Document Type: Research Paper

**Author**

Department of Mathematics Vali-e-Asr University, Rafsanjan, Iran.

**Abstract**

In this paper, we will provide a simple method for starting with a given finite frame for an $n$-dimensional Hilbert space $\mathcal{H}_n$ with nonzero elements and producing a frame which is $\epsilon$-nearly Parseval and $\epsilon$-nearly unit norm. Also, the concept of the $\epsilon$-nearly equal frame operators for two given frames is presented. Moreover, we characterize all bounded invertible operators $T$ on the finite or infinite dimensional Hilbert space $\mathcal{H}$ such that $\left\{f_k\right\}_{k=1}^\infty$ and $\left\{Tf_k\right\}_{k=1}^\infty$ are $\epsilon$-nearly equal frame operators, where $\left\{f_k\right\}_{k=1}^\infty$ is a frame for $\mathcal{H}$. Finally, we introduce and characterize all operator dual Parseval frames of a given Parseval frame.

**Keywords**

- Frame
- Parseval frame
- $epsilon$-nearly Parseval frame
- $epsilon$-nearly equal frame operators
- Operator dual Parseval frames

**Main Subjects**

[1] P. Balazs, J.P. Antoine, and A. Grybos, *Weighted and Controlled Frames: Mutual Relationship and first Numerical Properties*, Int. J. Wavelets Multiresolut. Inf. Process., 109 (2010), pp. 109-132.

[2] J.J. Benedetto, *Frame Decomposition, Sampling, and Uncertainty Principle Inequalities in "Wavelets:** Mathematics and Applications"* (J.J. Benedetto and M.W. Frazier, Eds.), CRC Press., Boca Raton, FL, 1994.

[3] B.G. Bodmann and P.G. Casazza, *The road to equal-norm Parseval frames*, J. Funct. Anal., 258 (2010), pp. 397-420.

[4] J. Cahill, P.G. Casazza, and G. Kutyniok, *Operators and frames*, J. Operator Theory., 70 (2013), pp. 145-164.

[5] P.G. Casazza and J. Kovacevic, *Equal-norm tight frames with erasures*, Adv. Comput. Math., 18 (2003), pp. 387-430.

[6] O. Christensen, *An Introduction to Frames and Riesz Bases,* Birkhauser., Boston, Basel, Berlin, 2002.

[7] O. Christensen and Y. Eldar, *Oblique dual frames and shift-invariant spaces*, Appl. Comput. Harmon. Anal., 17 (2004), pp. 48-68.

[8] O. Christensen and R.S. Laugesen, *Approximately dual frames in Hilbert spaces and application to Gabor frames*, Sampl. Theory Signal Image Process., 9 (2011), pp. 77-90.

[9] D. Freeman and D. Speegle, *The discretization problem for continuous frames.*, https://arxiv.org/abs/1611.06469.

[10] V.K. Goyal, J. Kovacevic, and J.A. Kelner, *Quantized frame expansions with erasures,* Appl. Comput. Harmon. Anal., 10 (2001), pp. 203-233.

[11] C. Heil, Y.Y. Koo, and J.K. Lim, *Duals of frame sequences*, Acta Appl. Math., 107 (2008), pp. 75-90.

[12] C. Heil and D. Walnut, *Continuous and discrete wavelet transform*, SIAM Rev., 31 (1969), pp. 628-666.

[13] A.A. Hemmat and J.P. Gabardo, *Properties of oblique dual frames in shift-invariant systems*, J. Math. Anal. Appl., 356 (2009), pp. 346-354.

[14] S. Li and H. Ogawa, *Pseudo duals of frames with applications*, Appl. Comput. Harmon. Anal., 11 (2001), pp. 289-304.

[15] R. Young, *An Introduction to Nonharmonic Fourier Series*, Academic Press., New York, 1980.