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p-adic Dual Shearlet Frames

Mahdieh Fatemidokht' and Ataollah Askari Hemmat?*

ABSTRACT. We introduced the continuous and discrete p-adic shear-
let systems. We restrict ourselves to a brief description of the p-adic
theory and shearlets in real case. Using the group G consist of all
p-adic numbers that all of its elements have a square root, we de-
fined the continuous p-adic shearlet system associated with L? (Qf,)
The discrete p-adic shearlet frames for L2 (Qg) is discussed. Also
we prove that the frame operator S associated with the group G,
of all with the shearlet frame SH (¢; A) is a Fourier multiplier with
a function in terms of ;Z For a measurable subset H C Qfﬂ we
considered a subspace L? (H)V of L? (Qf,) Finally we give a nec-
essary condition for two functions in L? (Qf,) to generate a p-adic
dual shearlet tight frame via admissibility.

1. INTRODUCTION

D. Labate, G. Kutyniok and others developed the concept of shearlets
[2, B, B]. It is a well known fact that the shearlet system has better effi-
ciency than two dimensional wavelets. We introduced the p-adic shearlet
systems on L2 (Q%) and characterized some conditions for a discrete p-
adic shearlet system to be a frame. Finally, we obtained a necessary
condition for a function in L2 (QIQ)) with its dual to generate a dual
p-adic shearlet tight frame.

The field of p-adic numbers were introduced by K. Hensel in 1897.
We restrict ourselves to a brief description of the p-adic theory and for
details we refer the readers to []. For a prime p, the p-adic norm ||,
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satisfies the strong triangle inequality

2+ yl, < max (lz], yl, )

and is defined as follows, [0[,=0; and if = # 0 is a rational number of
the form x = p7™, where v = v (x) € Z and the integers m, n are not
divisible by p, then || » =P~ 7. The completion of @ with respect to this
norm is called the field of p-adic numbers, denoted by @,. Any p-adic
number x # 0 can be uniquely represented in the canonical form

o0
r=p" > wp,
3=0
where y =~ (z) € Z , x; € {0,1,...,p — 1}, 9 # 0 and one has
|, =p7".

The fractional part of a number x € @), is defined by

—y—1
{x}p = p/y Z x]pj
j=0
The above definition is equivalent with
{2} = 0, if y(x) >0orx=0,
Pl P (ot mp -+ x|7|_1p|7|_1) , ifv(z) <.
The disc of radius p” with the center at a point a € Qp, N € Z is
denoted by By (a) and its boundary is denoted by Sy (a), i.e.

BN(a):{xEQp:|x—a|p§pN},
SN(a):{erp:m—a\p:pN}.

It is a well known fact that the disc By (a) and the circle Sy (a) are
both open and close sets in ), and that the space @), is locally-compact.
Note that the disc By (0) (or Bp) coincides with the ring of p-adic integers

Ly = {x €Qp:{z}, = 0}. In [7], it is proved that every disc By (a)

is compact, so Z, is compact. Also we set I, = {:L‘ €Qp: {m}p = x} .
It is known that Qp = U,c;, Bo(2) [@], which implies I, is a discrete
subset of Q).

The space Q) = Qp X Qp X - - X Q) consists of points = (z1,...,y),
zj € Qp. The norm on Q) is defined as follows:

el = max - fajl,,.
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If a = (a1,...,ay), then By (a) = By (a1) X -+ X By (ap). A complex-
valued function f defined on @, is called locally-constant if for any
xr € @Qp there exists an integer [ (x) € Z such that f(z+y) = f(z),
Y € By(z) (0). We denote the linear space of locally-constant compactly
supported functions (so-called test functions) by D (@), (or D). The
Fourier transform of ¢ € D (Qg) is defined as

F@©=30= [ wEne@ds cea)
P

where “” denotes the inner product in Qg and x,p (€ - x) = xp (&121) -+ Xp (€aq)

and x, (§z;) = 2 &ty for j =1,...,d. Since Qp is a locally com-

pact group, it possesses the Haar measure dx such that pr dr = 1.

This Haar measure satisfies:

d(z +a) = dz and d(ax) = |a|, dz for a € @, \ {0}.
Details can be found in [7].

Theorem 1.1. [i] The Fourier transform maps L? (Q,) onto L? (Q))
one-to-one and continuously.

2. SHEARLETS ON L? (Q2)

Let a € Z. If the equation 2 = a(mod p) has a solution z € Z, then
a is called quadratic residue modulo p. In the follwing lemma [[a], we
need the Legendre symbol defined by

ay\ _ 1, if a is quadratic residue modulo p,
p) | —1, if ais quadratic non-residue modulo p.

Lemma 2.1. The equation

I2:a7a:pv(a)(ao—'_alp—’_"')? Ogai<p7 007507

has a solution x € Q) if and only if
1) v (a) is even,
2) forp#2, <%0> =1, and forp=2, a1 = as = 0.

a—l

t A, =
Se <0

0
1 ) for a € G, where G, is the group that all
a

of its elements have a square root and S; = ( (1) i > for s € Q).

For f € L? (Qp) the translation and dilation operators are defined by
T,(f)()=f(—y)and Dof (-) = a%f (a-), resp. and we have



50 M. FATEMIDOKHT AND A. ASKARI HEMMAT

FIf@ +0)© =la o (26 P (E) . arobea,

Also for f € L? (Q%) we have [{]
F(Daf) (€) = [det Al FIf] (A77¢),

1
where A is a d x d dilation matrix and D4 f (-) = |det A|3 f (A).

Definition 2.2. The continuous p-adic shearlet system associated with
W e L? (Qg) is defined as follows:

3

SH (v) = {wa,s,t = ]a\;z P (AgSs(x —t)) ta € Gp,s € Qpt € Qz} .

We define the p-adic shearlet group S = G, x Q) x Qf,, equipped with
multiplication given by

(a,s,t) (a’, s',t') = (aa', s++as' t+ SS_IA;lt') .

It is obvious that d‘rj‘%dt

p

is a left Haar measure of this group.

Definition 2.3. The continuous p-adic shearlet transform of f € L? (Qf,)
is defined as follows

[ SHyf(a,s,t) = (f,Yast), (a,s,1) €S.
In the following, we define an admissible p-adic shearlet.

Definition 2.4. The function ¢ € L? (QZ) is called an admissible p-adic
shearlet if

Set J C Z and c € @), such that ¢ # 0. Now we consider the discrete
subset of S of the form
A= {(aj, $jd, it A;jlcb) jeddel,be Jg} . aj € Gy sia € Q.

Sj.d

Let ¢ € L? (QZ). Then the discrete p-adic shearlet system is defined as
follows

. -1 4—1
SH (¢, A) = {w]}d,b = TS;jyldA;jlcbDAaj DSSj,ddj : (aj’ Sj,d> Ssj,dAaj Cb) = A} :

As one can see in [1], a discrete p-adic shearlet system {v; 4} is called
a shearlet frame, if there exist constants 0 < A < B < oo such that for
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all feL?(Q2)
(2.1) AlIFIP <D0 (ftbian)> < BIIFIP
jd b

The following theorem gives sufficient conditions on the sequence A C S
and the function ¢ € L? (Q2) such that SH (1, A) forms a frame.

Theorem 2.5. [3] Let ¢ # 0 be fized and A defined as above. Let
v eD (sz)) and set

¢ (w) =ess sup Z ‘&(A(;le;g )) ‘@(A%15;5§+w>’ , W€ QZ.
j.d

If there exist 0 < o < 8 < 00 such that

a<y ‘J(A;jls;j?; )\2 <Baegeq,
J,d

£ ((5)e() e

beI2 b£0

then SH (1, \) is a frame for L? (QZ) with frame bounds C and D sat-
1sfying

and

As an example, let p = 2 and ¢ # 0 such that |c|, < 27!. Define the
discrete subset A by
A={(2%,d27, S Acb) 1 j €L, del,bel}},
and ¢ € D (QIQ)) by
~ —~ (& — e
¥ (§1,62) = U (; (¢2 (&) + v2 (251)) :
where ¥ (w) = Q (lw|,) and ¥y (w) = § (Jw|, — 1) and the function § is

defined as:
1, if we S, (0),
5<|w’p_pv) :{ 0, o.w. 0

Then by [8, Corollary 4.3], the shearlet system SH (¢, A) forms a
p-adic tight frame for L? (Q%) See also [3, Example 4.4].
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3. DUAL SHEARLET FRAMES ON L? (Q2)

A discrete shearlet system {1 45} forms a Bessel sequence if only the
right hand side inequality in (1) holds. Two functions ¢ and v generate

dual shearlet frames if {1/13-76175,} and {{/zjm are Bessel sequences and for
all fe L? (Q%), we have

F=>3" (f05a0) Yiap-
id b

We say that ¢ with QZ generate dual shearlet tight frames if {1 45}
and {@Zj,d,b} are Bessel sequences and for some non-zero constant B [4],

we have
(31) B <fvg> = Z Z <f> ¢j,d,b> <J}Jj,d,bvg> .
7,d b

In this section, we characterize the p-adic dual shearlet tight frames
and give a necessary condition for two functions to generate p-adic dual
shearlet tight frames. Let {1 45} be a frame. The frame operator

S L*(Qp) = L* (@),

is defined as follows

SF =" (fijap) Yjap forall f € L?(Q2).
Jyd,b
This operator is positive, self adjoint, invertible and the canonical dual
shearlet frame is {S‘l¢j7d7b}.

Theorem 3.1. The frame operator S associated with the shearlet frame
SH (¢, \) is a Fourier multiplier with the function

=3 [ (4 s k)|
7.k

Proof Set ¥ ( a;Ss;q —cb) =;qp and let f,g € D (QIQ)). Then

Sf g < (f,j.a) %dm >
7,d,b

(f,¥5.dp) <¢j,d,b, §>

Z
de (Fdian) ($5a:9)
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=Y [ F@d (4 sshe)d (40 800e) T
jdb 7@ YR}
((ss LA, cb) (w— g)) dé dw
~ 2
_ ~ —1g-T
-3, 03 [ (Az)s5Te) |
Since f,g,¢ € D (Qg), so we can use the Fubini theorem. Hence the

equation (BX) is equivalent to
~ 1g-T
GHG E:\w(ajss]d))

Z/ F©3©]0 (4z'5.7¢)[ =
:<Af,g>.

-
We know that D (Qz) is dense in L? (Qg), so we have

(51.9) = (a5.3).
for f,g € L? (QIQ,), and this means S”!\f = Af.
O

Theorem 3.2. If {¢; 45} forms a Bessel sequence for D(Q%) with
bound B, then ,
> [P (eansi)
7,d
Proof. Using (21) we have
> 5 [(7auf <ali. weni

By Parseval 1dent1ty we can write

S [(Fdian)|

bel2
/ F@ o (5540 eb) -€) (A7) 5% ) de

2

<B.

2

I
=[]

I
=[]

/2 f(isz;dflajw){b\(w) Xp (b w) dw

Z/Bo(l < Aajw>$(w)xp (b-w)dw

i€l2

I
@M
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2

-2 >/ F (580 0y (o4 )) Tt 3y 0

i€l2
2

- Zf( <w+z’>>$<w+z’>

iel?

Then we have

(3.3) Z /B

Consider v € Qg and the function fas

2

( A, (w+i)>$(w+i) gBHfHZ.

i€l

~

1
f= AT XBa(v) ().

For any positive integer N, M, by (B33), we obtain
~ 2

Z Z / 1 T w(w)‘ dw < B.

del, |j|<N (a5,
Hence the result follows by taking N — oo and M — oo. O

Let H be a measurable subset of QZQ,. We consider the subspace
L?(H)" of L* (Q?) as
L*(H)Y = {f e L? (Qg) : suppfg H} .

Now we have the following main result.

Theorem 3.3. Let ¥ and @Z be admissible shearlets. If ¢ with 1Z n
L% (H)" generate a dual shearlet tight frame in L? (H)" with bound B,
then we have

=/1 _, ~/1 i
Z 1/1 <cAajlssjE§ ) w <CAajlssjz; > = BXH (5) a.c..
j.d

Proof. We can write

Z Z {f; Z/Jj,d,b> <"Zj,d,b:g>

J,d be[2

>, 7 (2800 ) 0| 0 9.3 (187,40 ) | 0
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where the bracket product is defined by
Foal ) =Y fFn+b)gn+0).

ber?2

Since 1 with 1Z generate a dual shearlet tight frame then by (BII), we
have

B(73)=3 [P (st ] @ 93 (358 0 ) | o an.

Fix d € I, and set

-1
. a; 0
M]:_Sg;’dAa]._< T - )

$j,da; " @

[NIES

J
Fix £ € H° (where H° denotes the interior of H). For for any k € Z
there exists a unique i € Ig such that

€€ Dy, (& ig) = {M? (x+iy): 2 € By} .

Now applying a technique similar to the proof of [A, Theorem 2.2], the
result follows. O
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