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Coefficient Bounds for Analytic bi-Bazilevi¢ Functions
Related to Shell-like Curves Connected with Fibonacci
Numbers

Hatun Ozlem GUNEY

ABSTRACT. In this paper, we define and investigate a new class
of bi-Bazilevic functions related to shell-like curves connected with
Fibonacci numbers. Furthermore, we find estimates of first two
coefficients of functions belonging to this class. Also, we give the
Fekete-Szego inequality for this function class.

1. INTRODUCTION

Let U= {z: |z| < 1} denote the unit disc in the complex plane. The
class of all analytic functions of the form

(1.1) f(z) :z—i—Zanz”,
n=2

in the open unit disc U with normalization f(0) = f/(0) —1 = 0 is
denoted by A and the class S C A is the class which consists of univalent
functions in U.

A function f is subordinate to F' in U, written as f < F', if and only
if f(z) = F(w(z)) for some analytic function w such that |w(z)| < |z
for all z € U. We recall important subclasses of S in geometric function
theory such that if f € A and

(1.2 (ymwn:{feA:”“”

f(z)
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and

w3) )= {f ca 1A

f'(2)
where p(z) = w,o < a < 1, then p(U) is the half plane Re (w) >
a, and the sets (C2) and (IZ3) become the classes starlike of order «
and convex of order «, respectively. These functions form known classes
denoted by §*(a) and C(«), respectively. Especially, it is known that
§*(0) = §* and C(0) = C (see for details [4]).

<p<z>;zeru},

For 0 <a<1,0< 8 <1, afunction f € S is said to be Bazilevi¢ (]
of order v and type 3, denoted by B(a, 3), if

» RO C) N

The Koebe one quarter theorem [4] guarantees that the image of U
under every univalent function f € A contains a disk of radius %. So,
every univalent function f has an inverse f~! satisfying

PN =2 (el), FGw) =w (u] < ro(f).rof) > 7).
A function f € A is said to be bi-univalent in U if both the function
f and its inverse function f~! are univalent in U. Let 3 denote the class
of bi-univalent functions defined in the unit disk U. Since f € ¥ has the
Maclaurian series given by (IZ0), a computation shows that its inverse
g = f~! has the expansion

(1.5) g(w) = fH(w) = w — aguw?® + (2a§—a3) w4

In addition, a function is said to be bi-Bazilevi¢ in U if both the function
and its inverse are Bazilevi¢ in U.

The work of Srivastava et al. [[8] essentially revived the investigation
of various subclasses of the bi-univalent function class in recent years.
In a considerably large number of sequels to the aforementioned work
of Srivastava et al. [IR], several different subclasses of the bi-univalent
function class ¥ were introduced and studied analogously by many au-
thors (see, for example, [2, B, 8, U, I3-27]), but only non-sharp estimates
on the initial coefficients |az| and |ag| in the Taylor-Maclaurin expansion
(M) were obtained in these recent papers.

The object of the present work is to introduce a new subclass of the
function class ¥ and find estimates on the coefficients |ag| and |ag| for
functions in this new subclass of the function class ¥ using the technique
of Srivastava et al. [[8]
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In [12], Sokél familiarized the class SL of shell-like functions as the
set of functions f € A which is defined in the following definition:

Definition 1.1. The function f € A belongs to the class SL if it satisfies
the condition that

()
(1.6) 7 <),
with
,7_222
(L.7) Bz) = ——

1l —Tz— 1222
where 7 = (1 — v/5)/2 ~ —0.618.

It should be observed that SL is a subclass of the starlike functions
S*.

The function p is not univalent in U, but this function is univalent
in the disc |z| < (3 — v/5)/2 ~ 0.38. Indeed, p(0) = p(—1/27) = 1 and
p(eFrarecos(t/4)) — \/5/5 and also it may be realized that

L
Tl T
which shows that the number |7| divides [0, 1] such that it fulfils the

golden section. The image of the unit circle |z| = 1 under p is a curve
described by the equation given by

(10x — V5)y? = (V5 — 22)(V5z — 1)?,

which is translated and revolved trisectrix of Maclaurin given in the
equation

23+ 3az® + (. — a)y® =0,

o 1—27 _@
o 10 107

The curve p(re) is a closed curve without any loops for 0 < 7 < rg =
(3—+/5)/2~ 0.38. For ry < r < 1, it has a loop, and for r = 1, it has a
vertical asymptote. It is easy to observe that

Re[p(z)] — a,

with

and
Im[p(2)] — oo,
when

z— —1T.
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/
Re{zf (Z)} > a,
102)
for z € U,a = (172T) = Y5 which leads to the following corollary.

10 10
Corollary 1.2 ([6]). Let SL and S*(a) be defined as above. Then

Thus, if f € SL, then

(18)  SLCS*a)= {feA:Re{Z}f;S)} >a,zeU},

where a = (1137) = *1/—(;%, which means that if f € SL, then it is starlike

of order a. Thus it is univalent in the unit disc U.

Considering (I77), we understand that
1
1) =5 (' =) =50, (eFre ) =20, 5(0) = p (—) =

Since T satisfies the equation 72 = 1 + 7, this expression can be used
to obtain higher powers 7" as a linear function of lower powers, which
in turn can be decomposed all the way down to a linear combination
of 7 and 1. The resulting recurrence relationships yield the Fibonacci

numbers uy,:
n

T = UnT + Up—1.
In [I7], taking 7z = ¢, Raina and Sokdt showed that
1+ 7222
1 p(z) = —m————
(1.9) p(z) 1— 72— 71222
=(t+ ! !
N t)1—t—t2
1 . 1 1 1
VA t)\1—-(1—-7)t 1-—7t
:<t 1)%(1_7)11_7- n
¢ n=1 \/g
1 o o
= <t + t) Zunt” =1+ Z(Unfl + UnJrl)Tnz y
n=1 n=1
where

(L—7)" =" 1-+5

\/g ) 2 )
This shows that the relevant connection of p with the sequence of Fi-
bonacci numbers u,, such that ug = 0, w3 = 1, upt2 = Uy + up41 for

(1.10) Up =
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n=20,1,2,.... And they got

(111)  pl2) =14 pn2"
n=1

=1+ (ug + u2)72 + (ug + u3)722>

o0
+ Z(un—i’) +Up—2 +Up—1 + un)TnZn
n=3
=1+72+3m222 + 4322 + 172t + 117528 + -

Let P(«a), 0 < a < 1, denote the class of analytic functions p in U with
p(0) =1 and Re{p(z)} > a. Especially, we will use P instead of P(0).

Theorem 1.3 ([6]). The function p(z) = % belongs to the class
P(a) with a = v/5/10 ~ 0.2236.

Now we give the following lemma which will be used in sequel.

Lemma 1.4 ([I0]). Let p € P with p(z) =1+ c12 + 22 + -+, then
(1.12) len] <2, forn > 1.

In the present work, we introduce a new subclass of ¥ associated with
shell-like functions connected with the Fibonacci numbers and obtain the
initial Taylor coefficients |ag| and |ag| for this function class. Further,
Fekete and Szegd [1] introduced the generalized functional as — pa3,
where p is some real number. Also, we give a bound for the Fekete-
Szegd functional |ag — pa?| in this function class.

2. B1-BaziLEvIC FuNcTION CLASS By (o, 5)

Firstly, let p(z) = 1 4+ p1z + p22%2 + -+ -, and p < p. Then there exists
an analytic function u such that |u(z)| < 1 in U and p(z) = p(u(z)).
Therefore, the function

1+ u(z)
2.1 h(z) = ———=
(2.1) €)= T
:1+012+02Z2+"' ;
is in the class P(0). It follows that

2\ 2 3\ .3
_az _a) = _ G E o

(2.2) u(z) = 5 <C2 2> 5 T <63 cic2 + 4> o

and
(2.3)

2 2 3 3

~ . | az c1\ % 1\ 2
=1 — — — | —
p(u(z)) +p1{ 5 +<c2 2) 5 +<C3 cico + 4> 5 + }
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5 clz+ c% z2+ +c§’ z3+ 2
—_— co— — | — c3 — C1C —_— =4
D2 B 2 B B 3 1C2 4 B
+~ g+ ﬁ i2+ _‘_ﬁ Zj_i_ 3+
b3 9 C2 B B C3 — C1C2 4 B
pic1z 1 A\ . 9
=1 _ 1 -1
+ 5 +{2<62 2>p1+4p2 z

e AP DY) g+ Gpy b4
9 €3 —C1C2 4 Y41 201 C2 B p2 8293 z .

And similarly, there exists an analytic function v such that |v(w)| < 1
in U and p(w) = p(v(w)). Therefore, the function

(2.4) k(w) = %

=1+ diw+ dow? + ...,
is in the class P(0). It follows that

d 3\ w? a3\ w?
25) o) =04 (6= F) 0+ (- da+ B s

2 2 2 2 ’
and
(2.6)
o hdw 1, B\. & ,
o) =1+ 25 4 {5 (2= D) o+ G
1 B\ 1 N TR
+{2<d3—d1d2+4>p1+2d1 (d2—2)p2+8p3}w 4

Definition 2.1. For (1137) <a<1 0<pB<1,afunction f € ¥ of
the form (I0) is said to be in the class By (a, 8), the class of bi-Bazilevic
functions of order « and type f, if and only if

(2.7) Re {W} > a,
and
(2.8) Re {wg/(wféw)ﬁl } > a,

where z,w € U; g and 7 are given by ([CH) and (I[CId), respectively.

Conditions (270) and (Z8) in the above theorem can be rewritten as
follows:

2f(2) f(2)P1
(29) LR C]
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and

wy' (w)g(w)’

B

w

where p(z) and p(w) € P have the forms (223) and (E8), respectively.
Specializing the parameter 5 = 0 we have the following:

(2.10) =a+ (1 - a)p(w),

Definition 2.2. A function f € ¥ of the form (ITT) is said to be in the
class S*x(a) if and only if

2f'(2)
(2.11) Re{ 5 } > a,
and
wg’(w)}
(2.12) Re{ w7
where z,w € U, o = (1537) = ‘1/—05, and g is given by (IZH).

In the following theorem we determine the initial Taylor coefficients
laz| and |ag| for the function class Bs(a, ).

Theorem 2.3. Let f given by (W) be in the class Bx(«, ). Then
V2(1 —a)l7|

(2.13) laz| < N e R
and
(2.14) las| < (L—o)lr|[2(1+8) — (1 = )8+ 78)7]

2+B)R20+8) -1 -a)d+58)T

]
Proof. Let f € Bs(a,3) and g = f~!. Considering (223) and (2Z8), we
have

2f'(2) ()7

(2.15) R o1 a)ptu),
and
(2.16) w4 (1 - o)),
where z,w € U and g is given by (ICH). Since
(2.17)
zf%@fcaﬂ—1::<fw>>ﬁzf%@

2P z f(z)

B-1)(B+2) ,

— 143+ Dags o+ { P0G 4 (54 D 24

= a+ (1= a)p(u(2)),



156 H. 0. GUNEY

and
(2.18)
wg'(w)g(w)*' _ (g(w)\? wg'(w)
s ()
=1—(B+1)agw + {Wu?—(ﬁ+2)a3}w2+m
=a+ (1 - a)p(v(w)),
we have
(2.19) (14 B)as = & _20‘)01 7,
(2.20) 2
(B+2)as + Gl 1)2(5 + 2)a§ = (1 ; @) <02 - 021> T+ 3 4_ a)C%Tz,
and
(2.21) (14 B)as = Y _2O‘)d1 7,
(2.22)
-« 2 -«
—(B+2)as + (6+2)2(/8+3)a§ _a 5 ) (dg - d21> 7+3(14 >d%72.
From (Z19) and (22211), we have
(223) C1 = —dl,
and
2.2 _ 1-a)® 5 o o
(2.24) 2(1+ B)“a3 1 (c] +dy)T°.
l(go;vg)by summing (220) and (E222), we obtain
(B+1)(8+2)3 = % (ertar)r— (v 2D (@ )

2

By putting (224) in (2223), we have
(2.26) 2
(B+1)2[(—4—58)(1 — a)r + 28+ 1)] a2 = L= B+

5 (02+d2)7'2.

Therefore, using Lemma (I2) we obtain

v2(1 —a)l7|

(2.27) N T e e e
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Now, so as to find the bound on |as|, let’s subtract from (E220) and
(2222). So, we find

—

(2.28) 2(8 + 2)az — 2(8 + 2)a3 = 5 (c2—da) .
Hence, we get
(2.29) jas| < 27+ az .

< 5 T
Then, in view of (2227), we obtain

(1= 20 +5) = (1 = )8+ 7P)7]
2+8)R20+8) - (1-a)(d+58)7]

If we take the parameter § = 0 in the above theorem, we have the
following initial Taylor coefficients |ag| and |as| for the function classes

S*y(a). O
Corollary 2.4. Let f given by () be in the class S*x.(at). Then

(230)  Jas| <

(1 —a)r|
(2.31) las] £ —== o

and

(I—a)|r|[1—4(1 - CM)T].

(2.32) las| < 24 —o)r

3. FEKETE-SZEGO INEQUALITY FOR THE FUNCTION CLASS Bs(a, )

Due to Zaprawa [23], the following theorem is the solution of the
Fekete-Szeg6 problem in By («, ).

Theorem 3.1. Let f given by (T2) be in the class Bx(«, 8) and p € R.
Then we have

(1-a) I7] lu—1| < (8+1)[2(8+1)—(4458)(1— G)T]
lag—pas| < e 2|1’_,L\(1_a)272 (6+1)[22((ﬁf}+ﬁ§)((14;+5)é)%1 a)'r]
(B+1)[2(8+1)—(4+58)(1—a)T]’ = 1] = 2(8+2)(1—a)|7| )

Proof. From (228) and (228) we obtain

(3.1)
_ (1- 04)272(02 + d) (1 —a)71(ca —da)
% = pag = (1= 1) <5+1>[(ﬁ+1>—<4+5ﬂ><1—a>r]+ TEES)
( )1 — a)2r? - a)T> )
26+1)[ /5+1) A+58)(1—a)r]  4B+2))"7
(1 (1 - ) C(-a)r
+<2<5+ DRETLD - [A+58)1 —a)] 4(B+2)>d2'
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So we have
(3_2) as — Ma% = <h([ﬁ) + Ell(ﬁ_‘f);)—> co + <h(:u) - Ell(ﬁ_—f);)—> d27
where
_ — a)?r?
(33 ) = LN

28+ D)[2(8+1) - (4+58)(1 —a)r]’
Then, by taking modulus of (B2), we conclude that

11—«
lag —pad) <4 T2l 0 < [h( )’<4(B+2 71,
Whi)l, ) = 758517

Taking p = 1, we have the following corollary.
Corollary 3.2. If f € Bx(«, 8), then

l1—«
(3.4) lag — a%\ < 6+2|7".

If we take the parameter § = 0 in the above theorem, we have the
following Fekete-Szegd inequalities for the function class S*x(«).

Corollary 3.3. Let f given by (IT2) be in the class S*x(«) and p € R.
Then we have

) (1*&)\7‘|’ ‘,LL _ 1| < 12|2|7"

laz — paz| < [1— p|(1 —a)?72 -1 > 1 27

1-2(1—a)T )
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