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A New Common Fixed Point Theorem for Suzuki Type

Contractions via Generalized Ψ-simulation Functions

Gholamreza Heidary Joonaghany1, Ali Farajzadeh2∗, Mahdi Azhini3,
and Farshid Khojasteh4

Abstract. In this paper, a new stratification of mappings, which
is called Ψ-simulation functions, is introduced to enhance the study
of the Suzuki type weak-contractions. Some well-known results
in weak-contractions fixed point theory are generalized by our re-
searches. The methods have been appeared in proving the main re-
sults are new and different from the usual methods. Some suitable
examples are furnished to demonstrate the validity of the hypoth-
esis of our results and reality of our generalizations.

1. Introduction

The Banach contraction principle [4] was appeared in 1922. It is the
wellspring of many future researchers and load of generalizations were
presented in a short run. The concept of the weak contraction was
defined by Alber and Guerre Dlabriere [1] for single valued maps on
Hilbert spaces in 1997. In 2001 Rhoades generalized this concept to
complete metric spaces [18]. Many authors made effort to find a way for
characterizing the contractions which are the combination of two terms
d(x, y) and d(Tx, Ty) in which X is a metric space, T is a self map on
X and x, y ∈ X (see [5–9, 11–14, 17–25] and references therein).

In 2008 Suzuki [23] established a worth-full generalization of Banach
contraction theorem. Suzuki-type contractions as one of the remarkable
concepts in nonlinear analysis were studied by many authors and worth-
while results in this direction obtained. See [7, 8, 11, 12, 17, 21, 22, 24].
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Particularly, in 2015 Sing et al. [21] obtained a weakly contractive
version of Suzuki type contractions and generalized some results of -Dorić
[6], Zhang et al. [25] and others.

In 2015, Khojasteh et al. [10] introduced a new class of mappings
called simulation functions, from which many single valued contractions
could be obtained. They proved the existence and uniqueness of fixed
points for the class of Z-contraction mappings. The advantage of this
notion is in providing a unique point of view for several fixed point prob-
lems (for more details, we refer the reader to [15, 19] and the references
therein).

In 2016 Olgun et al. [16] introduced the concept of generalized Z-
contraction on metric spaces and proved a fixed point theorem for this
contractions.

In this paper, a new class of mappings so called Ψ-simulation functions
which is greater than simulation functions’ class, is introduced. More-
over, an armative answer to a conjecture proposed by Singh et al. [21] is
provided and some well-known weak-contractions fixed point theorems
are generalized.

Definition 1.1 ([10]). Let η : [0,∞)× [0,∞) → R be a mapping, then
η is called a simulation function if it satisfies the following conditions:

(ηi) η(0, 0) = 0,
(ηii) η(t, s) < s− t for all t, s > 0,
(ηiii) if {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn

> 0,

then

lim sup
n→∞

η(tn, sn) < 0.

Example 1.2. We recall some examples of the simulation functions
given in [10].

(a1) For each s, t ≥ 0, let η(t, s) = αs− t, in which α ∈ [0, 1).
(a2) For each s, t ≥ 0, let η(t, s) = ϕ(s)− t, in which

ϕ : [0,+∞) → (0,+∞) be a mapping such that for each s > 0,
ϕ(s) < s and

lim sup
t→s

ϕ(t) < s.

(a3) For each s, t ≥ 0 let η(t, s) = sϕ(s)− t, in which
ϕ : [0,+∞) → [0, 1) be a mapping such that for each s > 0,

lim sup
t→s

ϕ(t) < 1.



A NEW COMMON FIXED POINT THEOREM FOR SUZUKI TYPE... 131

(a4) For each s, t ≥ 0, let η(t, s) = s− ϕ(s)− t, in which
ϕ : [0,+∞) → [0,+∞) be a mapping such that for each s > 0,

lim inf
t→s

ϕ(t) > 0,

or ϕ : [0,+∞) → [0, 1) is a continuous function such that
ϕ(t) = 0 if and only if t = 0.

(a5) For each s, t ≥ 0, let η(t, s) = ψ(s)− φ(s) where
ψ, ϕ : [0,+∞) → [0,+∞) are two continuous functions such
that ψ(t) = ϕ(t) = 0 if and only if t = 0 and ψ(t) < t ≤ ϕ(t) for
all t > 0.

As in [10] the set of all simulation functions is denoted by Z. The
following theorem is proved by Khojasteh et al. in [10]. (See also [2, 19]).

Theorem 1.3. Let (X, d) be a complete metric space and T : X → X
be a Z-contraction with respect to a certain simulation function η, that
is,

(1.1) η(d(Tx, Ty), d(x, y)) ≥ 0, ∀x, y ∈ X.

Then T has a unique fixed point.

Note that the condition (ηi) was not used for the proof of Theorem
1.3. However, one can easily see that if η(0, 0) < 0, the set of operators
T : X → X satisfying (1.1) will be empty. Therefore, we can modify the
Definition 1.1 by removing the condition (ηi), as we do it in sequel.

Definition 1.4 ([16]). Let (X, d) be a complete metric space and
T : X → X be a mapping and ζ ∈ Z. Then T is called generalized
Z-contraction with respect to ζ if the following condition is satisfied:

η (d(Tx, Ty),mT (x, y)) ≥ 0,

where

mT (x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

Theorem 1.5 ([16], Theorem 2). Every generalized Z -contraction on
a complete metric space has a unique fixed point.

The following theorem is proved by Sing et al. [21].

Theorem 1.6 ([21], Theorem 2.1). Let (X, d) be a complete metric space
and T : X → X such that for all x, y ∈ X, 1

2d(x, Tx) ≤ d(x, y) implies
that

ψ (d(Tx, Ty)) ≤ ψ (mT (x, y))− ϕ (mT (x, y)) ,

where
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(i) ψ : [0,+∞) → [0,+∞) is a continuous nondecreasing function
and ψ(t) = 0 if and only if t = 0,

(ii) φ : [0,+∞) → [0,+∞) is lower semi-continuous with
φ(t) = 0 if and only if t = 0,

and

mT (x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
.

Then T has a unique fixed point.

The following theorem is the conjecture which was proposed by Singh
et al. in [21].

Theorem 1.7. Let (X, d) be a complete metric space and T and S be
two self-maps on X such that for every x, y ∈ X,
1
2 min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies

ψ(d(Tx, Sy)) ≤ ψ(m(x, y))− ϕ(m(x, y)),

where ψ,φ are defined as in Theorem 1.6 and

m(x, y) = max

{
d(x, y), d(x, Tx), d(y, Sy),

d(x, Sy) + d(y, Tx)

2

}
.

Then T and S have a unique common fixed point.

We state the following lemma which is useful in proving our main
result.

Lemma 1.8 ([6]). Let (X, d) be a metric space, and {xn} be a sequence
in X such that limn→∞ d(xn, xn+1) = 0. If {x2n} is not a Cauchy se-
quence then there exists ϵ > 0 and two sequences of positive integers
{nk} and {mk} such that nk is smallest index for which nk > mk > k
and d(x2mk

, x2nk
) > ϵ and

(1) limk→∞ d(x2mk
, x2nk

) = ϵ,
(2) limk→∞ d(x2mk−1, x2nk

) = ϵ,
(3) limk→∞ d(x2mk

, x2nk+1) = ϵ,
(4) limk→∞ d(x2mk−1, x2nk+1) = ϵ.

Proof. See the proof of Theorem 2.1 in [6]. □

2. Strong Convergence

In this section, the concept of Ψ-simulation functions is introduced
and our main result is presented.

Denote Ψ([0,+∞)) the set of all non-decreasing and continuous func-
tions ψ : [0,+∞) → [0,+∞) such that ψ(t) = 0 if and only if t = 0.

Definition 2.1. A function η : [0,∞)×[0,∞) → R is called Ψ-simulation,
if there exists ψ ∈ Ψ([0,+∞)) such that:
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(η1) η(t, s) < ψ(s)− ψ(t) for all s, t > 0,
(η2) if {tn}, {sn} are sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn

> 0,

then

lim sup
n→∞

η(tn, sn) < 0.

It is clear that, all of the previous results in fixed point theory which
are obtained by simulation functions can be established by Ψ-simulation
functions.

Example 2.2. Let ψ ∈ Ψ([0,+∞)). The following are some examples
of Ψ-simulation functions:

(e1) For each s, t ≥ 0 let η(t, s) = αψ(s)− ψ(t), in which α ∈ [0, 1).
(e2) For each s, t ≥ 0 let η(t, s) = ϕ(ψ(s))− ψ(t), in which

ϕ : [0,+∞) → [0,+∞) is a function such that ϕ(0) = 0 and for
each s > 0, 0 < ϕ(s) < s and lim sup

t→s
ϕ(t) < s. (For example

ϕ(s) = αs in which 0 ≤ α < 1).
(e3) For each s, t ≥ 0 let η(t, s) = ϕ(s)ψ(s)− ψ(t), in which

ϕ : [0,+∞) → [0, 1) is a function such that lim sup
t→s

ϕ(t) < 1, for

each s > 0.
(e4) For each s, t ≥ 0 let η(t, s) = ψ(s) − ϕ(s) − ψ(t), in which

ϕ : [0,+∞) → [0,+∞) is a function such that, for each s > 0,
lim inf
t→s

ϕ(t) > 0.

Remark 2.3. Every simulation function is obviously a Ψ-simulation
function because, ψ can be considered as identity function on [0,∞).
So all of the simulation functions presented in Example 1.2 are Ψ-
simulation functions. However, the following example shows that every
Ψ-simulation function is not necessarily a simulation function.

Example 2.4. Define η : [0,∞) × [0,∞) → R by η(t, s) = 2sφ(s) − 2t
where ϕ : R → [0, 1) is a mapping such that lim sup

t→s
ϕ(t) < 1, for each

s > 0 (for example ϕ(t) = α, where 0 ≤ α < 1). Then, it is easily
seen that η is a Ψ-simulation function, with ψ(t) = 2t, t ≥ 0. However,
η /∈ Z.

Denote by ZΨ the set of all Ψ-simulation functions. We proved:

Proposition 2.5. Z ⫋ ZΨ.

Here, we establish our main result:
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Theorem 2.6. Let (X, d) be a complete metric space and T, S : X →
X be two mappings such that for all x, y ∈ X,
1
2 min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies that

(2.1) η(d(Tx, Sy),m(x, y)) ≥ 0,

where η ∈ ZΨ and

m(x, y) = max

{
d(x, y), d(x, Tx), d(y, Sy),

d(x, Sy) + d(y, Tx)

2

}
.

Then T and S have a unique common fixed point.

Proof. At first, let

A =

{
(x, y) ∈ X ×X :

1

2
min{d(x, Tx), d(y, Sy)} ≤ d(x, y)

}
,

and note that for each x ∈ X, we have (x, Tx) ∈ A. So A ̸= ∅.
We prove the theorem in several steps. At first, the existence of

common fixed point will be proved. Let x0 ∈ X be an arbitrary element.
We construct the sequence {xn}n≥0 recursively as

x2n+1 = Tx2n,

and
x2n+2 = Sx2n+1.

If there exists k0 ∈ N such that xk0 = xk0+1, then we claim that xk = xk0
for all k ≥ k0. To see this, suppose that k0 = 2n for some n ∈ N. In
this case, we have x2n = x2n+1 . Now, if m(x2n, x2n+1) = 0 then by the
definition of m(x, y), we have x2n+1 = x2n+2. So, we can suppose that
m(x2n, x2n+1) ̸= 0. Furthermore, we have

1

2
min {d(x2n, Tx2n), d(x2n+1, Sx2n+1)}

=
1

2
min {d(x2n, x2n+1), d(x2n+1, x2n+2)}

≤ d(x2n, x2n+1),

thus from (2.1) and (η1) we have

ψ(d(x2n+1, x2n+2)) < ψ(m(x2n, x2n+1)),

where, ψ ∈ Ψ([0,+∞)). So, since ψ is a nondecreasing function, we have

d(x2n+1, x2n+2) < m(x2n, x2n+1).

But

m(x2n, x2n+1) = max

{
d(x2n, x2n+1), d(x2n, Tx2n), d(x2n+1, Sx2n+1)

,
d(x2n, Sx2n+1) + d(x2n+1, Tx2n)

2

}
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= max

{
d(x2n+1, x2n+2),

d(x2n, x2n+2)

2

}
= d(x2n+1, x2n+2),

which contradiction. So d(x2n+1, x2n+2) = 0 or m(x2n, x2n+1) = 0 i.e.
x2n+1 = x2n+2. Hence xk0 = xk0+1 = xk0+2. Similarly, if k0 = 2n + 1
for some n ≥ 0, we can prove that xk0 = xk0+1 = xk0+2. Therefore, xk0
is a common fixed point of T and S. So, we can suppose that, for all
n ≥ 0, d(xn, xn+1) > 0 and m(x2n, x2n+1) ̸= 0.

For convenience, we divide the rest of the proof into four steps.
Step (1): We prove that lim

k→∞
d(xk, xk+1) = 0.

To prove it, at first we claim that

d(xk+1, xk+2) ≤ m(xk, xk+1)

= d(xk, xk+1), ∀k ∈ N.(2.2)

To see this, suppose that k = 2n for some n ∈ N. We have

1

2
min {d(x2n, Tx2n), d(x2n+1, Sx2n+1)}

=
1

2
min {d(x2n, x2n+1), d(x2n+1, x2n+2)}

≤ d(x2n, x2n+1).

So from (2.1) and (η1) we have:

ψ(d(x2n+2, x2n+1)) = ψ(d(Sx2n+1, Tx2n))

< ψ(m(x2n, x2n+1)).

So, we have

(2.3) d(x2n+1, x2n+2) < m(x2n, x2n+1).

On the other hand,

m(x2n, x2n+1) = max

{
d(x2n, x2n+1), d(x2n, Tx2n)

, d(x2n+1, Sx2n+1),
d(x2n, Sx2n+1) + d(x2n+1, Tx2n)

2

}
= max

{
d(x2n, x2n+1), d(x2n+1, x2n+2),

d(x2n, x2n+2)

2

}
≤ max

{
d(x2n, x2n+1), d(x2n+1, x2n+2)

,
d(x2n, x2n+1) + d(x2n+1, x2n+2)

2

}
≤ max {d(x2n, x2n+1), d(x2n+1, x2n+2)} .
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So, if d(x2n0+1, x2n0+2) ≥ d(x2n0 , x2n0+1) for some n0 ∈ N, then

m(x2n0 , x2n+1) ≤ d(x2n0+1, x2n0+2),

which contradicts (2.3). Hence, for each n ∈ N,

d(x2n+1, x2n+2) < d(x2n, x2n+1),

and so

m(x2n, x2n+1) ≤ d(x2n, x2n+1).

Consequently, (2.2) is proved when k ≥ 0 is an even number. By the
same argument, one can verify that (2.2) holds when k is an odd num-
ber. Thus, the sequence {d(xn, xn+1)}n≥1 is non increasing and bounded
below, so it converges to a real number γ ≥ 0 . Hence

lim
n→∞

d(xn, xn+1) = lim
n→∞

m(xn, xn+1)(2.4)

= γ.

We claim that γ = 0. To prove the claim, at first suppose that

Ω = {(d(Tx, Sy),m(x, y)) : (x, y) ∈ A} .

By (2.1) and definition of A, one can easily see that

(2.5) η(t, s) ≥ 0, ∀(t, s) ∈ Ω⧹{(0, 0)}.

For each n ≥ 0 we have

1

2
min {d(x2n, Tx2n), d(x2n+1, Sx2n+1)}

=
1

2
min {d(x2n, x2n+1), d(x2n+1, x2n+2)}

≤ d(x2n, x2n+1).

Thus (x2n, x2n+1) ∈ A for each n ≥ 0. Consequently, (2.5) implies that

η (d(Tx2n, Sx2n+1),m(x2n, x2n+1)) ≥ 0.

So

(2.6) lim sup
n→∞

η (d(x2n+1, x2n+2),m(x2n, x2n+1)) ≥ 0.

Now, in contrary, suppose that γ > 0. From (2.4) we have

lim
n→∞

d(x2n+1, x2n+2) = lim
n→∞

m(x2n, x2n+1)

= γ

> 0.

Therefore, from (η2)

lim sup
n→∞

η (d(x2n+1, x2n+2),m(x2n, x2n+1)) < 0,
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which contradicts (2.6). So the claim is proved and we obtain that

lim
n→∞

d(xn, xn+1) ≤ lim
n→∞

m(xn, xn+1)(2.7)

= lim
n→∞

m(xn, xn+1).

Step (2): {xn} is a Cauchy sequence.
To show that {xn} is a Cauchy sequence, because of (2.7), it is enough
to show that the subsequence {x2n} is a Cauchy sequence.

On contrary, suppose that {x2n} is not a Cauchy sequence. Then by
Lemma (1.8) there exist ϵ0 > 0 and subsequences {x2mk

} and {x2nk
}

of {xn} such that nk is the smallest index for which nk > mk > k and
d(x2mk

, x2nk)) ≥ ϵ0 and

(l1) limk→∞ d(x2mk
, x2nk

) = ϵ0,
(l2) limk→∞ d(x2mk−1, x2nk

) = ϵ0,
(l3) limk→∞ d(x2mk

, x2nk+1) = ϵ0,
(l4) limk→∞ d(x2mk−1, x2nk+1) = ϵ0.

Therefore, from the definition of m(x, y) we have:

lim
k→∞

m(x2nk
, x2mk−1) = lim

k→∞
max

{
d(x2nk

, x2mk−1), d(x2nk
, x2nk+1)

, d(x2mk−1, x2mk
)

,
d(x2nk

, x2mk
) + d(x2mk−1, x2nk+1)

2

}
= max

{
ϵ0, 0, 0,

ϵ0 + ϵ0
2

}
= ϵ0.

So

lim
k→∞

d(x2mk
, x2nk+1) = lim

k→∞
m(x2mk−1,x2nk

)

= ϵ0

> 0.

Hence, (η2) implies that

(2.8) lim sup
n→∞

η(d(x2mk
, x2nk+1),m(x2mk−1,x2nk

)) < 0.

On the other hand, we claim that for sufficiently large k ∈ N,
if nk > mk > k, then

(2.9)
1

2
min {d(x2nk

, Tx2nk
), d(x2mk−1, Sx2mk−1)} ≤ d(x2nk

, x2mk−1).

Indeed, since nk > mk and {d(xn, xn+1)} is non-increasing we have

d(x2nk+1, Tx2nk
) = d(x2nk

, x2nk+1)
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≤ d(x2mk+1, x2mk
)

≤ d(x2mk
, x2mk−1)

= d(x2mk−1, Sx2mk−1).

And so, the left hand side of inequality (2.9) is equal to

1

2
d(x2nk

, Tx2nk
) =

1

2
d(x2nk

, x2nk+1).

Therefore, we must show that, for sufficiently large k ∈ N, if
nk > mk > k, then

d(x2nk
, x2nk+1) ≤ d(x2nk

, x2mk−1).

According to (2.7), there exists k1 ∈ N such that for any k > k1,

d(x2nk
, x2nk+1) <

1

2
ϵ0.

Also, there exists k2 ∈ N such that for any k > k2,

d(x2mk−1, x2mk
) <

1

2
ϵ0.

Hence, for any k > max{k1, k2} and nk > mk > k, we have

ϵ0 ≤ d(x2nk
, x2mk

)

≤ d(x2nk
, x2mk−1) + d(x2mk−1, x2mk

)

≤ d(x2nk
, x2mk−1) +

ϵ0
2
.

So, one concludes that
ϵ0
2

≤ d(x2nk
, x2mk−1).

Thus we obtain that for any k > max{k1, k2} and nk > mk > k,

d(x2nk
, x2nk+1) ≤

ϵ0
2

≤ d(x2nk
, x2mk−1).

So (2.9) is proved. Therefore, by (2.1) and definition of A, for sufficiently
large k ∈ N, if nk > mk > k, then (x2nk

, x2mk−1) ∈ A . Consequently,
for sufficiently large k ∈ N, if nk > mk > k then

η (d(Tx2nk
, Sx2mk−1),m(x2nk

, x2mk−1)) ≥ 0.

So

(2.10) lim sup
k→∞

η(d(x2nk+1, x2mk
),m(x2nk

, x2mk−1)) ≥ 0,

which contradicts (2.8). So {xn} is a Cauchy sequence and since X is
complete, there exists u ∈ X such that xn → u as n→ ∞.
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Step (3): u is a common fixed point of T and S.
Without loosing of generality, one can suppose that d(xn, u) ̸= 0 for each
n ≥ 0. In fact, if xnk

= u for some subsequence {xnk
}k≥0 of {xn}n≥0,

then xn = u for any n ≥ n0. So u will be a common fixed point of T
and S.

Now we prove that

(2.11) lim
n→∞

m(u, x2n) = d(Su, u).

For notice that

d(u, Su) ≤ m(x2n, u)

= max

{
d(x2n, u), d(x2n, x2n+1), d(u, Su)

,
d(x2n, Su) + d(u, x2n+1)

2

}
.

Letting n→ ∞ we obtain that

d(u, Su) ≤ lim
n→∞

m(u, x2n)

≤ max

{
0, 0, d(u, Su),

d(u, Su) + 0

2

}
= d(u, Su).

Hence

lim
n→∞

m(u, x2n) = d(Su, u).

This completes the proof of (2.11). In the same manner, one can show
that

(2.12) lim
n→∞

m(u, x2n+1) = d(Tu, u).

Now, we claim that for each n ≥ 0, at least one of the following
inequalities is true:

(2.13)
1

2
d(x2n, x2n+1) ≤ d(x2n, u),

or

(2.14)
1

2
d(x2n+1, x2n+2) ≤ d(x2n, u).

In opposite, if for some n0 ≥ 0, both of them are false then we get

d(x2n0 , x2n0+1) ≤ d(x2n0 , u) + d(u, x2n0+1)

<
1

2
d(x2n0 , x2n0+1) +

1

2
d(x2n0+1, x2n0+2)

≤ 1

2
d(x2n0 , x2n0+1) +

1

2
d(x2n0 , x2n0+1)
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= d(x2n0 , x2n0+1),

which is a contradiction and the claim is proved. So, one can consider
the following two cases:

Case (1): The relation (2.13) is established for infinitely many n ≥ 0.
In this case, for infinitely many n ≥ 0 we have

1

2
min {d(x2n, Tx2n), d(u, Su)} =

1

2
min {d(x2n, x2n+1), d(u, Su)}

≤ 1

2
d(x2n, x2n+1)

≤ d(x2n, u).

Therefore, (x2n, u) ∈ A. Thus

(d(Tx2n, Su),m(x2n, u)) ∈ Ω⧹{(0, 0)}.

Consequently, from (2.5), it is seen that for infinitely many n ≥ 0,

η(d(Tx2n, Su),m(x2n, u)) ≥ 0.

Therefore,

(2.15) lim sup
k→∞

η(d(x2nk+1, x2mk
),m(x2nk

, x2mk−1)) ≥ 0.

Now, we assert that d(Su, u) = 0. Otherwise, suppose that d(Su, u)
̸= 0. Then, since

lim
n→∞

d(Tx2n, Su) = lim
n→∞

m(u, x2n)

= d(u, Su)

> 0,

from (η2) we have

lim sup
k→∞

η(d(x2nk+1, x2mk
),m(x2nk

, x2mk−1)) < 0,

which contradicts (2.15). So d(u, Su) = 0, i.e. Su = u.
On the other hand, we have

m(u, u) = max

{
d(u, u), d(u, Tu), d(u, Su),

d(u, Su) + d(u, Tu)

2

}
= max

{
0, d(u, Tu), 0,

d(u, Tu)

2

}
= d(u, Tu).

So,

(2.16) m(u, u) = d(u, Tu).
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Furthermore,

1

2
min {d(u, Tu), d(u, Su)} =

1

2
min{d(u, Tu), 0}

= 0

≤ d(u, u).

Thus, if d(Tu, u) > 0, then (2.1) implies that (u, u) ∈ A. Thus

(d(Tu, Su),m(u, u)) ∈ Ω⧹{(0, 0)}.
Consequently, it follows from (2.5), that

η(d(Tu, Su),m(u, u)) ≥ 0.

So from (η1) one can observe that

d(Tu, Su) < m(u, u),

which contradicts (2.16). Hence d(Tu, u) = 0. i.e. Tu = u. Hence we
obtain that Tu = Su = u.

Case (2): The relation (2.13) is established only for finitely many
n ≥ 0.

In this case, there exists n0 ≥ 0 such that (2.14) is true for any n ≥ n0.
Similar to Case (1), one can prove that, (2.14) leads to a contradiction
unless Su = Tu = u. So in any case, u is a common fixed point of T
and S, and the proof is completed.

Step (4): The common fixed point of T and S is unique.
Suppose that u and v are two common fixed points of T and S. We have

1

2
min{d(u, Tu), d(u, Su)} =

1

2
min{d(u, Tu), 0}

= 0

= d(u, u).

In opposite, if d(u, v) ̸= 0 then m(u, v) ̸= 0 and so (u, v) ∈ A. Thus

(d(Tu, Sv),m(u, v)) ∈ Ω⧹{(0, 0)}.
Consequently, from (2.5), it is seen that

η(d(Tu, Sv),m(u, v)) ≥ 0.

So from (η1), one can conclude that

d(Tu, Sv) < m(u, v).

But

m(u, v) = max

{
d(u, v), d(u, Tu), d(v, Sv),

d(u, Sv) + d(v, Tu)

2

}
= d(u, v),
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and it is a contradiction. So d(u, v) = 0 and the proof of theorem is
completed. □

The following corollary is an immediate consequence of Theorem 2.6:

Corollary 2.7. Let (X, d) be a complete metric space and T and S be
two self-maps on X such that for all x, y ∈ X,

(2.17) η(d(Tx, Sy),m(x, y)) ≥ 0,

where η ∈ ZΨ and m(x, y) is defined as in Theorem 1.7. Then T and S
have a unique common fixed point.

Putting S = T in Theorem 2.6 we obtain:

Corollary 2.8. Let (X, d) be a complete metric space and T be a self-
map on X. If there exists η ∈ ZΨ such that for all x, y ∈ X,
1
2d(x, Tx) ≤ d(x, y) implies that

η(d(Tx, Ty),mT (x, y)) ≥ 0,

where

mT (x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
,

then T has a unique fixed point.

Theorem 1.5 is an obvious result of Corollary 2.8.

Corollary 2.9 (Theorem 1.5). Let (X, d) be a complete metric space
and T be a self-map on X. If there exists η ∈ ZΨ such that for all
x, y ∈ X,

η(d(Tx, Ty),mT (x, y)) ≥ 0,

then T has a unique fixed point.

Corollary 2.10. Let (X, d) be a complete metric space and T and S be
two self-maps on X such that for every x, y ∈ X,
1
2 min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies that

(2.18) ψ(d(Tx, Sy)) ≤ ψ(m(x, y))− ϕ(m(x, y)),

where ψ and m(x, y) are defined as in Theorem 1.6, and φ : [0,+∞) →
[0,+∞) is a function such that lim inf

s→t
φ(s) > 0 for each t > 0, and

φ(t) = 0 if and only if t = 0.
Then T and S have a unique common fixed point.
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Proof. Define η(t, s) = ψ(s) − ϕ(s) − ψ(t). Then η is a Ψ-simulation
function. Indeed, ψ ∈ Ψ([0,+∞)) and (η1) is clearly hold. On the other
hand, if {tn}, {sn} are two sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn

= ℓ

> 0,

then, we have

lim sup
n→∞

η(tn, sn) = lim sup
n→∞

(ψ(sn)− ϕ(sn)− ψ(tn))

≤ 0− lim inf
n→∞

ϕ(sn)

< 0.

So (η2) holds and one can apply Theorem 2.6 to complete the proof. □

Here, the conjecture which is proposed by Singh et al. in [21], will be
proved.

Corollary 2.11 (Theorem 1.7). Let (X, d) be a complete metric space
and T and S be two self-maps on X such that for every x, y ∈ X,
1
2 min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies that

ψ(d(Tx, Sy)) ≤ ψ(m(x, y))− ϕ(m(x, y)),

where ψ,φ are defined as in Theorem 1.6 and

m(x, y) = max

{
d(x, y), d(x, Tx), d(y, Sy),

d(x, Sy) + d(y, Tx)

2

}
.

Then T and S have a unique common fixed point.

Proof. Since ϕ is lower semi-continuous, if

lim
n→∞

sn = ℓ

> 0,

then

lim inf
n→∞

φ(sn) ≥ φ(ℓ)

> 0.

So, one can apply Corollary 2.10. □

Theorem 1.6 is an obvious result of Corollary 2.11.
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Corollary 2.12. Let (X, d) be a complete metric space and T and S be
two self-maps on X such that for every x, y ∈ X,
1
2 min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies that

(2.19) ψ(d(Tx, Sy)) ≤ ρ(m(x, y))ψ(m(x, y)),

where ψ ∈ Ψ and m(x, y) is defined as in Corollary 2.11 and ρ : [0,+∞)
→ [0, 1) is a function such that ρ(t) = 0 if and only if t = 0 and
lim sup

t→s
ρ(t) < 1 for each s > 0. Then T and S have a unique common

fixed point.

Proof. Take η(t, s) = ρ(s)ψ(s)−ψ(t). One can easily show that η is a Ψ
-simulation function. Now the corollary follows from Theorem 2.6. □

Corollary 2.13. Let (X, d) be a complete metric space and T and S be
two maps on X such that for every x, y ∈ X, 1

2 min{d(x, Tx), d(y, Sy)} ≤
d(x, y) implies that

ψ(d(Tx, Sy)) + ϕ(d(Tx, Sy)) ≤ ψ(m(x, y)),

where ψ ∈ Ψ and m(x, y) is defined as in Corollary 2.11 and φ :
[0,+∞) → [0,+∞) is a function such that lim inf

s→t
φ(s) > 0 for each

t > 0, and φ(t) = 0 if and only if t = 0.
Then T and S have a unique common fixed point.

Proof. Take η(t, s) = ψ(s) − ϕ(s) − ψ(t). Then similar to the proof of
Corollary 2.10, one can see that η is a Ψ-simulation function. So by
applying Theorem 2.6 the proof will be completed. □

Corollary 2.14. Let (X, d) be a complete metric space and T and S be
two self-maps on X such that for every x, y ∈ X,
1
2 min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies that

ψ(d(Tx, Sy)) ≤ ϕ(ψ(m(x, y))),

where ψ ∈ Ψ and m(x, y) is defined as in Corollary 2.11 and
φ : [0,+∞) → [0,+∞) is a function such that for each t > 0, φ(t) < t
and lim sup

s→t
φ(s) < t and φ(t) = 0 if and only if t = 0.

Then T and S have a unique common fixed point.

Proof. Define η(t, s) = ϕ(ψ(s))−ψ(t). Then (η1) is holds. On the other
hand, if {tn}, {sn} are two sequences in (0,∞) such that

lim
n→∞

tn = lim
n→∞

sn

= ℓ

> 0,
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then, the continuity of ψ and the properties of ϕ show that

lim sup
n→∞

η(tn, sn) = lim sup
n→∞

ϕ(ψ(sn))− lim
n→∞

ψ(tn)

< ψ(ℓ)− ψ(ℓ)

= 0.

So (η2) holds and one can apply Theorem 2.6 to complete the proof. □
Remark 2.15. Suppose that ψ ∈ Ψ([0,+∞)) and φ : [0,+∞) →
[0,+∞) is an upper semi-continuous function such that φ(t) < t for
each t > 0 and φ(t) = 0 if and only if t = 0. Then for any sequence {sn}
in (0,∞) with lim

n→∞
sn = ℓ > 0, one can obtain that

lim sup
n→∞

ϕ(ψ(sn)) < ψ(ℓ).

So, by applying the same argument as in Corollary 2.14, one can prove
the following corollary:

Corollary 2.16. Let (X, d) be a complete metric space and T and S be
two self-maps on X such that for every x, y ∈ X,
1
2 min{d(x, Tx), d(y, Sy)} ≤ d(x, y) implies that

ψ(d(Tx, Sy)) ≤ ϕ(ψ(m(x, y))),

where ψ ∈ Ψ and m(x, y) is defined as in Corollary 2.11 and φ :
[0,+∞) → [0,+∞) is an upper semi-continuous function such that
φ(t) < t for each t > 0, and φ(t) = 0 if and only if t = 0.

Then T and S have a unique common fixed point.

The following example shows that Theorem 2.6 is a genuine general-
ization of the Corollary 2.7.

Example 2.17. Let X = {(0, 0), (0, 5), (5, 0), (5, 6)} be endowed with
the metric d defined by

d((x1, x2), (y1, y2)) = |x1 − y1|+ |x2 − y2|.
Let T and S be two self-mappings on X as follows:

T (x1, x2) = (min{x1, x2}, 0),
and

S(x1, x2) = (0,min{x1, x2}).
For any η ∈ ZΨ, the mappings T and S do not satisfy the condition
(2.17) of Corollary 2.7 at x = y = (5, 6). However, by Choosing η(t, s) =
11s
12 − t, it is readily verified that η is a Ψ-simulation function where ψ
is the identity function on [0,∞) and all the hypothesis of Theorem 2.6
are verified.
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