Document Type : Research Paper

Author

Department of Mathematics Vali-e-Asr University, Rafsanjan, Iran.

Abstract

In this paper, we will provide a simple method for starting with a given finite frame for an $n$-dimensional Hilbert space $\mathcal{H}_n$ with nonzero elements and producing a frame which is $\epsilon$-nearly Parseval and $\epsilon$-nearly unit norm. Also, the concept of the $\epsilon$-nearly equal frame operators for two given frames is presented. Moreover, we characterize all bounded invertible operators $T$ on the finite or infinite dimensional Hilbert space $\mathcal{H}$ such that $\left\{f_k\right\}_{k=1}^\infty$ and $\left\{Tf_k\right\}_{k=1}^\infty$ are $\epsilon$-nearly equal frame operators, where $\left\{f_k\right\}_{k=1}^\infty$ is a frame for $\mathcal{H}$. Finally, we introduce and characterize all operator dual Parseval frames of a given Parseval frame.

Keywords

Main Subjects

[1] P. Balazs, J.P. Antoine, and A. Grybos, Weighted and Controlled Frames: Mutual Relationship and first Numerical Properties, Int. J. Wavelets Multiresolut. Inf. Process., 109 (2010), pp. 109-132.
[2] J.J. Benedetto, Frame Decomposition, Sampling, and Uncertainty Principle Inequalities in "Wavelets: Mathematics and Applications" (J.J. Benedetto and M.W. Frazier, Eds.), CRC Press., Boca Raton, FL, 1994.
[3] B.G. Bodmann and P.G. Casazza, The road to equal-norm Parseval frames, J. Funct. Anal., 258 (2010), pp. 397-420.
[4] J. Cahill, P.G. Casazza, and G. Kutyniok, Operators and frames, J. Operator Theory., 70 (2013), pp. 145-164.
[5] P.G. Casazza and J. Kovacevic, Equal-norm tight frames with erasures, Adv. Comput. Math., 18 (2003), pp. 387-430.
[6] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhauser., Boston, Basel, Berlin, 2002.
[7] O. Christensen and Y. Eldar, Oblique dual frames and shift-invariant spaces, Appl. Comput. Harmon. Anal., 17 (2004), pp. 48-68.
[8] O. Christensen and R.S. Laugesen, Approximately dual frames in Hilbert spaces and application to Gabor frames, Sampl. Theory Signal Image Process., 9 (2011), pp. 77-90.
[9] D. Freeman and D. Speegle, The discretization problem for continuous frames., https://arxiv.org/abs/1611.06469.
[10] V.K. Goyal, J. Kovacevic, and J.A. Kelner, Quantized frame expansions with erasures, Appl. Comput. Harmon. Anal., 10 (2001), pp. 203-233.
 
[11] C. Heil, Y.Y. Koo, and J.K. Lim, Duals of frame sequences, Acta Appl. Math., 107 (2008), pp. 75-90.
[12] C. Heil and D. Walnut, Continuous and discrete wavelet transform, SIAM Rev., 31 (1969), pp. 628-666.
[13] A.A. Hemmat and J.P. Gabardo, Properties of oblique dual frames in shift-invariant systems, J. Math. Anal. Appl., 356 (2009), pp. 346-354.
[14] S. Li and H. Ogawa, Pseudo duals of frames with applications, Appl. Comput. Harmon. Anal., 11 (2001), pp. 289-304.
[15] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press., New York, 1980.