A Class of Hereditarily $\ell_p(c_0)$ Banach Spaces

Somayeh Shahraki¹ and Alireza Ahmadi Ledari²*

Abstract. We extend the class of Banach sequence spaces constructed by Ledari, as presented in “A class of hereditarily ℓ_1 Banach spaces without Schur property” and obtain a new class of hereditarily $\ell_p(c_0)$ Banach spaces for $1 \leq p < \infty$. Some other properties of this spaces are studied.

1. Introduction

We follow the same notations and terminology as in [5]. Let Y be a subspace of X. Then we say that X contains Y hereditarily if every infinite dimensional subspace of X contains an isomorphic copy of Y. Thus, if X hereditarily contains Y, then we naturally expect to have the interior properties of X to be close to those of Y. Any exception may be of interest. For example, it is well known that ℓ_1 possesses the Schur property, while there are hereditarily ℓ_1 Banach spaces without the Schur property [1, 2, 3, 4, 7].

In this paper, we use $\ell_{w,p}$ spaces to introduce and study a new class of hereditarily $\ell_p(c_0)$ spaces. Indeed, if $p_1 > p_2 > \cdots > 1$, the subspace Z_p for $p \in [1, \infty) \cup \{0\}$ of

$$X_p = \left(\sum_{n=1}^{\infty} \oplus \ell_{w,p_n} \right)_p ,$$

is hereditarily $\ell_p(c_0)$. Other properties of these spaces are investigated. In this article, we show that under some conditions for $p \in [1, \infty) \cup \{0\},$

2010 Mathematics Subject Classification. 46B20, 46E30.

Key words and phrases. Banach spaces, Nowhere dual Schur property, Hereditarily $\ell_p(c_0)$ Banach spaces.

Received: 04 May 2017, Accepted: 22 November 2017.

* Corresponding author.
the natural operator from $\ell_{w,p}$ to Z_p is unbounded. Also the natural operator from Z_p to $\ell_{w,p}$ is unbounded.

Let $w = (w_n)$ be a fixed nonnegative real sequence. We recall the definition of $\ell_{w,p}$ ($1 \leq p < \infty$), the weighted ℓ_p Banach sequence space. We know

$$\ell(w,p) = \left\{ x = (x_1, x_2, \ldots) : x_i \in \mathbb{R}, \sum_{i=1}^{\infty} w_i |x_i|^p < \infty \right\}.$$

For any $x \in \ell(w,p)$, define

$$\|x\|_{w,p} = \left(\sum_{i=1}^{\infty} w_i |x_i|^p \right)^{\frac{1}{p}}.$$

For any i, let $e_i = \left(0, \ldots, 0, \left(\frac{1}{w_i} \right)^{\frac{1}{p}}, 0, \ldots \right)$. We know that \{ $e_i : i \in \mathbb{N}$\} is a normalized basis for $\ell(w,p)$. Now we go through the construction of the spaces X_p analogous of the space of Popov. Let $w = (w_n)$ be a fixed sequence, and $(\ell_{w_p^n})_{n=1}^{\infty}$ a sequence of Banach spaces as above with $\infty > p_1 > p_2 > \cdots > 1$. The direct sum of these spaces in the sense of ℓ_p is defined as the linear space

$$X_p = \left(\sum_{n=1}^{\infty} \oplus \ell_{w_p^n} \right)_p,$$

with $p \in [1, \infty)$ which is the space of all sequences $x = (x^1, x^2, \ldots)$, $x^n \in \ell_{w_p^n}$, $n = 1, 2, \ldots$, with

$$\|x\|_p = \left(\sum_{n=1}^{\infty} \|x^n\|_{w_p^n}^p \right)^{\frac{1}{p}} < \infty.$$

The direct sum of the spaces $(\ell_{w_p^n})$ in the sense of c_0 is the linear space

$$X_0 = \left(\sum_{n=1}^{\infty} \oplus \ell_{w_p^n} \right)_0,$$

of all sequences $x = (x^1, x^2, \ldots)$, $x^n \in \ell_{w_p^n}$, $n = 1, 2, \ldots$, for which $\lim_n \|x^n\|_{w_p^n} = 0$ with norm

$$\|x\|_0 = \max_n \|x^n\|_{w_p^n}.$$

The construction and idea of the proof follow from [8], but the nature of these spaces is different. So for similar results, we omit the details of the proofs.
In fact these spaces are a rich class of spaces which depend on the sequences \(w = (w_i) \) and \((p_n) \) as above. Fix a sequence \(w = (w_i) \) of reals which satisfies the above conditions and a sequence \((p_n) \) of reals with \(\infty > p_1 > p_2 > \cdots > 1 \). Consider the sequence space \(X_p \) as above. For each \(n \geq 1 \), denote by \((e_{i,n})_{i=1}^{\infty} \) the unit vector basis of \(\ell_{w,p} \) and by \((e_{i,n})_{i=1}^{\infty} \) its natural copy in \(X_p \):

\[
e_{i,n} = \left(0, \ldots, 0, \frac{e_{i,n}}{\|e_{i,n}\|_{w,p}}, 0, \ldots \right) \in X_p.
\]

Let \(\delta_n > 0 \) and \(\Delta = (\delta_n) \) such that

\[
\sum_{n=1}^{\infty} \delta_n^p = 1, \quad \text{if } p \geq 1,
\]

and \(\lim_n \delta_n = 0 \) and \(\max_n \delta_n = 1 \) if \(p = 0 \). For each \(i \geq 1 \) put

\[
z_i = \sum_{n=1}^{\infty} \delta_n e_{i,n}.
\]

Then

\[
\|z_i\|^p_p = \left(\sum_{n=1}^{\infty} \|\delta_n e_{i,n}\|_{w,p}^p \right)^{\frac{1}{p}} = \left(\sum_{n=1}^{\infty} \delta_n^p \right)^{\frac{1}{p}} = 1,
\]

since \(\|e_{i,n}\|_{w,p} = 1 \) and

\[
\|z_i\|_0 = \max_n \|\delta_n e_{i,n}\|_{w,p} = 1.
\]

It is clear that for any sequence \((t_i)_{i=1}^{m} \) of scalars,

\[
\left\| \sum_{i=1}^{m} t_i z_i \right\|_p^p = \sum_{n=1}^{\infty} \delta_n^p \left\| \sum_{i=1}^{m} t_i e_{i,n} \right\|_{w,p}^p, \quad \text{if } 1 \leq p < \infty,
\]

and

\[
\left\| \sum_{i=1}^{m} t_i z_i \right\|_0 = \max_n \left\| \sum_{i=1}^{m} t_i e_{i,n} \right\|_{w,p} = 1, \quad \text{if } p = 0.
\]

Let \(Z_p \) be the closed linear space of \((z_i)_{i=1}^{\infty} \). For each \(I \subseteq \mathbb{N} \) the projection \(P_I \) denotes the natural projection of \(X_p \) on to \([e_{i,n} : i \in \mathbb{N}, n \in I] \). Denote also \(Q_n = P_{\{n,n+1,\ldots\}} \).

We recall the main properties of \(\ell_{w,p} \) (\(1 \leq p < \infty \)) and \(Z_1 \) spaces [3].
Theorem 1.1. For $1 \leq p < \infty$, $\ell(w, p)$ is hereditarily isometrically isomorphic to ℓ^p,
\[
\left\| \sum_{i=1}^{n} t_i v_i \right\|_{w, p}^p = \sum_{i=1}^{n} |t_i|^p.
\]

Theorem 1.2. Let $w_i \geq 1$ for any $i \in \mathbb{N}$ and $w = (w_i)$. For $1 \leq p_{n+1} \leq p_n < \infty$, $\ell(w, p_{n+1}) \subseteq \ell(w, p_n)$. In particular $\|x\|_{w, p_n} \leq \|x\|_{w, p_{n+1}}$.

Theorem 1.3. Z_1 is a hereditarily ℓ_1 Banach space which fails the Schur property.

2. The Result

Now, we show that Z_p is hereditarily $\ell_p(c_0)$ for $p \in [1, \infty) \cup \{0\}$. But first, we collect some basic facts about our spaces in the following lemmas.

Lemma 2.1. Let E_0 be an infinite dimensional subspace of Z_p, $n, m, j \in \mathbb{N}(n > 1)$, and $\varepsilon > 0$. Then there are $\{x_i\}_{i=1}^{m} \subseteq E_0$ and $\{u_i\}_{i=1}^{m} \subseteq Z_p$ such that the kth component of u_i is of the form
\[
u_{i,k} = \delta_k \sum_{s=j_1+1}^{j_{i+1}} a_{i,s} v_s,
\]
where $j = j_1 < j_2 < \cdots < j_{m+1}$. The v_i's are obtained from the proof of Theorem 1.1, for $p = p_n$ such that
\[
\sum_{s=j_1+1}^{j_{i+1}} |a_{i,s}|^{p_{n-1}} = 1, \quad \|u_i - x_i\| < \frac{\varepsilon}{m} \|u_i\|,
\]
for each $i = 1, \ldots, m$.

Proof. Put $E_1 = E_0 \cap [z_i]_{i=j+1}^{\infty}$. Since E_0 is infinite dimensional and $[z_i]_{i=j+1}^{\infty}$ has finite codimension in Z_p, E_1 is infinite dimensional as well. Put $j_1 = j$ and choose any $\bar{x}_1 \in E_1 \setminus \{0\}$ such that the kth component of \bar{x}_1 has the form
\[
\bar{x}_{1,k} = \delta_k \sum_{s=j_1+1}^{\infty} a_{1,s} v_s.
\]
Take \bar{x}_1 and use Lemma 2.2 of [S] to obtain x_1 and u_1 with above properties and continue the procedure of that lemma to construct the desired sequence. \qed

Lemma 2.2. Let E_0 be an infinite dimensional subspace of Z_p, $j, n \in \mathbb{N}$, and $\varepsilon > 0$. Then, there exist $x \in E_0$, $x \neq 0$, and $u \in Z_p$ such that
(i) $\|Q_n u\| \geq (1 - \varepsilon) \|u\|$,
(ii) $\|u\|_{E_0, p} \neq \|u\|_{E_0, p}$.
(ii) $\|x - u\| < \varepsilon \|u\|$.

Proof. Choose $m \in \mathbb{N}$ so that

$$\frac{1}{\delta_m} m^{\frac{1}{p_n} - \frac{1}{p_n}} < \varepsilon.$$

Using Lemma 2.1, choose $\{x_i\}_{i=1}^m \subseteq E_0$ and $\{u_i\}_{i=1}^m \subseteq Z_p$ so that satisfy the claims of lemma and put

$$x = \sum_{i=1}^m x_i \text{ and } u = \sum_{i=1}^m u_i.$$

First, we prove (ii). We know that $\|u_i\| \leq \|u\|$ for $i = 1, \ldots, m$ and

$$\|x - u\| \leq \sum_{i=1}^m \|x_i - u_i\| < \sum_{i=1}^m \frac{\varepsilon \|u_i\|}{m} < \sum_{i=1}^m \frac{\varepsilon \|u\|}{m} = \varepsilon \|u\|.$$

To prove (i), we first show that

$$\|u\| - \|Q_n u\| < m^{\frac{1}{p_n - 1}}.$$

Anyway, $\|u\| - \|Q_n u\| \leq \|p_{\{1, \ldots, n-1\}} u\|$. Hence, by Theorem 1.1 and Theorem 1.2 for $p \geq 1$, we have

$$(\|u\| - \|Q_n u\|)^p \leq \sum_{k=1}^{n-1} \sum_{i=1}^{j_{i+1}} \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s^{p_{w.p_k}} \left(m \sum_{i=1}^{j_{i+1}} \sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_{w.p_{n-1}}} \right)^{\frac{p}{p_{n-1}}} \leq \sum_{k=1}^{n-1} \sum_{i=1}^{j_{i+1}} \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s^{p_{w.p_{n-1}} \left(m \sum_{i=1}^{j_{i+1}} \sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_{w.p_{n-1}}} \right)^{\frac{p}{p_{n-1}}}}$$

$$= \sum_{k=1}^{n-1} \sum_{i=1}^{j_{i+1}} \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s^{p_{w.p_{n-1}}} \left(m \sum_{i=1}^{j_{i+1}} \sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_{w.p_{n-1}}} \right)^{\frac{p}{p_{n-1}}}$$

$$= \sum_{k=1}^{n-1} \sum_{i=1}^{j_{i+1}} \sum_{s=j_i+1}^{j_{i+1}} a_{i,s} v_s^{p_{w.p_{n-1}}} \left(m \sum_{i=1}^{j_{i+1}} \sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_{w.p_{n-1}}} \right)^{\frac{p}{p_{n-1}}}$$
\[\frac{p}{m} \sum_{k=1}^{n-1} \delta_k^p \]

\[< \frac{p}{m} \sum_{k=1}^{n-1} \delta_k^p. \]

And for \(p = 0 \), we have

\[\|u\| - \|Q_n u\| \leq \max_{1 \leq k < n} \left\| \sum_{i=1}^{m} \sum_{s=j_i+1}^{j_i+1} a_{i,s} v_s \right\| \]

\[\leq \max_{1 \leq k < n} \left(\sum_{i=1}^{m} \sum_{s=j_i+1}^{j_i+1} |a_{i,s}|^{p-1} \right)^{\frac{1}{p-1}} \]

\[= \max_{1 \leq k < n} \left(\sum_{i=1}^{m} \sum_{s=j_i+1}^{j_i+1} 1 \right)^{\frac{1}{p-1}} \]

\[= \max_{1 \leq k < n} \delta_k \]

\[\leq \frac{p}{m} \sum_{k=1}^{n-1} \delta_k^p. \]

On the other hand, for \(p \geq 1 \), we have

\[\|u\|^p \geq \delta_n^p \left\| \sum_{i=1}^{m} \sum_{s=j_i+1}^{j_i+1} a_{i,s} v_s \right\|^p \]

\[= \delta_n^p \left(\sum_{i=1}^{m} \sum_{s=j_i+1}^{j_i+1} |a_{i,s}|^{p-1} \right)^{\frac{p}{p-1}} \]

\[\geq \delta_n^p \left(\sum_{i=1}^{m} \left(\sum_{s=j_i+1}^{j_i+1} |a_{i,s}|^{p-1} \right)^{\frac{p}{p-1}} \right)^{\frac{p}{p-1}} \]

\[= \delta_n^p \left(\sum_{i=1}^{m} 1 \right)^{\frac{p}{p-1}} \]

\[= \delta_n^p \frac{p}{m} \sum_{k=1}^{n-1} \delta_k^p. \]
And for $p = 0$, we can write

$$
\|u\| = \max_{k \in \mathbb{N}} \left\| \sum_{j=1}^m \sum_{s=j_i+1}^{j_{i+1}} a_{i,s}v_s \right\|_{w.p_k} \\
\geq \delta_n \left(\sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_n} \right)^{\frac{1}{p_n}} \\
= \delta_n \left(\sum_{i=1}^m \sum_{s=j_i+1}^{j_{i+1}} |a_{i,s}|^{p_n} \right)^{\frac{1}{p_n}} \\
= \delta_n \left(\frac{1}{m} \right)^{\frac{1}{p}} \\
= \delta_n m^{\frac{1}{p}}.
$$

Thus, anyway $\|u\| \geq \delta_n m^{\frac{1}{p}}$, and hence,

$$
1 - \frac{\|Q_n u\|}{\|u\|} \leq \frac{m^{\frac{1}{p_n}-1}}{\delta_n m^{\frac{1}{p}}} = \frac{1}{\delta_n m^{\frac{1}{p_n}}-1} < \varepsilon,
$$

and $\|Q_n u\| \geq (1 - \varepsilon) \|u\|$. □

The following theorem is the main result of this paper:

Theorem 2.3. (i) The Banach space Z_p is hereditarily ℓ_p for $1 \leq p < \infty$.

(ii) The space Z_0 is hereditarily c_0.

Proof. For the proof of our main results we need the following Lemma from Popov [8] (see Lemma 2.4 and Theorem 2.5). □

Lemma 2.4. Suppose $\varepsilon > 0$ and ε_s for $s \in \mathbb{N}$ are such that

(i) $2\varepsilon_s \leq \varepsilon$ if $p = 1$,

(ii) $\sum_{s=1}^{\infty} (2\varepsilon_s)^q \leq \varepsilon^q$ if $1 \leq p < \infty$ where $\frac{1}{p} + \frac{1}{q} = 1$,

(iii) $\sum_{s=1}^{\infty} (2\varepsilon_s) \leq \varepsilon$ if $p = 0$.

If for given vectors \(\{u_s\}_{s=1}^{\infty} \subset S(Z_p) \), where \(Z_p = Z_p(P) \), there is a sequence of integers \(1 \leq n_1 < n_2 < \cdots \) such that, for each \(s \in \mathbb{N} \), one has

\[
\begin{align*}
(i) \quad & \|u_s - Q_n u_s\| \leq \varepsilon_s, \\
(ii) \quad & \|Q_{n+1} u_s\| \leq \varepsilon_s,
\end{align*}
\]

then \(\{u_s\}_{s=1}^{\infty} \) is \((1 + \varepsilon)(1 - 3\varepsilon)^{-1}\)-equivalent to the unit vector basis of \(\ell_p \) (respectively, \(c_0 \)).

Theorem 2.5. The Banach space \(Z_p = Z_p(P) \) is hereditarily \(\ell_p \) if \(1 \leq p < \infty \) and is hereditarily \(c_0 \) if \(p = 0 \).

The proofs of Lemma 2.4 and Theorem 2.5 are based on the definition of \(Q_i \) and the norm on \(Z_p \). In fact by the conditions of this lemma and for any sequence \((a_s)_{s=1}^{m} \) of scalars, it follows that

\[
(1 - 3\varepsilon) \left(\sum_{s=1}^{m} |a_s|^p \right)^{\frac{1}{p}} \leq \left\| \sum_{s=1}^{m} a_s u_s \right\| \leq (1 + \varepsilon) \left(\sum_{s=1}^{m} |a_s|^p \right)^{\frac{1}{p}},
\]

for \(1 \leq p < \infty \), and

\[
(1 - 3\varepsilon) \max_{1 \leq s < m} |a_s| \leq \left\| \sum_{s=1}^{m} a_s u_s \right\| \leq (1 + \varepsilon) \max_{1 \leq s < m} |a_s|,
\]

for \(p = 0 \). Then by using the stability properties of the bases (5, p. 5) and Lemma 2.2, we conclude the proofs.

Definition 2.6. Let \(X \) be an arbitrary Banach space. Then

a) \(X \) has the nowhere Schur property if \(X \) contains no infinite dimensional closed subspace with the Schur property.

b) \(X \) has the nowhere dual Schur property if \(X \) contains no infinite dimensional closed subspace such that its dual has the Schur property.

Definition 2.7. A Banach space \(X \) has the Schur property if every weak convergent sequence is norm convergent.

Theorem 1.3 in this paper and Theorem 1.3 of [5] have the following consequence.

Theorem 2.8. \(Z_1 \) possesses the nowhere dual Schur property.

3. Operators

Definition 3.1. Let \(X \) and \(Y \) be any of the spaces \(\ell_{w,p} \) (\(1 \leq p < \infty \)), or \(Z_p \) (\(1 \leq p < \infty \)) with their natural bases \((x_n)_{n=1}^{\infty} \) and \((y_n)_{n=1}^{\infty} \), respectively. The formal (possibly unbounded) operator \(T : X \rightarrow Y \) which extends by linearity and continuity the equality \(Tx_n = y_n \) is called the natural operator from \(X \) to \(Y \).
Theorem 3.2. Let \(p \in [1, \infty) \) and \(p_1 > p_2 > \cdots > 1 \).

(i) If \(\inf_n p_n < p \), then the natural operator from \(\ell_{w,p} \) to \(Z_p \) is unbounded.

(ii) If \(\inf_n p_n \geq p \), then the natural operator from \(Z_p \) to \(\ell_{w,p} \) is unbounded.

Proof. For constant scalars \(a_1 = a_2 = \cdots = a_m = 1 \), we have

\[
\left\| \sum_{i=1}^{m} z_i \right\|_p = \sum_{n=1}^{\infty} \delta_n^p \left\| \sum_{i=1}^{m} e_{i,n} \right\|_{w,p_n} = \sum_{n=1}^{\infty} \delta_n^p m^{\frac{p}{p_n}},
\]

if \(1 \leq p < \infty \).

On the other hand,

\[
\left\| \sum_{i=1}^{m} e_i \right\|_{w,p} = m,
\]

if \(1 \leq p < \infty \).

Therefore, for \(1 \leq p < \infty \), we have

\[
\|T\|^p \geq \frac{\left\| \sum_{i=1}^{m} Te_i \right\|_p^p}{\left\| \sum_{i=1}^{m} e_i \right\|_{w,p}^p} = \frac{\sum_{i=1}^{m} z_i^p}{\sum_{i=1}^{m} e_i^p} = \sum_{n=1}^{\infty} \delta_n^p m^{\frac{p}{p_n} - 1}.
\]

If \(\inf_n p_n < p \), then there exists \(n_0 \) such that \(p_{n_0} < p \), and hence,

\[
\|T\|^p \geq \sum_{n=1}^{\infty} \delta_n^p m^{\frac{p}{p_n} - 1} \geq \delta_{n_0}^p m^{\frac{p}{p_{n_0}} - 1} \to \infty,
\]

as \(m \to \infty \).

Now assume that \(\inf_n p_n \geq p \). In this case, we have \(\frac{p}{p_n} - 1 < 0 \) for each \(n \). Given \(\varepsilon > 0 \), we choose \(n_0 \) so that

\[
\sum_{n=n_0}^{\infty} \delta_n^p < \frac{\varepsilon}{2}.
\]

Then we choose \(m_0 \) such that

\[
\left(\max_{1 \leq n \leq n_0} \delta_n \right)^p m^{\frac{p}{p_{n_0}} - 1} \leq \frac{\varepsilon}{2n_0},
\]

for \(m \geq m_0 \). So, for such \(m \), we have

\[
\|T\|^p \geq \frac{1}{\sum_{n=1}^{\infty} \delta_n^p m^{\frac{p}{p_n} - 1}}.
\]
\[\sum_{n=1}^{n_0} \delta_n^p m^{\frac{p}{m}-1} + \sum_{n=n_0+1}^{\infty} \delta_n^p m^{\frac{p}{m}-1} \geq \sum_{n=1}^{n_0} \left(\max_{1 \leq n < n_0} \delta_n \right)^p m^{\frac{p}{m}-1} + \sum_{n=n_0+1}^{\infty} \delta_n^p m^{\frac{p}{m}-1} \geq \frac{1}{\frac{\varepsilon}{2} + \frac{\varepsilon}{2}} \to \infty, \]
as \(m \to \infty \).

Acknowledgment. The authors are grateful to the referees for their useful comments.

References

3. J. Bourgain, \(\ell_1 \)- subspace of Banach spaces, Lecture notes, Free University of Brussels.

1 Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.
E-mail address: somayehshahraki@yahoo.com

2 Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran.
E-mail address: ahmadi@hamoon.usb.ac.ir