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Fixed Point Theory in ε-connected Orthogonal Metric Space

Madjid Eshaghi1 and Hasti Habibi2∗

Abstract. The existence of fixed point in orthogonal metric spaces
has been initiated by Eshaghi and et. al [7]. In this paper, we prove
existence and uniqueness theorem of fixed point for mappings on
ε-connected orthogonal metric space. As a consequence of this,
we obtain the existence and uniqueness of fixed point for analytic
function of one complex variable. The paper concludes with some
illustrating examples.

1. Introduction

Concept of ε-connected (locally) contractive mappings and generaliza-
tion of Banach contraction principle in ε-connected (chainable) metric
space has been established in [3]. The ε-connected (locally) contractive
type mappings has been studied by many authors and important results
have been obtained by [2, 4–6, 8, 9, 12]. Recently, notions of orthogonal
set and orthogonal metric space have been introduced in [7]. The ex-
istence of fixed point in orthogonal metric spaces has been initiated in
[7] and generalizations of this theorem has been obtained in [1, 10, 11].
In this paper, we are interested to define a new concept of ε-connected
orthogonal ((ε,⊥)-connected) metric space. We obtain existence and
uniqueness theorem of fixed point for mappings on ε-connected orthog-
onal metric space. We state some examples to our obtained result. The
following proposition will be proved, which guarantees the existence and
uniqueness of fixed point for analytic functions of one complex variable
[3].

2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. Fixed point, ε-connected, Orthogonal set, Solution, Metric

space, Analytic function.
Received: 23 September 2017, Accepted: 28 August 2018.
∗ Corresponding author.

35

http://scma.maragheh.ac.ir


36 M. ESHAGHI AND H. HABIBI

Proposition 1.1. Let f(z) be an analytic function in a domain D of the
complex z-plane; let f(z) map a compact and connected subset C of D
into itself. If in addition |f ′(z)| < 1 for every z ∈ C, then the equation
f(z) = z has one and only one solution in C.

The paper is organized as follows: In Section 2, we state some defini-
tions and recall extension of Banach fixed point theorem in an orthogonal
metric space. In Section 3, we present some new definitions which are
needed to prove the main result and we show the existence and unique-
ness of fixed point for mappings on an ε-connected orthogonal metric
space. This section contains some examples illustrating our result. In
Section 4, applying the result of Section 3, we prove the existence and
uniqueness of fixed point for an analytic function of one complex vari-
able.

2. Preliminaries

In this section, some preliminaries which are necessary for later are
recalled.

Definition 2.1 ([7]). Let X ̸= ϕ and ⊥ ⊆ X ×X be a binary relation.
If ⊥ satisfies the following condition

∃x0 ∈ X; ((∀y ∈ X; y⊥x0) or (∀y ∈ X;x0⊥y)) ,

it is called an orthogonal set (briefly O-set). We denote this O-set by
(X,⊥).

In the following, we give some examples of orthogonal sets.

Example 2.2. LetX = [2,∞), we define x⊥y if x ≤ y. Then by putting
x0 = 2, (X,⊥) is an O-set.

By the following examples, we can see that x0 is not necessarily
unique.

Example 2.3. Let X =
{
(1, φ) ; 0 ≤ φ ≤ 3

2π
}

be the set of points of

the plane R2 defined in polar coordinates. We define the relation ⊥ on
X as follows:

(1, φ1)⊥ (1, φ2) ⇐⇒ φ1 ≤ φ2.

It is easy to see that (1, 0)⊥ (1, φ) and (1, φ)⊥
(
1, 32π

)
for all (1, φ) ∈ X.

Example 2.4. Suppose that M(n) is the set of all n× n matrices and
Q is a positive definite matrix. Define the relation ⊥ on M(n) by

A⊥B ⇐⇒ ∃X ∈ M(n); AX = B.

One can see that I⊥B, B⊥0 and Q
1
2⊥B for all B ∈ M(n).

Let (X,⊥) be an O-set. We consider the notion of O-sequence.
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Definition 2.5 ([7]). A sequence {xn}n∈N is called an orthogonal se-
quence (briefly O-sequence) if

((∀n;xn⊥xn+1) or (∀n;xn+1⊥xn)) .

Let (X, d,⊥) be an orthogonal metric space ((X,⊥) is an O-set and
(X, d) is a metric space). Now, we consider the following definitions.

Definition 2.6 ([7]). The orthogonal metric space (X, d,⊥) is said to be
orthogonally complete (briefly O-complete) if every Cauchy O-sequence
is convergent.

Definition 2.7 ([7]). Let (X, d,⊥) be an orthogonal metric space and
0 < λ < 1. Let f be a mapping of (X, d,⊥) into itself.

(i) f is said to be an orthogonal contractive (⊥−contractive) map-
ping with Lipschitz constant λ if

d(fx, fy) ≤ λd(x, y) if x⊥y.(2.1)

(ii) f is called an orthogonal preserving (⊥−preserving) mapping if
x⊥y then f(x)⊥f(y).

(iii) f is an orthogonal continuous (⊥−continuous) mapping in a ∈
X if for each O-sequence {an}n∈N in X such that an → a
then f(an) → f(a). Also, f is ⊥−continuous on X if f is
⊥−continuous in each a ∈ X.

Example 2.8. Let X = [0, 10) and the metric on X be the Euclidian
metric. Define x⊥y if xy ≤ max {x, y}. The space X is not complete
but it is O-complete. Let x⊥y and xy ≤ x. If {xk} is an arbitrary
Cauchy O-sequence in X, then there exists a subsequence {xkn} of {xk}
for which xkn = 0 for all n, or there exists a subsequence {xkn} of {xk}
such that xkn ≤ 1 for all n. It follows that {xkn} converges to some
x ∈ [0, 10). On the other hand, we know that every Cauchy sequence
with a convergent subsequence is convergent. It follows that {xk} is
convergent.

Let f : X → X be a mapping defined by

f(x) =

{
x
2 , x ≤ 2,

0 , x > 2.

Also, x⊥y and xy ≤ x. We have the following cases:

• Case 1) x = 0 and y ≤ 2. Then f(x) = 0 and f(y) = y
2 .

• Case 2) x = 0 and y > 2. Then f(x) = f(y) = 0.
• Case 3) y ≤ 1 and x ≤ 2. Then f(y) = y

2 and f(x) = x
2 .

• Case 4) y ≤ 1 and x > 2. Then x − y > y , f(y) = y
2 and

f(x) = 0.
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These imply that f(x)f(y) ≤ f(x). Hence f is ⊥-preserving.
Also, one can see that |f(x)− f(y)| ≤ 1

2 |x− y|. Hence f is⊥−contraction.
But f is not a contraction. Otherwise, for two points 2 and 3 and for all
0 < c < 1 we have |f(3)− f(2)| ≤ c |3− 2| and one can conclude that,
it is a contradiction.

If {xn} is an arbitrary O-sequence in X such that {xn} converges to
x ∈ X. Since f is ⊥−contraction, then for each n ∈ N we have

|f(xn)− f(x)| ≤ 1

2
|xn − x| .

As n goes to infinity, f is ⊥-continuous. But, as it can be seen easily, f
is not continuous.

Now, we can state the following theorem which can be considered as
a real extension of Banach fixed point theorem.

Theorem 2.9 ([7]). Let (X, d,⊥) be an O-complete metric space (not
necessarily a complete metric space) and 0 < λ < 1. Let f : X →
X be ⊥−continuous, ⊥−contraction (with Lipschitz constant λ) and
⊥−preserving. Then f has a unique fixed point x∗ in X. Also, f is
a Picard operator, that is, lim fn(x) = x∗ for all x ∈ X.

3. Main Results

In this section, we state and prove our existence and uniqueness re-
sults. Let ε > 0. At first, we consider the following definitions.

Definition 3.1. A sequence {xn} is called an ε-connected orthogonal
sequence (briefly (ε,⊥)-connected sequence) if d(xn, xn+1) < ε (n ∈ N)
and

((∀n ∈ N;xn⊥xn+1) or (∀n ∈ N;xn+1⊥xn)) .

Definition 3.2. An orthogonal metric spaceX is called (ε,⊥)-connected
if for any points x ∈, y ∈ X, one can find an (ε,⊥)-connected sequence
x = x0, x1, . . . , xn = y.

Let (X, d,⊥) be an (ε,⊥)-connected metric space. We turn our con-
sideration to the following definition.

Definition 3.3. A mapping f : X → X is called ε-connected orthogonal
preserving ((ε,⊥)-connected preserving) if d(x, y) < ε and x⊥y imply
d(f(x), f(y)) < ε and f(x)⊥f(y).

Now, we give an example of (ε,⊥)-connected preserving maps.

Example 3.4. Let X = [0, 1). Define x⊥y if xy ≤ min
{
x
2 ,

y
2

}
. Let

the metric on X be the Euclidian metric and f : X → X be a mapping
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defined by

f(x) =

{
x
8 , 0 ≤ x < 1

2 ,

0 , 1
2 ≤ x < 1.

Suppose x⊥y, xy ≤ x
2 , ε = 1

10 and d(x, y) < ε. Then the following
cases are hold.

• Case 1) x = 0 and y < 1
2 . Then f(x) = 0 and f(y) = y

8 .

• Case 2) y ≤ 1
2 and x < 1

2 . Then f(y) = y
8 and f(x) = x

8 .

• Case 3) y ≤ 1
2 and 1

2 ≤ x < 1. Then f(y) = y
8 and f(x) = 0.

This implies that d(f(x), f(y)) < 1
16 < ε and f(x)f(y) ≤ f(x)

2 . Hence f
is (ε,⊥)-connected preserving.

Let (X, d,⊥) be an (ε,⊥)-connected metric space and 0 < λ < 1. We
turn our attention to the concept of (ε,⊥)-connected contractive maps.

Definition 3.5. Amapping f : X → X is said to be ε-connected orthog-
onal contractive ((ε,⊥)-connected contractive) with Lipschitz constant
λ (0 ≤ λ < 1) if

d(fx, fy) ≤ λd(x, y),(3.1)

for any x ∈ X and y ∈ X such that d(x, y) < ε and x⊥y.

In the following, we present some examples of (ε,⊥)-connected con-
tractive maps.

Example 3.6. Using Example 3.4, one can see that

|f(x)− f(y)| ≤ 1

8
|x− y| .

Hence f is an (ε,⊥)-connected contractive map with λ = 1
8 .

The following example shows that there exist (ε,⊥)-connected con-
tractive maps which are not ⊥-contractive.

Example 3.7. Let X =
{
(1, φ) ; 0 ≤ φ ≤ 3

2π
}
be the set of points of the

plane R2 defined in polar coordinates. For x = (1, φ1) and y = (1, φ2)
in X we define the relation ⊥ as follows:

x⊥y ⇐⇒ φ1 ≤ φ2.

Let f : X → X be a mapping defined by f(1, φ) =
(
1, 49φ

)
. In other

words, X is an arc of the unit circle. Let d be the usual metric on the
plane and ε =

√
2. If x⊥y and d(x, y) <

√
2 then we have:

x = (1, φ1) , y = (1, φ2) ,
fx =

(
1, 49φ1

)
, fy =

(
1, 49φ2

)
.
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In the plane R2, we have:

x = (cosφ1, sinφ1) , y = (cosφ2, sinφ2) ,
fx =

(
cos 4

9φ1, sin
4
9φ1

)
, fy =

(
cos 4

9φ2, sin
4
9φ2

)
.

So,

d(fx, fy) =

√(
cos

4

9
φ1 − cos

4

9
φ2

)2

+

(
sin

4

9
φ1 − sin

4

9
φ2

)2

=

√
2− 2

(
sin

4

9
φ1 sin

4

9
φ2 + cos

4

9
φ1 cos

4

9
φ2

)
=

√
2− 2 cos

4

9
(φ2 − φ1)

=

√
2− 2

(
1− 2 sin2

(
2

9
(φ2 − φ1)

))
= 2 sin

(
2

9
(φ2 − φ1)

)
.

In this way, one obtains d(x, y) = 2 sin
(
1
2 (φ2 − φ1)

)
, and

d(fx, fy)

d(x, y)
=

2 sin
(
2
9 (φ2 − φ1)

)
2 sin

(
1
2 (φ2 − φ1)

)
≤

sin
(
2
9
π
2

)
sin

(
1
2
π
2

)
=

sin π
9

sin π
4

< 1.

Therefore, if d(x, y) < ε =
√
2 and x⊥y then

d(fx, fy) ≤ λd(x, y),

where λ =
sin π

9
sin π

4
< 1. This means that f is (

√
2,⊥)-connected contrac-

tive. Now, we show that f is not ⊥-contraction. Otherwise, for a = (1, 0)
and b =

(
1, 32π

)
such that a⊥b, d(a, b) =

√
2, fa = a = (1, 0) and

fb =
(
1, 23π

)
, we have d(fa, fb) =

√
3, fa⊥fb and d(fa, fb) > d(a, b).

One can conclude that it is a contradiction.

LetX be an (ε,⊥)-connected metric space. In the following definition,
we consider the notion of an (ε,⊥)-connected continuous map.
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Definition 3.8. A mapping f : X → X is ε-connected orthogonal con-
tinuous (briefly(ε,⊥)-connected continuous) in a ∈ X if for each (ε,⊥)-
connected sequence {an}n∈N in X if an → a then f(an) → f(a). Also f
is (ε,⊥)-connected continuous on X if f is (ε,⊥)-connected continuous
in each a ∈ X.

Let us consider some examples of (ε,⊥)-connected continuous map.

Example 3.9. In Example 3.4, f is an (ε,⊥)-connected continuous map
as can be proved in the following way:

Let {xn}n∈N be an (ε,⊥)-connected sequence in X converging to x ∈
X. Since f is an (ε,⊥)-connected preserving map so {fxn} is an (ε,⊥)-
connected sequence. In Example 3.6, we have shown that f is (ε,⊥)-
connected contractive with λ = 1

8 . For each n ∈ N we have

|f(xn)− f(x)| < 1

8
|xn − x| .

As n goes to infinity, f is an (ε,⊥)-connected continuous map.

Example 3.10. Let (X, d,⊥), ε and f be as defined in Example 3.7.
Suppose that {xn}n∈N = {(1, φn)}n∈N is an (ε,⊥)-connected sequence
in X converging to x ∈ X. It is obvious that f is an (ε,⊥)-connected
preserving map. So, {fxn} is an (ε,⊥)-connected sequence. Since, f is
(ε,⊥)-connected contractive, for each n ∈ N we have

|f(xn)− f(x)| < λ |xn − x| .
As n goes to infinity, it follows that f is an (ε,⊥)-connected continuous
map.

LetX be an (ε,⊥)-connected metric space. We turn our consideration
to the following definition.

Definition 3.11. The space X is called ε-connected orthogonal com-
plete (briefly (ε,⊥)-connected complete) if every Cauchy (ε,⊥)-connected
sequence is convergent.

At this stage, we can state the main theoretical result of this paper
which proves existence and uniqueness of fixed point for mappings on
(ε,⊥)-connected metric space.

Theorem 3.12. Let (X, d,⊥) be an (ε,⊥)-connected complete met-
ric space and f be some (ε,⊥)-connected preserving, (ε,⊥)-connected
contractive and (ε,⊥)-connected continuous map. Then there exists a
unique fixed point x∗ of f and limn→∞ fnx = x∗ for any point x ∈ X.

Proof. We set

d∗(x, y) = inf
n−1∑
i=0

d(xi, xi+1),
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where the sum is taken over all (ε,⊥)-connected sequences
x = x0, x1, . . . , xn = y. Since (ε,⊥) is an (ε,⊥)-connected metric space,
then d∗(x, y) is defined for all x ∈ X, y ∈ X.

First, we note that

d(x, y) ≤
n−1∑
i=0

d(xi, xi+1),

if x = x0, y = xn and hence

d(x, y) ≤ d∗(x, y)

= inf
n−1∑
i=0

d(xi, xi+1).

Now, we will prove that d∗ is a metric on (X,⊥). The relations d∗(x, y) =
d∗(y, x) and d∗(x, x) = 0 follow directly from definition of d∗.

If x ̸= y and x⊥y then d(x, y) > 0 and since d(x, y) ≤ d∗(x, y), one
has d∗(x, y) > 0.

Moreover, the triangle axiom is satisfied, as can be proved in the
following way:

For ∀x, y, z ∈ X such that x⊥y, y⊥z and x⊥z, we have

d∗(x, y) + d∗(y, z) = inf
x=x0,y=xn

n−1∑
i=0

d(xi, xi+1) + inf
y=y0,z=ym

m−1∑
j=0

d(yj , yj+1)

= inf
x=x0,y=xn,z=xm+n

n+m−1∑
i=0

d(xi, xi+1)

≥ inf
x=x0,z=xn+m

n+m−1∑
i=0

d(xi, xi+1)

= d∗(x, z).

If x⊥y and d(x, y) < ε then among the sums

n−1∑
i=0

d(xi, xi+1),

x = x0, y = xn, d(xi, xi+1) < ε figures the sum

0∑
i=0

d(xi, xi+1),

consisting of one summand d(x, y) i.e. in this case d∗(x, y) ≤ d(x, y) and
taking account of the inequality d(x, y) ≤ d∗(x, y) which was proved
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earlier we get the relation

d(x, y) < ε ⇒ d(x, y) = d∗(x, y).

We note that the ⊥-preserving map f is ⊥-contractive with respect
to the metric d∗, since, for x ⊥ y we have

d∗(fx, fy) = inf
fx=x0,fy=xn

n−1∑
i=0

d(zi, zi+1)

≤ inf
x=x0,y=xn

n−1∑
i=0

d(fxi, fxi+1)

≤ inf
x=x0,y=xn

n−1∑
i=0

λd(xi, xi+1)

= λd∗(x, y).

Finally, the ⊥-preserving map f is ⊥-continuous with respect to the
metric d∗, since for O-sequence {an} such that an −→ a we have

d∗(fan, fa) ≤ λd∗(an, a)

< ελ.

Thus, a metric d∗ on (X,⊥) has been found in which the ⊥-preserving
map f is ⊥-continuous and ⊥-contractive for any λ (0 < λ < 1).

For x⊥y, we have d(x, y) = d∗(x, y) if d(x, y) < ε and d∗(x, y) <
ε. Hence, Cauchy systems in (X, d,⊥) coincide with Cauchy systems
in (X, d∗,⊥) and in this way, convergence in (X, d,⊥) coincides with
convergence in (X, d∗,⊥). Thus, if (X, d,⊥) is (ε,⊥)-connected com-
plete metric space then (X, d∗,⊥) is a O-complete metric space, too.
Therefore, f is an ⊥-preserving, ⊥-contractive and ⊥-continuous map
of (X, d∗,⊥) into itself. So, by Theorem 2.9, there exists a unique fixed
point x∗ of f and limn→∞ fnx = x∗ in the metric d∗ and consequently
in the metric d for any point x ∈ X. □

In the following, we show how the classical fixed point theorem on ε-
connected metric spaces of [3] is a consequence of the previous theorem.

Theorem 3.13. Let (X, d) be a complete ε-connected metric space and
f be some ε-contractive map. Then there exists a unique fixed point x∗

of f and limn→∞ fnx = x∗ for any point x ∈ X.

Proof. Let x, y ∈ X and d(x, y) < ε. Define x⊥y if d(fx, fy) ≤ d(x, y).
Fix x0 ∈ X. Since f is an ε-contractive then for each y ∈ X, x0⊥y.
Hence X is (ε,⊥)-connected metric space.



44 M. ESHAGHI AND H. HABIBI

Let x, y ∈ X, d(x, y) < ε and x⊥y. Then by definition of ⊥, we have
d(f(x), f(y)) ≤ d(x, y) < ε. Since f is ε-contractive, f(x)⊥f(y) and
hence, f is an (ε,⊥)-connected preserving map.

Let x, y ∈ X, d(x, y) < ε and x⊥y. Since f is ε-contractive, we have
d(f(x), f(y)) ≤ λd(x, y). Hence f is an (ε,⊥)-connected contractive
map.

Let {xn}n∈N be an (ε,⊥)-connected sequence in X converging to x ∈
X. Since f is an (ε,⊥)-connected preserving map, so {fxn} is an (ε,⊥)-
connected sequence. Also, f is (ε,⊥)-connected contractive with λ (0 ≤
λ < 1). For each n ∈ N we have d(f(xn), f(x)) ≤ d(xn, x). As n goes to
infinity, f is an (ε,⊥)-connected continuous map.

It is obvious that X is an (ε,⊥)-connected complete metric space and
f is an (ε,⊥)-connected continuous map. Applying previous theorem,
f has a unique fixed point x∗ and limn→∞ fnx = x∗ for any point
x ∈ X. □

Next examples illustrate some of the assumptions involved in Theorem
3.12.

Example 3.14. For (X, d,⊥) and f as in Example 3.4, it is obvious that
X is (ε,⊥)-connected complete. We have shown in Example 3.4 that
f is (ε,⊥)-connected preserving. Example 3.6 shows that f is (ε,⊥)-
connected contractive and also Example 3.9 shows that f is an (ε,⊥)-
connected continuous map. Applying Theorem 3.12, f has a unique
fixed point in X.

Example 3.15. Let (X, d,⊥) and f be as in Example 3.7. It is obvious
that X is (ε,⊥)-connected complete and f is (ε,⊥)-connected preserv-
ing. In Example 3.7, we have shown that f is (ε,⊥)-connected contrac-
tive and Example 3.10 shows that f is an (ε,⊥)-connected continuous
map. Applying Theorem 3.12, f has a unique fixed point in X.

4. An Application to Analytic Function of one Complex
Variable

In this section, we apply the obtained results in the previous section
to the particular case of analytic functions in a domain of the complex
z-plane. This approach provides a new proof of the following fixed point
theorem for analytic functions of one complex variable.

Proposition 4.1. Let f(z) be an analytic function in a domain D of
the complex z-plane; let f(z) map a compact and connected subset C of
D into itself. If in addition |f ′(z)| < 1 for every z ∈ C then the equation
f(z) = z has one and only one solution in C.
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Proof. Let X = C and d be the usual metric on the complex z-plane.
As |f ′(z)| is continuous on X, it follows from the compactness of X that
there exists λ such that |f ′(z)| ≤ λ < 1 on X.

Define z1⊥z2 if there exists δ > 0 such that d(z1, z2) < δ for z1, z2 ∈ X.
Fix z0 ∈ X. Consider a cover of X by a family of open discs S(z, ρ)
centered at points z ∈ X and a radius ρ such that f(z) is analytic and
|f ′(z)| < λ in S(z, 2ρ). This cover contains, again by compactness of
X, a finite subcover {S(zi, ρi)}, (i = 0, 1, 2, . . . , n). Put δ = Σn

i=02ρi.
We have d(z, z0) < δ for any z ∈ X. So z⊥z0 for any z ∈ X. Hence,
(X, d,⊥) is an orthogonal metric space.

Now, put ε = mini ρi. Since X is connected, we can deduce that X
is an (ε,⊥)-connected complete metric space.

We break the end of the proof into the following steps:
Step 1) f is (ε,⊥)-connected preserving.
Let z1, z2 ∈ X, d(z1, z2) < ε and z1⊥z2. Since X is (ε,⊥)-connected

complete metric space, so there exists an (ε,⊥)-connected sequence
f(z1) = x0, x1, . . . , xn = f(z2) such that d(xi, xi+1) < ε. Put δ = nε.
So d(f(z1), f(z2)) < δ. This means that f(z1)⊥f(z2). Thus, f is (ε,⊥)-
connected preserving.

Step 2) f is (ε,⊥)-connected contractive.
Any two point z1, z2 of X with distant less than ε will, evidently, fall

into some S(zj , 2ρj). Hence,

|f(z2)− f(z1)| =
∣∣∣∣∫ z2

z1

f ′(z)dz

∣∣∣∣ < λ |z2 − z1| .

This means that f is (ε,⊥)-connected contractive.
Step 3) f is (ε,⊥)-connected continuous.
Suppose {zn}n∈N is an (ε,⊥)-sequence in X converging to z ∈ X. Be-

cause f is (ε,⊥)-connected preserving, {f(zn)}n∈N is an (ε,⊥)-connected
sequence. For each n ∈ N, since f is (ε,⊥)-connected contractive we have

|f(zn)− f(z)| < λ |zn − z| .
As n goes to infinity, it follows that f is (ε,⊥)-connected continuous
map on X.

Applying Theorem 3.12, then f(z) = z has one and only one solution
in X. □
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