Document Type: Research Paper

Author

Department of Mathematics, University of Qom, Qom, Iran.

Abstract

In this paper, we study approximate duals of $g$-frames and fusion frames in Hilbert $C^\ast-$modules. We get some relations between approximate duals of $g$-frames and biorthogonal Bessel sequences, and using these relations, some results for approximate duals of modular Riesz bases and fusion frames are obtained. Moreover, we generalize the concept of $Q-$approximate duality of $g$-frames and fusion frames to Hilbert $C^\ast-$modules, where $Q$ is an adjointable operator, and obtain some properties of this kind of approximate duals.

Keywords

Main Subjects

[1] L. Arambasic, On frames for countably generated Hilbert $C^ast-$modules, Proc. Amer. Math. Soc., 135 (2007), pp. 469-478.

[2] P. Casazza and G. Kutyniok, Frames of subspaces, Contemp. Math. Amer. Math. Soc., 345 (2004), pp. 87-113.

[3] O. Christensen and R.S. Laugesen, Approximate dual frames in Hilbert spaces and applications to Gabor frames, Sampl Theory Signal Image Process., 9 (2011), pp. 77-90.

[4] I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys., 27 (1986), pp. 1271-1283.

[5] R.J. Duffin and A.C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), pp. 341-366.

[6] M. Frank and D. Larson, Frames in Hilbert $C^ast-$modules and $C^ast-$algebras, J. Operator Theory., 48 (2002), pp. 273-314.

[7] D. Han, W. Jing, D. Larson, and R. Mohapatra, Riesz bases and their dual modular frames in Hilbert $C^ast$--modules, J. Math. Anal. Appl., 343 (2008), pp. 246-256.

[8] S.B. Heineken, P.M. Morillas, A.M. Benavente, and M.I. Zakowicz, Dual fusion frames, Arch. Math., 103 (2014), pp. 355-365.

[9] A. Khosravi and B. Khosravi, Fusion frames and $g$-frames in Hilbert $C^ast-$modules, Int. J. Wavelets Multiresolut. Inf. Process., 6 (2008), pp. 433-446.

[10] A. Khosravi and B. Khosravi, G-frames and modular Riesz bases, Int. J. Wavelets Multiresolut. Inf. Process., 10 (2012), pp. 1-12.

[11] A. Khosravi and M. Mirzaee Azandaryani, Approximate duality of $g$-frames in Hilbert spaces, Acta. Math. Sci., 34 (2014), pp. 639-652.

[12] E.C. Lance, Hilbert $C^ast-$modules: A Toolkit for Operator Algebraists, Cambridge University Press, Cambridge., 1995.

[13] M. Mirzaee Azandaryani, Approximate duals and nearly Parseval frames, Turk. J. Math., 39 (2015), pp. 515-526.

[14] M. Mirzaee Azandaryani, Bessel multipliers and approximate duals in Hilbert $C^ast-modules$, J. Korean Math. Soc., 54 (2017), pp. 1063-1079.

[15] M. Mirzaee Azandaryani, On the approximate duality of $g$-frames and fusion frames, U. P. B. Sci. Bull. Ser A., 79 (2017), pp. 83-93.

[16] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl., 322 (2006), pp. 437-452.

[17] X. Xiao and X. Zeng, Some properties of $g$-frames in Hilbert $C^ast$--modules, J. Math. Anal. Appl., 363 (2010), pp. 399-408.