Document Type: Research Paper

**Author**

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, Iran.

**Abstract**

In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.

**Keywords**

**Main Subjects**

[1] V. Barcilon, *Explicit solution of the inverse problem for a vibrating string*, J. Math. Anal. Appl., 93 (1983), pp. 222-234.

[2] P.J. Browne and B.D. Sleeman, *Inverse nodal problems for Sturm-Liouville equations with eigenparameter dependent boundary conditions*, Inv. Prob., 12 (1996), pp. 377-381.

[3] A. Dabbaghian and Sh. Akbarpoor, *The nodal points for uniqueness of inverse problem in boundary value problem with aftereffect*, World Appl. Sci. J., 12 (2011), pp. 932-934.

[4] G. Freiling and V.A. Yurko, *Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter*, Inv. Prob., 26 (2010), pp. 1-17.

[5] G. Freiling and V.A. Yurko, *Inverse Sturm-Liouville problems and their applications*, NOVA Science Publishers, New York, 2001.

[6] I.M. Gelfand and B.M. Levitan, *On the determination of a differential equation from its spectral function*, Amer. Math. Soc. Transl. Ser. 2., 1 (1955), pp. 253-304.

[7] O.H. Hald and J.R. Mclaughlin, *Solution of inverse nodal problems*, Inv. Prob., 5 (1989), pp. 307-347.

[8] H. Kheiri, A. Jodayree Akbarfam, and A.B. Mingarelli, *The uniqueness of the solution of dual equations of an inverse indefinite Sturm-Liouville problem*, J. Math. Anal. Appl., 306 (2005), pp. 269-281.

[9] H. Koyunbakan, *The inverse nodal problem for a differential operator with an eigenvalue in the boundary condition*, Appl. Math. Lett., 18 (2010), pp.173-180.

[10] V.A. Marchenko, *Some problems in the theory of a second-order differential operator*, Dokl. Akad. Nauk. SSSR., 72 (1950), pp. 457-460.

[11] S. Mosazadeh, *A new approach to uniqueness for inverse Sturm-Liouville problems on finite intervals*, Turk. J. Math., 41 (2017), pp. 1224-1234.

[12] S. Mosazadeh, *Infinite product representation of solution of indefinite Sturm-Liouville problem*, Iranian J. Math. Chem., 4 (2013), pp. 27-40.

[13] A.S. Ozkan and B. Keskin, *Spectral problems for Sturm-Liouville operators with boundary and jump conditions linearly dependent on the eigenparameter*, Inv. Prob. Sci. Eng., 20 (2012), pp. 799-808.

[14] J. Poschel and E. Trubowitz, *Inverse Spectral Theory*, Academic Press, London, 1987.

[15] W.A. Pranger, *A formula for the mass density of a vibrating string in terms of the trace*, J. Math. Anal. Appl., 141 (1989), pp. 399-404.

[16] C.T. Shieh and V.A. Yurko, *Inverse nodal and inverse spectral problems for discontinuous boundary value problems*, J. Math. Anal. Appl., 347 (2008), pp. 266-272.

[17] N. Topsakal, *Inverse problem for Sturm-Liouville operators with Coulomb potential which have discontinuity conditions inside an interval*, Math. Phys. Anal. Geom., 13 (2010), pp. 29-46.

[18] Y.P. Wang, *A uniqueness theorem for Sturm-Liouville operators with eigenparameter dependent boundary conditions*, Tamkang J. Math., 43 (2012), pp. 145-152.

[19] Y.P. Wang, *Inverse problems for discontinuous Sturm-Liouville operators with mixed spectral data*, Inv. Prob. Sci. Eng., 23 (2015), pp. 1180-1198.

[20] Y.P. Wang and V.A. Yurko, *On the inverse nodal problems for discontinuous Sturm-Liouville operators*, J. Diff. Equ., 260 (2016), pp. 4086-4109.

[21] C.F. Yang, *Inverse nodal problems of discontinuous Sturm-Liouville operators*, J. Diff. Equ., 254 (2013), pp. 1992-2014.

[22] V.A. Yurko, *Method of Spectral Mappings in the Inverse Problem Theory*, Inverse and Ill-posed Problems Series, Utrecht: VSP, 2002.

[23] V.A. Yurko, *Inverse spectral problems for differential pencils on the half-line with turning points*, J. Math. Anal. Appl., 320 (2006), pp. 439-463.