Z^1_{\mathbb{R}}(A^{**}, A^*) \) then \(\Delta_d \in Z^1_{\mathbb{R}}((A_C)^{**}, (A_C)^*) \), where the map \(\Delta_d: (A_C)^{**} \rightarrow (A_C)^* \) is defined by

\[
\Delta_d(J_2(\Phi) + iJ_2(\Psi)) = J_1(d(\Phi)) + iJ_1(d(\Psi)), \quad \Phi, \Psi \in A^{**}.
\]

(iii) The map \(J_Z: Z^1_{\mathbb{R}}(A^{**}, A^*) \rightarrow Z^1_{\mathbb{R}}((A_C)^{**}, (A_C)^*) \) defined by

\[
J_Z(d) = \Delta_d, \quad d \in Z^1_{\mathbb{R}}(A^{**}, A^*)
\]

is an injective real linear map.

(iv) The complex linear space \(Z^1_{\mathbb{R}}((A_C)^{**}, (A_C)^*) \) is a complexification of the real linear space \(Z^1_{\mathbb{R}}(A^{**}, A^*) \) with respect to the injective linear map \(J_Z \).

(v) If \(\varphi \in A^* \), then \(J_Z(\delta_{\varphi}) = \delta_{J_1(\varphi)} \).

(vi) If \(\lambda \in (A_C)^* \), then \(\delta_{\lambda} = J_Z(\delta_{\lambda_R}) + iJ_Z(\delta_{\lambda_I}) \).

(vii) \(H^1_{\mathbb{R}}(A^{**}, A^*) = \{0\} \) if and only if \(H^1_{\mathbb{R}}((A_C)^{**}, (A_C)^*) = \{0\} \).

Proof. Let \(d \in Z^1_{\mathbb{R}}(A^{**}, A^*) \) and \(\Phi \in A^{**} \). Then \(d(\Phi) \in A^* \) and so \(J_1(d(\Phi)) \in (A_C)^* \) by Lemma 2.2. Hence, (i) holds.

Let \(d \in Z^1_{\mathbb{R}}(A^{**}, A^*) \) and define \(\Delta_d: (A_C)^{**} \rightarrow (A_C)^* \) by (2.23). Then \(\Delta_d \) is well-defined by (i). It is easy to see that \(\Delta_d \) is a complex linear map from \((A_C)^{**}\) to \((A_C)^*\). Since \(\| \cdot \| \) be an algebra norm on \(A_C \) satisfying (*) condition, there exist positive constants \(k_1 \) and \(k_2 \) such that

\[
\max\{|a|, |b|\} \leq k_1 \|J(a) + iJ(b)\| \leq k_2 \max\{|a|, |b|\}
\]

for all \(a, b \in A \). Applying part (v) of Lemma 2.2 and part (v) of Lemma 2.3, we get

\[
\|\Delta_d(J_2(\Phi) + iJ_2(\Psi))\|_{op} = \|J_1(d(\Phi) + iJ_1(d(\Psi)))\|_{op} \\
\leq 4k_1 \max\{\|d(\Phi)\|_{op}, \|d(\Psi)\|_{op}\} \\
\leq 4k_1 \|d\|_{op} \max\{\|\Phi\|_{op}, \|\Psi\|_{op}\}
\]
for all $\Phi, \Psi \in A^{**}$. Therefore, Δ_d is a bounded complex linear operator and

$$
\|\Delta_d\|_{op} \leq 16k_1^2\|d\|_{op}.
$$

By Theorem 2.1, $(A_C)^*$ is complex Banach $(A_C)^{**}$-module. Since $d \in Z_{\mathbb{R}}^1(A^{**}, A^*)$, by Lemma 2.3, for all $\Phi, \Psi \in A^{**}$ we have

$$
\Delta_d(J_2(\Phi)\Box J_2(\Psi)) = \Delta_d(J_2(\Phi \Box \Psi))
$$

This implies that for all $\Phi, \Psi, \Phi', \Psi' \in A^{**}$ we have

$$
\Delta_d(J_2(\Phi) + iJ_2(\Psi)) \Box (J_2(\Phi') + iJ_2(\Psi'))
$$

$$
= \Delta_d(J_2(\Phi)\Box J_2(\Psi')) - (J_2(\Phi)\Box J_2(\Psi'))
$$

$$
+ i((J_2(\Phi)\Box J_2(\Psi')) + (J_2(\Psi)\Box J_2(\Phi')))
$$

$$
= \Delta_d(J_2(\Phi)\Box J_2(\Psi')) - i\Delta_d(J_2(\Psi)\Box J_2(\Phi'))
$$

$$
+ i\Delta_d(J_2(\Phi)\Box J_2(\Psi')) + i\Delta_d(J_2(\Psi)\Box J_2(\Phi'))
$$

$$
= \Delta_d(J_2(\Phi)) \cdot J_2(\Phi') + J_2(\Phi) \cdot \Delta_d(J_2(\Phi'))
$$

$$
- \Delta_d(J_2(\Psi)) \cdot J_2(\Psi') - J_2(\Psi) \cdot \Delta_d(J_2(\Psi'))
$$

$$
+ i(\Delta_d(J_2(\Phi)) \cdot J_2(\Psi') + J_2(\Phi) \cdot \Delta_d(J_2(\Psi')))
$$

$$
+ i(\Delta_d(J_2(\Psi)) \cdot J_2(\Phi') + J_2(\Psi) \cdot \Delta_d(J_2(\Phi')))
$$

$$
= \Delta_d(J_2(\Phi)) + i\Delta_d(J_2(\Psi)) \cdot (J_2(\Phi') + iJ_2(\Psi'))
$$

$$
+ (J_2(\Phi) + iJ_2(\Psi)) \cdot (\Delta_d(J_2(\Phi')) + i\Delta_d(J_2(\Psi')))
$$

$$
= \Delta_d(J_2(\Phi) + iJ_2(\Psi)) \cdot (J_2(\Phi') + iJ_2(\Psi'))
$$

Therefore, $\Delta_d \in Z_{\mathbb{R}}^1((A_C)^{**}, (A_C)^*)$. Hence, (ii) holds.

It is clear that the map $J_Z : Z_{\mathbb{R}}^1(A^{**}, A^*) \rightarrow Z_{\mathbb{R}}^1((A_C)^{**}, (A_C)^*)$, defined by (2.3), is a real linear map. Let $d \in Z_{\mathbb{R}}^1(A^{**}, A^*)$ and $J_Z(d) = 0$. Then $\Delta_d = 0$ and so for each $\Phi \in A^{**}$ we have

$$
0 = \Delta_d(J_2(\Phi)) = J_1(d(\Phi)).
$$
This implies that $d(\Phi) = 0$ for all $\Phi \in A^{**}$, since J_1 is injective. Hence, $d = 0$ and so J_Z is injective.

Assume that $D \in Z^1_{(A_C)^*}(A_C)^*$. Define the maps $D_R, D_I : A^{**} \rightarrow A^*$ by

\begin{align*}
D_R(\Phi) &= (D(J_2(\Phi)))_R, \quad (\Phi \in A^{**}), \\
D_I(\Phi) &= (D(J_2(\Phi)))_I, \quad (\Phi \in A^{**}).
\end{align*}

By Lemma 2.1, D_R is well-defined. It is easy to see that D_R is a real linear map from A^{**} to A^*. Applying part (iii) of Lemma 2.1 and part (v) of Lemma 2.3, we have

$$\|D_R(\Phi)\|_\circ \leq \frac{k_2}{k_1} \|D(J_2(\Phi))\|_\circ \leq \frac{k_2}{k_1} \|D\|_\circ \|J_2(\Phi)\|_\circ \leq \frac{k_2}{k_1} \|D\|_\circ \frac{4k_2}{k_1} \|\Phi\|_\circ = \frac{4k_2^2}{k_1} \|D\|_\circ \|\Phi\|_\circ$$

for all $\Phi \in A^{**}$. Hence, D_R is a bounded real linear operator and

$$\|D_R\|_\circ \leq \frac{4k_2^2}{k_1} \|D\|_\circ.$$

On the other hand, for all $\Phi, \Psi \in A^{**}$ we have

\begin{align*}
D_R(\Phi \square \Psi) &= (D(J_2(\Phi \square \Psi)))_R \\
&= (D(J_2(\Phi) \square J_2(\Psi)))_R \\
&= (D(J_2(\Phi)) \cdot J_2(\Psi) + J_2(\Phi) \cdot D(J_2(\Psi)))_R \\
&= (D(J_2(\Phi)) \cdot J_2(\Psi))_R + (J_2(\Phi) \cdot D(J_2(\Psi)))_R \\
&= (D(J_2(\Phi)))_R \cdot \Phi + \Phi \cdot D(J_2(\Psi))_R \\
&= D_R(\Phi) \cdot \Psi + \Phi \cdot D_R(\Psi).
\end{align*}

Therefore, D_R is a real A^*-derivation on A^{**} and so $D_R \in Z^1_{(A^*)}(A^{**}, A^*)$.

Similarly, we can show that $D_I \in Z^1_{(A^*)}(A^{**}, A^*)$.

Now we show that

\begin{equation}
D = J_Z(D_R) + iJ_Z(D_I).
\end{equation}

Let $\Phi \in A^{**}$. For each $a \in A$ we have

\begin{align*}
D(J_2(\Phi))(J(a)) &= \text{Re} D(J_2(\Phi))(J(a)) + i\text{Im} D(J_2(\Phi))(J(a)) \\
&= D_R(\Phi)(a) + iD_I(\Phi)(a)
\end{align*}
\[J_1(D_R(\Phi))(J(a)) + iJ_1(D_I(\Phi))(J(a)) \]
\[= (J_1(D_R(\Phi)) + iJ_1(D_I(\Phi)))(J(a)) \]
\[= (J_Z(D_R)(J_2(\Phi)) + iJ_Z(D_I)(J_2(\Phi)))(J(a)) \]
\[= ((J_Z(D_R) + iJ_Z(D_I))(J_2(\Phi)))(J(a)). \]

This implies that

\[(2.28) \quad D(J_2(\Phi)) = (J_Z(D_R) + iJ_Z(D_I))(J_2(\Phi)), \]

since \(D(J_2(\Phi)) \) and \((J_Z(D_R) + iJ_Z(D_I))(J_2(\Phi))\) are complex linear mappings from \(A_C \) to \(\mathbb{C} \). Since \(D \) and \(J_Z(D_R) + iJ_Z(D_I) \) are complex linear mappings from \((A_C)^*\) to \((A_C)^*\) and \((2.28)\) holds for each \(\Phi \in A^{**} \), we deduce that

\[D(J_2(\Phi) + iJ_2(\Psi)) = (J_Z(D_R) + iJ_Z(D_I))(J_2(\Phi) + iJ_2(\Psi)) \]

for all \(\Phi, \Psi \in A^{**} \). Hence, \((2.27)\) holds. Since \((2.27)\) holds for all \(D \in Z^1_C((A_C)^*, (A_C)^*) \), we have

\[(2.29) \quad Z^1_C((A_C)^*, (A_C)^*) = J_Z(Z^1_R(A^{**}, A^*)) + iJ_Z(Z^1_R(A^{**}, A^*)). \]

Let \(D \in J_Z(Z^1_R(A^{**}, A^*)) \cap iJ_Z(Z^1_R(A^{**}, A^*)) \). Then there exist two functions \(d_1, d_2 \in Z^1_R(A^{**}, A^*) \) such that \(D = J_Z(d_1) = iJ_Z(d_2) \). Hence, for each \(\Phi \in A^{**} \) we have

\[J_1(d_1(\Phi)) = (J_Z(d_1))(J_2(\Phi)) \]
\[= (iJ_Z(d_2))(J_2(\Phi)) \]
\[= iJ_1(d_2(\Phi)), \]

and so \(J_1(d_1(\Phi)) = 0 \), since \(J_1(A^*) \cap iJ_1(A^*) = \{0\} \). This implies that \(d_1(\Phi) = 0 \) for all \(\Phi \in A^{**} \), since \(J_1 \) is injective. Hence, \(d_1 = 0 \) and so \(D = J_Z(d_1) = 0 \). Therefore,

\[(2.30) \quad J_Z(Z^1_R(A^{**}, A^*)) \cap iJ_Z(Z^1_R(A^{**}, A^*)) = \{0\}. \]

From \((2.29)\) and \((2.30)\) we obtain

\[Z^1_C((A_C)^*, (A_C)^*) = J_Z(Z^1_R(A^{**}, A^*)) \oplus iJ_Z(Z^1_R(A^{**}, A^*)). \]

Therefore, \((iv)\) holds.

Let \(\varphi \in A^* \). Since

\[J_Z(\delta_\varphi)(J_2(\Phi) + iJ_2(\Psi)) = J_1(\delta_\varphi(\Phi)) + iJ_1(\delta_\varphi(\Psi)) \]
\[= J_1(\Phi \cdot \varphi - \varphi \cdot \Phi) + iJ_1(\Psi \cdot \varphi - \varphi \cdot \Psi) \]
\[= (J_1(\Phi \cdot \varphi) - J_1(\varphi \cdot \Phi)) \]
\[+ i(J_1(\Psi \cdot \varphi) - J_1(\varphi \cdot \Psi)) \]
\[= (J_2(\Phi) \cdot J_1(\varphi) - J_1(\varphi) \cdot J_2(\Phi)). \]
for all \(\Phi, \Psi \in A^{**} \), we deduce that \(J_Z(\delta_{\varphi}) = \delta_{J_1(\varphi)} \). Hence (v) holds.

Let \(\lambda \in (A_C)^* \). By parts (ii) and (iii) of Lemma 2.1 and part (iii) of Lemma 2.2, we have

\[
(2.31) \quad \lambda = J_1(\lambda_R) + iJ_1(\lambda_I).
\]

Since \(J_Z(\delta_{\lambda_R}), \delta_{J_1(\lambda_R)} \in Z_C^1((A_C)^**, (A_C)^*) \) and

\[
J_Z(\delta_{\lambda_R})(J_2(\Phi)) = J_1(\delta_{\lambda_R}(\Phi))
\]

\[
= J_1(\Phi \cdot \lambda_R - \lambda_R \cdot \Phi)
\]

\[
= J_1(\Phi \cdot \lambda_R) - J_1(\lambda_R \cdot \Phi)
\]

\[
= J_2(\Phi) \cdot J_1(\lambda_R) - J_1(\lambda_R) \cdot J_2(\Phi)
\]

\[
= \delta_{J_1(\lambda_R)}(J_2(\Phi))
\]

for all \(\Phi \in A^{**} \), we conclude that

\[
J_Z(\delta_{\lambda_R})(J_2(\Phi) + iJ_2(\Psi)) = \delta_{J_1(\lambda_R)}(J_2(\Phi) + iJ_2(\Psi))
\]

for all \(\Phi, \Psi \in A^{**} \). Hence,

\[
(2.32) \quad J_Z(\delta_{\lambda_R}) = \delta_{J_1(\lambda_R)}.
\]

Similar to the argument above we can obtain

\[
(2.33) \quad J_Z(\delta_{\lambda_I}) = \delta_{J_1(\lambda_I)}.
\]

Applying (2.32), (2.33) and (2.31), we get

\[
J_Z(\delta_{\lambda_R}) + iJ_Z(\delta_{\lambda_I}) = \delta_{J_1(\lambda_R) + iJ_1(\lambda_I)}
\]

\[
= \delta_{J_1(\lambda_R) + iJ_1(\lambda_I)}
\]

\[
= \delta_{\lambda}.
\]

Hence, (vi) holds.

To prove (vii), we first assume that

\[
(2.34) \quad H_{\xi}^1(A^{**}, A^*) = \{0\}.
\]

Let \(D \in Z_C^1((A_C)^**, (A_C)^*) \). By (iv), there exist unique elements \(d, d' \in Z^1_{\mathbb{R}}(A^{**}, A^*) \) such that

\[
(2.35) \quad D = J_Z(d) + iJ_Z(d').
\]

By (2.34), there exist \(\varphi, \varphi' \in A^* \) such that

\[
(2.36) \quad d = \delta_{\varphi}, \quad d' = \delta_{\varphi'}.
\]
Set $\lambda = J_1(\varphi) + iJ_1(\varphi')$. Then $\lambda \in (A_C)^*$ and
\begin{equation}
\varphi = \lambda_R, \quad \varphi' = \lambda_I.
\end{equation}
From (2.38), (2.39) and (2.40) we obtain
\begin{equation}
D = J_Z(\delta_{\lambda_R}) + iJ_Z(\delta_{\lambda_I}).
\end{equation}
Since $\lambda \in (A_C)^*$, we deduce that
\begin{equation}
\delta_{\lambda} = J_Z(\delta_{\lambda_R}) + iJ_Z(\delta_{\lambda_I}),
\end{equation}
by (vi). From (2.38) and (2.39), we have $D = \delta_{\lambda}$ and so
\begin{equation*}
H^1_c((A_C)^*, (A_C)^*) = \{0\}.
\end{equation*}
We now assume that
\begin{equation}
H^1_c((A_C)^*, (A_C)^*) = \{0\}.
\end{equation}
Let $d \in Z^1_c(A^{**}, A^*)$. Then $J_Z(d) \in Z^1_c((A_C)^*, (A_C)^*)$. By (2.40), there exists $\lambda \in (A_C)^*$ such that $J_Z(d) = \delta_{\lambda}$, and so by (vi) we have
\begin{equation}
J_Z(d) + iJ_Z(0) = J_Z(d) = J_Z(\delta_{\lambda_R}) + iJ_Z(\delta_{\lambda_I}).
\end{equation}
Applying (2.41) and (iv), we deduce that $J_Z(d) = J_Z(\delta_{\lambda_R})$ and so $d = \delta_{\lambda_R}$, since J_Z is injective. Therefore, $H^1_R(A^{**}, A^*) = \{0\}$ and so (vii) holds.

Theorem 2.9. Let $(A, \| \cdot \|)$ be a real Banach algebra, let A_C be a complexification of A with respect to an injective real algebra homomorphism $J : A \to A_C$, let $\| \cdot \|$ be an algebra norm on A_C satisfying the (*) condition, and let $(A_C)^*$ be the dual space of $(A_C, \| \cdot \|)$. Then A^{**} is (-1)-weakly amenable if and only if $(A_C)^*$ is (-1)-weakly amenable.

Proof. We first assume that A^{**} is (-1)-weakly amenable. Then A^* is a real Banach A^{**}-module and $H^1_c((A_C)^*, A^*) = \{0\}$. Hence, $(A_C)^*$ is a complex Banach $(A_C)^{**}$-module by Theorem 2.3 and $H^1_c((A_C)^{**}, (A_C)^*) = \{0\}$ by part (vii) of Lemma 2.8. Therefore, $(A_C)^{**}$ is (-1)-weakly amenable.

We now assume that $(A_C)^{**}$ is (-1)-weakly amenable. Then $(A_C)^*$ is a complex Banach $(A_C)^{**}$-module and $H^1_c((A_C)^{**}, (A_C)^*) = \{0\}$. Hence, A^* is a real Banach A^{**}-module by Theorem 2.4 and so we conclude that $H^1_c(A^{**}, A^*) = \{0\}$ by part (vii) of Lemma 2.8. Therefore, A^{**} is (-1)-weakly amenable.

Here, as applications of Theorem 2.9, we give some examples of real Banach algebras which their second duals of some them are and of others are not (-1)-weakly amenable.
Example 2.10. Let $A = \mathbb{R}$ with the zero multiplication. Then A is a real Banach algebra with the Euclidean norm $| \cdot |$. Set $A_C = \mathbb{C}$ with the zero multiplication. Clearly, A_C is a complex Banach algebra with Euclidean norm $| \cdot |$ and $A_C = A + iA$. Hence, A_C is a complexification of A with respect to the injective real algebra homomorphism $J : A \to A_C$ defined by $J(a) = a + (a \in \mathbb{R})$. Moreover,

$$\max\{|a|, |b|\} \leq |a + ib| \leq 2 \max\{|a|, |b|\},$$

for all $a, b \in A$. It is known [11, Example 2.2] that $(A_C)^{**}$ is not (-1)-weakly amenable. Therefore, A^{**} is not (-1)-weakly amenable by Theorem 2.3.

Example 2.11. Let S be a discrete semigroup. We denote by $l^1(S)$ the set of all complex-valued functions f on S for which $\sum_{s \in S} |f(s)| < \infty$. Then $l^1(S)$ is a self-adjoint complex Banach algebra with the convolution product \ast defined by

$$(f \ast g)(r) = \sum_{s,t \in S, s \ast t = r} f(s)g(t), \quad f, g \in l^1(S),$$

and with the algebra norm $\| \cdot \|_1$ defined by

$$\|f\|_1 = \sum_{s \in S} |f(s)|, \quad f \in l^1(S).$$

Let $\tau : S \to S$ be a self-map of S satisfying $\tau(st) = \tau(s)\tau(t)$ for all $s, t \in S$ and $\tau(\tau(s)) = s$ for all $s \in S$. It is easy to see $\tilde{f} \circ \tau \in l^1(S)$ for all $f \in l^1(S)$. Define

$$l^1(S, \tau) = \{f \in l^1(S) : \tilde{f} \circ \tau = f\}.$$

Then $l^1(S, \tau)$ is a real closed subalgebra of $l^1(S)$ and

$$l^1(S) = l^1(S, \tau) \oplus il^1(S, \tau).$$

Hence, $l^1(S)$ is the complexification of $l^1(S, \tau)$ with respect to the injective real algebra homomorphism $J : l^1(S, \tau) \to l^1(S)$ defined by $J(f) = f$ (if $f \in l^1(S, \tau)$). Since $\|f - ig\|_1 = \|f + ig\|_1$ for all $f, g \in l^1(S, \tau)$, we deduce that

$$\max\{|f|_1, |g|_1\} \leq |f + ig|_1 \leq 2 \max\{|f|_1, |g|_1\},$$

for all $f, g \in l^1(S, \tau)$. It is known [11, Example 2.3] that if $S^2 \neq S$ then $(l^1(S))^\ast\ast$ is not (-1)-weakly amenable. Therefore, if $S^2 \neq S$ then $(l^1(S, \tau))^\ast\ast$ is not (-1)-weakly amenable by Theorem 2.3.

Example 2.12. Let $N^{<\omega} = \cup_{k \in N} N^k$ and let P be the set of all elements $p = (p_1, \ldots, p_k) \in N^{<\omega}$ such that $k \geq 2$ and $p_j < p_{j+1}$ for all $j \in$
{1, \ldots, k-1}. For a sequence \(\alpha = \{\alpha_n\}_{n=1}^{\infty} \) in \(F \) and for \(p = (p_1, \ldots, p_k) \in P \), define \(N(\alpha, p) \) by

\[
2(N(\alpha, p))^2 = \left(\sum_{j=1}^{k-1} |\alpha_{p_{j+1}} - \alpha_{p_j}|^2 \right) + |\alpha_{p_n} - \alpha_{p_1}|^2.
\]

For each sequence \(\alpha = \{\alpha_n\}_{n=1}^{\infty} \) in \(F \), we set

\[
N(\alpha) = \sup\{N(\alpha, p) : p \in P\}.
\]

Then \(N(\alpha) \in [0, \infty] \) for all sequence \(\alpha = \{\alpha_n\}_{n=1}^{\infty} \) in \(F \). Define

\[
J_F = \{ \alpha = \{\alpha_n\}_{n=1}^{\infty} : \alpha \in F, N(\alpha) < \infty \}.
\]

Then \(J_F \) is a closed subalgebra of Banach algebra \((l_F^\infty(N), \| \cdot \|_\infty)\) over \(F \), where \(l_F^\infty(N) \) is the set of all sequence \(\alpha = \{\alpha_n\}_{n=1}^{\infty} \) in \(F \) for which \(\sup\{|\alpha_n| : n \in N\} < \infty \) and \(\| \cdot \|_\infty \) is the algebra norm on \(l_F^\infty(N) \) over \(F \) defined by

\[
\|\alpha\|_\infty = \sup\{|\alpha_n| : n \in N\}, \quad (\alpha = \{\alpha_n\}_{n=1}^{\infty} \in l_F^\infty(N)).
\]

\(J_F \) is called the James algebra over \(F \). It is clear that \(J_F \) is a real subalgebra of \(J_C \) and \(J_C = J_R \oplus iJ_R \). Hence, \(J_C \) is a complexification of \(J_R \) with the injective real algebra homomorphism \(J : J_R \rightarrow J_C \) defined by \(J(\alpha) = \alpha \quad (\alpha \in J_R) \). It is easy to see that

\[
\max\{\|\alpha\|_\infty, \|\beta\|_\infty\} \leq \|\alpha + i\beta\|_\infty \leq 2\max\{\|\alpha\|_\infty, \|\beta\|_\infty\},
\]

for all \(\alpha = \{\alpha_n\}_{n=1}^{\infty}, \beta = \{\beta_n\}_{n=1}^{\infty} \in J_R \).

By \(R \), Theorem 4.1.45], we have some properties of \(J_C \) as:

\begin{itemize}
 \item[(i)] \(J_C \) is Arens regular,
 \item[(ii)] \(J_C \) is weakly amenable,
 \item[(iii)] \(J_C \) is not amenable.
\end{itemize}

It is shown \(S \), Example 2.2] that \((J_C)^{**}\) is \((-1)\)-weakly amenable. Therefore, we deduce that \(J_R \) is weakly amenable by \(S \), Theorem 2.5], \(J_R \) is not amenable by \(S \), Theorem 2.4], \(J_R \) is Arens regular by Theorem \(2.3 \) and \((J_R)^{**}\) is \((-1)\)-weakly amenable by Theorem \(2.3 \).

Example 2.13. Let \(1 < p < \infty \) and let \(l^p(Z) \) denote the set of all sequences \(\alpha = \{\alpha_n\}_{n=-\infty}^{\infty} \) in \(C \) for which \(\sum_{n=-\infty}^{\infty} |\alpha_n|^p < \infty \). Then \(l^p(Z) \) with the pointwise addition and scalar multiplication is a complex Banach space with the norm \(\| \cdot \|_p \) defined by

\[
\|\alpha\|_p = \left(\sum_{n=-\infty}^{\infty} |\alpha_n|^p \right)^{\frac{1}{p}}, \quad (\alpha = \{\alpha_n\}_{n=-\infty}^{\infty} \in l^p(Z)).
\]

Moreover, \(l^p(Z) \) with the pointwise multiplication becomes a complex algebra and \(\| \cdot \|_p \) is a complete algebra norm on \(l^p(Z) \). Hence, \((l^p(Z), \| \cdot \|_p) \).
\[\|p\|_p\) is a complex Banach algebra. For each \(m \in \mathbb{Z}\) we have \(e_m \in \ell^p(\mathbb{Z})\) and \(e_m e_m = e_m\) whenever \(e_m = \{e_{m,n}\}_{n=-\infty}^{\infty}\) and

\[
e_{m,n} = \begin{cases} 1 & n = m \\ 0 & n \neq m \end{cases} \quad (n \in \mathbb{Z}).
\]

Moreover, \(\ell^p(\mathbb{Z})\) generates by \(\{e_m : m \in \mathbb{Z}\}\). Hence, \(\ell^p(\mathbb{Z})\) is weakly amenable by \[\text{Proposition 2.8.72(i)}\]. Therefore, \((\ell^p(\mathbb{Z}))^*\) is \((-1)\)-weakly amenable since \(\ell^p(\mathbb{Z})\) is reflexive.

Let \(\tau : \mathbb{Z} \rightarrow \mathbb{Z}\) be a bijection additive map. Define

\[\ell^p(\mathbb{Z}, \tau) = \{ \alpha = \{\alpha_n\}_{n=-\infty}^{\infty} \in \ell^p(\mathbb{Z}) : \alpha_{\tau(n)} = \overline{\alpha}_n, \quad (n \in \mathbb{Z}) \}.
\]

It is easy to see that \(\ell^p(\mathbb{Z}, \tau)\) is closed real subalgebra of \(\ell^p(\mathbb{Z})\) and \(\ell^p(\mathbb{Z}) = \ell^p(\mathbb{Z}, \tau) \oplus i\ell^p(\mathbb{Z}, \tau)\). Hence, \((\ell^p(\mathbb{Z}, \tau), \| \cdot \|_p)\) is a real Banach algebra and \(\ell^p(\mathbb{Z})\) is a complexification of \(\ell^p(\mathbb{Z}, \tau)\) with respect to the injective real algebra homomorphism \(J : \ell^p(\mathbb{Z}, \tau) \rightarrow \ell^p(\mathbb{Z})\) defined by \(J(\alpha) = \alpha \cdot (\alpha \in \ell^p(\mathbb{Z}, \tau))\). Since \(\|\alpha - i\beta\|_p = \|\alpha + i\beta\|_p\) for all \(\alpha = \{\alpha_n\}_{n=-\infty}^{\infty}, \beta = \{\beta_n\}_{n=-\infty}^{\infty} \in \ell^p(\mathbb{Z}, \tau)\), we deduce that

\[
\max\{\|\alpha\|_p, \|\beta\|_p\} \leq \|\alpha + i\beta\|_p \leq 2 \max\{\|\alpha\|_p, \|\beta\|_p\}
\]

for all \(\alpha = \{\alpha_n\}_{n=-\infty}^{\infty}, \beta = \{\beta_n\}_{n=-\infty}^{\infty} \in \ell^p(\mathbb{Z}, \tau)\). Therefore, \(\ell^p(\mathbb{Z}, \tau)\) is reflexive by the reflexivity of \(\ell^p(\mathbb{Z})\) and part (vii) of Lemma \[\text{2.5}\]. \(\ell^p(\mathbb{Z}, \tau)\) is weakly amenable by \[\text{2.4 Theorem 2.5}\] and \((\ell^p(\mathbb{Z}, \tau))^*\) is \((-1)\)-weakly amenable by Theorem \[\text{2.4}\].

Example 2.14. Let \(X\) be a compact Hausdorff space. We denote by \(C_\mathbb{F}(X)\) the algebra of all \(\mathbb{F}\)-valued continuous functions on \(X\) over \(\mathbb{F}\). Then \(C_\mathbb{F}(X)\) is a Banach algebra over \(\mathbb{F}\) with the uniform norm \(\| \cdot \|_X\) defined by

\[
\|f\|_X = \sup\{|f(x)| : x \in X\}, \quad (f \in C(X)).
\]

We write \(C(X)\) instead of \(C_\mathbb{C}(X)\).

A self-map \(\tau : X \rightarrow X\) is called a topological involution on \(X\) if \(\tau\) is continuous and \(\tau(\tau(x)) = x\) for all \(x \in X\). Clearly, \(f \circ \tau \in C(X)\) for all \(f \in C(X)\). Define

\[C(X, \tau) = \{ f \in C(X) : \bar{f} \circ \tau = f \}.
\]

Then \(C(X, \tau)\) is a real closed subalgebra of \(C(X)\), \(1_X \in C(X, \tau)\) and \(i1_X \notin C(X, \tau)\), where \(1_X\) is the constant function on \(X\) with value 1. Moreover, \(C(X) = C(X, \tau) \oplus iC(X, \tau)\). Hence, \(C(X)\) is a complexification of \(C(X, \tau)\) with respect to the injective real algebra homomorphism \(J : C(X, \tau) \rightarrow C(X)\) defined by \(J(f) = f\) \((f \in C(X, \tau))\). Since \(\|f - ig\|_X = \|f + ig\|_X\) for all \(f, g \in C(X, \tau)\), we deduce that

\[
\max\{\|f\|_X, \|g\|_X\} \leq \|f + ig\|_X \leq 2 \max\{\|f\|_X, \|g\|_X\},
\]
for all \(f, g \in C(X, \tau) \). Real Banach algebra \(C(X, \tau) \) was first defined by Kulkarni and Limaye in [1]. For further general facts about \(C(X, \tau) \) and certain real subalgebras we refer to [1].

Clearly, \(C(X) \) is a complex \(C^* \)-algebra with the natural algebra involution \(f \mapsto \bar{f} : C(X) \to C(X) \). Hence, \(C(X) \) is Arens regular and, by [1], Corollary 3.7], \((C(X))^* \) is \((-1)\)-weakly amenable. Therefore, if \(\tau \) is a topological involution on \(X \) then \(C(X, \tau) \) is Arens regular by Theorem 2.5 and \((C(X, \tau))^* \) is \((-1)\)-weakly amenable by theorem 2.9.

Example 2.15. Let \((X, d)\) be an infinite compact metric space and let \(\alpha \in (0, 1] \). We denote by \(\text{Lip}_F(X, d^\alpha) \) the set of all \(F \)-valued functions \(f \) on \(X \) for which

\[
p_{(X, d^\alpha)}(f) = \sup \left\{ \frac{|f(x) - f(y)|}{d^\alpha(x, y)} : x, y \in X, x \neq y \right\} < \infty.
\]

Clearly, \(\text{Lip}_F(X, d^\alpha) \) is a subalgebra of \(C_F(X) \) and \(1_X \in \text{Lip}_F(X, d^\alpha) \). Moreover, \(\text{Lip}_F(X, d^\alpha) \) is a Banach algebra over \(F \) with the \(\alpha \)-Lipschitz norm

\[
\|f\|_{\text{Lip}(X, d^\alpha)} = \|f\|_X + p_{(X, d^\alpha)}(f), \quad (f \in \text{Lip}_F(X, d^\alpha)).
\]

\(\text{Lip}_F(X, d^\alpha) \) is called the Lipschitz algebra of order \(\alpha \) on \((X, d)\) over \(F \). This algebra was first introduced by Sherbert in [1]. We write \(\text{Lip}(X, d^\alpha) \) instead of \(\text{Lip}_C(X, d^\alpha) \).

Let \((X, d)\) be a metric space. A Lipschitz mapping on \((X, d)\) is a self-map \(\tau : X \to X \) for which there exist a positive constant \(M \) such that \(d(\tau(x), \tau(y)) \leq Md(x, y) \) for all \(x, y \in X \). For a Lipschitz mapping \(\tau : X \to X \) on \((X, d)\), the constant Lipschitz of \(\tau \) is denoted by \(p(\tau) \) and defined by

\[
p(\tau) = \sup \left\{ \frac{d(\tau(x), \tau(y))}{d(x, y)} : x, y \in X, x \neq y \right\}.
\]

A self-map \(\tau : X \to X \) is called a Lipschitz involution on \((X, d)\) if \(\tau \) is a Lipschitz mapping and \(\tau(\tau(x)) = x \) for all \(x \in X \).

Let \((X, d)\) be a compact metric space, let \(\alpha \in (0, 1] \) and let \(\tau : X \to X \) be a Lipschitz involution on \((X, d)\). It is easy to see that \(f \circ \tau \in \text{Lip}(X, d^\alpha) \) for all \(f \in \text{Lip}(X, d^\alpha) \). Define

\[
\text{Lip}(X, d^\alpha, \tau) = \{ f \in \text{Lip}(X, d^\alpha) : f \circ \tau = f \}.
\]

Then \(\text{Lip}(X, d^\alpha, \tau) \) is a real closed subalgebra of \(\text{Lip}(X, d^\alpha) \), containing \(1_X \), \(i1_X \notin \text{Lip}(X, d^\alpha, \tau) \) and

\[
\text{Lip}(X, d^\alpha) = \text{Lip}(X, d^\alpha, \tau) \oplus i\text{Lip}(X, d^\alpha, \tau).
\]

Hence, \((\text{Lip}(X, d^\alpha, \tau), \| \cdot \|_{\text{Lip}(X, d^\alpha)}) \) is a real Banach algebra and the complex algebra \(\text{Lip}(X, d^\alpha) \) is a complexification of \(\text{Lip}(X, d^\alpha, \tau) \) with
respect to the injective real algebra homomorphism $J : \text{Lip}(X, d^\alpha, \tau) \to \text{Lip}(X, d^\alpha)$ by $J(f) = f$ ($f \in \text{Lip}(X, d^\alpha, \tau)$). Moreover,

$$\max \{\|f\|_{\text{Lip}(X, d^\alpha)}, \|g\|_{\text{Lip}(X, d^\alpha)}\} \leq C\|f + ig\|_{\text{Lip}(X, d^\alpha)}$$

$$\leq 2C \max \{\|f\|_{\text{Lip}(X, d^\alpha)}, \|g\|_{\text{Lip}(X, d^\alpha)}\}$$

for all $f, g \in \text{Lip}(X, d^\alpha, \tau)$, where $C = (p(\tau))^{\alpha}$ (see [1]).

By [20, Theorem 9.2], $\text{Lip}(X, d^\alpha)$ has a nonzero continuous point derivation. Hence, $(\text{Lip}(X, d^\alpha))^{**}$ is not (-1)-weakly amenable by [11, Theorem 2.6]. Therefore, if $\tau : X \to X$ is a Lipschitz involution on (X, d) then $(\text{Lip}(X, d^\alpha, \tau))^{**}$ is not (-1)-weakly amenable by Theorem 2.9.

Example 2.16. Let (X, d) be a compact metric space, let K be a nonempty compact subset of X and let $\alpha \in (0, 1]$. We denote by $\text{Lip}(X, K, d^\alpha)$ the set of all $f \in C(X)$ for which $f|_K \in \text{Lip}(K, d^\alpha)$. Then $\text{Lip}(X, K, d^\alpha)$ is a complex subalgebra of $C(X)$ and $\text{Lip}(X, d^\alpha)$ is a complex subalgebra of $\text{Lip}(X, K, d^\alpha)$. Moreover, $\text{Lip}(X, K, d^\alpha) = C(X)$ if K is finite and $\text{Lip}(X, K, d^\alpha) = \text{Lip}(X, d^\alpha)$ if $X \setminus K$ is finite.

Furthermore, $\text{Lip}(X, K, d^\alpha)$ is a complex Banach algebra with the algebra norm $\| \cdot \|_{\text{Lip}(X, K, d^\alpha)}$ defined by

$$\|f\|_{\text{Lip}(X, K, d^\alpha)} = \|f\|_X + p(K, d^\alpha)(f), \quad f \in \text{Lip}(X, K, d^\alpha).$$

$\text{Lip}(X, K, d^\alpha)$ is called extended Lipschitz algebra of order α on (X, d) with respect to K. This algebra was first studied in [1].

By [16, Theorem 3.3], $\text{Lip}(X, K, d^\alpha)$ has a nonzero continuous point derivation if $\text{int}(K) \cap K' \neq \emptyset$ where $\text{int}(K)$ is the set of all interior points of K and K' is the set of all limit points of K in (X, d). Therefore, if $\text{int}(K) \cap K' \neq \emptyset$ then $(\text{Lip}(X, K, d^\alpha))^{**}$ is not (-1)-weakly amenable by [12, Theorem 2.6].

Let (X, d) be a compact metric space, let K be compact subset of X, let $\alpha \in (0, 1]$ and let τ be a Lipschitz involution on (X, d) such that $\tau(K) = K$. Clearly, $f \circ \tau \in \text{Lip}(X, K, d^\alpha)$ for all $f \in \text{Lip}(X, K, d^\alpha)$. Define

$$\text{Lip}(X, K, d^\alpha, \tau) = \{f \in \text{Lip}(X, K, d^\alpha) : f \circ \tau = f\}.$$

It is easy to see that $\text{Lip}(X, K, d^\alpha, \tau)$ is a real closed subalgebra of $\text{Lip}(X, K, d^\alpha)$, $1_X \in \text{Lip}(X, K, d^\alpha, \tau)$ and

$$\text{Lip}(X, K, d^\alpha) = \text{Lip}(X, K, d^\alpha, \tau) \oplus i\text{Lip}(X, K, d^\alpha, \tau).$$

Hence, $(\text{Lip}(X, K, d^\alpha, \tau), \| \cdot \|_{\text{Lip}(X, K, d^\alpha)})$ is a real Banach algebra and $\text{Lip}(X, K, d^\alpha)$ is a complexification of $\text{Lip}(X, K, d^\alpha, \tau)$ with the injective real algebra homomorphism $J : \text{Lip}(X, K, d^\alpha, \tau) \to \text{Lip}(X, K, d^\alpha)$.
defined by \(J(f) = f \quad (f \in \text{Lip}(X, K, d^\alpha, \tau)) \). Moreover,
\[
\max\{\|f\|_B, \|g\|_B\} \leq C\|f + ig\|_B \\
\leq 2C \max\{\|f\|_B, \|g\|_B\},
\]
for all \(f, g \in \text{Lip}(X, K, d^\alpha, \tau) \) where \(B = \text{Lip}(X, K, d^\alpha) \) and \(C = (p(\tau))^{\alpha} \).

Therefore, if \(\text{int}(K) \cap K' \neq \emptyset \) and \(\tau : X \to X \) is a Lipschitz involution on \((X, d) \) with \(\tau(K) = K \), then \(\text{Lip}(X, K, d^\alpha, \tau) \) is not weakly amenable by [2, Theorem 2.5] and \((\text{Lip}(X, K, d^\alpha, \tau))^{**} \) is not \((-1)\)-weakly amenable by Theorem [4].

Example 2.17. Let \((X, d) \) be an infinite compact metric space and \(\alpha \in (0, 1) \). We denote by \(\text{lip}_F(X, d^\alpha) \) the set of all \(f \in \text{Lip}_F(X, d^\alpha) \) for which \(\lim_{d(x,y)\to 0} \frac{|f(x) - f(y)|}{d^\alpha(x,y)} = 0 \), i.e., for each \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that \(\frac{|f(x) - f(y)|}{d^\alpha(x,y)} < \varepsilon \) whenever \(x, y \in X \) with \(0 < d(x,y) < \delta \). Then \(\text{lip}_F(X, d^\alpha) \) is a closed subalgebra of \(\text{Lip}_F(X, d^\alpha) \) over \(F \), and \(1_X \in \text{lip}_F(X, d^\alpha) \). Hence, \((\text{lip}_F(X, d^\alpha), \|\cdot\|_{\text{Lip}(X, d^\alpha)}) \) is a Banach algebra over \(F \). This algebra is called the little Lipschitz algebra of order \(\alpha \) on \((X, d) \) over \(F \) and was first introduced by Sherbert in [20]. We write \(\text{lip}(X, d^\alpha) \) instead of \(\text{lip}_C(X, d^\alpha) \).

Let \((X, d) \) be an infinite compact metric space, let \(\alpha \in (0, 1) \) and let \(B = \text{lip}(X, d^\alpha) \). For each \(x \in X \) the map \(e_{B,x} : B \to \mathbb{C} \) defined by
\[
e_{B,x}(f) = f(x), \quad f \in B,
\]
belongs to \(B^* \). Moreover, \(\|e_{B,x} - e_{B,y}\|_{\text{op}} \leq d^\alpha(x,y) \) for all \(x, y \in X \) and so the map \(E_{B,X} : X \to B^* \) defined by
\[
E_{B,X}(x) = e_{B,x}, \quad x \in X,
\]
is a continuous function from \((X, d) \) to \((B^*, \|\cdot\|_{\text{op}}) \). We know [4, Theorem 3.5] that the map \(\eta : B^{**} \to \text{Lip}(X, d^\alpha) \) defined by
\[
\eta(\Lambda) = \Lambda \circ E_{B,X}, \quad \Lambda \in B^{**},
\]
is a complex linear isometry from \((B^{**}, \|\cdot\|_{\text{op}}) \) onto \((\text{Lip}(X, d^\alpha), \|\cdot\|_{\text{Lip}(X, d^\alpha)}) \). It is shown [4, Theorem 3.8] that \(B \) is Arens regular and \(\eta \) is an algebra homomorphism. This implies that \(B^* \) is a complex Banach \(B^{**} \)-module.

Let \(\tau : X \to X \) be a Lipschitz involution on \((X, d) \). It is easy to see that \(\tilde{f} \circ \tau \in B \) for all \(f \in B \). Define
\[
\text{lip}(X, d^\alpha, \tau) = \{ f \in B = \text{lip}(X, d^\alpha) : \tilde{f} \circ \tau = f \}.
\]
Then \(\text{lip}(X, d^\alpha, \tau) \) is a real closed subalgebra of \(B \) and
\[
\text{lip}(X, d^\alpha) = \text{lip}(X, d^\alpha, \tau) \oplus i\text{lip}(X, d^\alpha, \tau).
\]
Therefore, \((\text{lip}(X,d^\alpha), \| \cdot \|_{\text{lip}(X,d^\alpha)})\) is a real Banach algebra and the complex algebra \(\text{lip}(X,d^\alpha)\) is a complexification of \(\text{lip}(X,d^\alpha, \tau)\) with respect to the injective real algebra homomorphism \(J : \text{lip}(X,d^\alpha, \tau) \rightarrow \text{lip}(X,d^\alpha)\) defined by \(J(f) = f \quad (f \in \text{lip}(X,d^\alpha, \tau))\). Moreover,
\[
\max\{\|f\|_{\text{Lip}(X,d^\alpha)}, \|g\|_{\text{Lip}(X,d^\alpha)}\} \leq C\|f + ig\|_{\text{Lip}(X,d^\alpha)} \\
\leq 2C \max\{\|f\|_{\text{Lip}(X,d^\alpha)}, \|g\|_{\text{Lip}(X,d^\alpha)}\},
\]
for all \(f, g \in \text{lip}(X,d^\alpha, \tau)\) where \(C = (p(\tau))^{\alpha}\) (see [1]).

By Theorem 2.5, we deduce that \(\text{lip}(X,d^\alpha, \tau)\) is Arens regular.

Let \(T = \{Z \in \mathbb{C} : |z| = 1\}\), let \(d\) be the Euclidean metric on \(T\) and let \(\alpha \in (\frac{1}{2}, 1)\). By [3, Theorem 2.2], \((\text{lip}(T,d^\alpha))^\ast\) is not \((-1)\)-weakly amenable. Therefore, if \(\tau : T \rightarrow T\) be a Lipschitz involution on \(T\) then \((\text{lip}(T,d^\alpha, \tau))^\ast\) is not \((-1)\)-weakly amenable by Theorem 2.9.

Note that the map \(\tau : T \rightarrow T\) defined by one of the following:
\[
\tau(z) = z \quad (z \in T), \quad \tau(z) = -z \quad (z \in T), \\
\tau(z) = \bar{z} \quad (z \in T), \quad \tau(z) = -\bar{z} \quad (z \in T), \\
\tau(z) = iz \quad (z \in T), \quad \tau(z) = -iz \quad (z \in T),
\]
is a Lipschitz involution on \((T,d)\).

Acknowledgment. The authors would like to thank the referees for their useful comments and suggestions.

References