Document Type: Research Paper

Author

Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, P.O. Box 1339, Bojnord, Iran.

Abstract

Let $A$ be a Banach algebra and $X$ be a Banach $A$-bimodule with the left and right module actions $\pi_\ell: A\times X\rightarrow X$ and $\pi_r: X\times A\rightarrow X$, respectively. In this paper, we  study  the topological centers of the left module action $\pi_{\ell_n}: A\times X^{(n)}\rightarrow X^{(n)}$ and the right module action $\pi_{r_n}:X^{(n)}\times A\rightarrow X^{(n)}$,  which inherit from the module actions $\pi_\ell$ and $\pi_r$,  and also the topological centers of their adjoints, from the factorization property point of view, and then, we investigate  conditions  under which these bilinear maps  are Arens regular or strongly Arens irregular.

Keywords

Main Subjects

[1] R. Arens, Operations induced in function classes, Monatsh. Math., 55 (1951), pp. 1-19.

[2] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc., 2 (1951), pp 839-848.

[3] N. Arikan, Arens regularity and reflexivity, J. Math. oxford, 32 (1981), pp. 383-388.

[4] S. Barootkoob, S. Mohammadzadeh, and H.R.E. Vishki, Topological centers of certain Banach module actions, Bull. Iranian. Math. Soc., 35 (2009), pp. 25-36.
 
[5] S. Barootkoob, S. Mohammadzadeh, and H.R.E. Vishki, Erratum: Topological centers of certain Banach module actions, Bull. Iranian. Math. Soc., 36 (2010), pp. 273-274.

[6] M. Eshaghi Gordgi and M. Filali, Arens regularity of module actions, Studia Math., 181 (2007), pp. 237-254.

[7] K. Haghnejad Azar, Arens regularity of bilinear forms and unital Banach module spaces, Bull. Iranian Math. Soc., 40 (2014), pp. 505-520.

[8] V. Losert, M. Neufang, J. Pachl, and J. Stebranse, Proof of the Ghahramani-Lau conjecture, Adv. Math., 290 (2016), pp. 709-738.

[9] M. Neufang, Solution to a conjectur by Hofmeier - Wittstoch, J. Funct. Anal., 217 (2004), pp. 171-180.