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Continuous k-Fusion Frames in Hilbert Spaces

Vahid Sadri1, Reza Ahmadi2∗, Mohammad Ali Jafarizadeh3 and Susan Nami4

Abstract. The study of the ck-fusions frames shows that the em-
phasis on the measure spaces introduces a new idea, although some
similar properties with the discrete case are raised. Moreover, due
to the nature of measure spaces, we have to use new techniques for
new results. Especially, the topic of the dual of frames which is im-
portant for frame applications, have been specified completely for
the continuous frames. After improving and extending the concept
of fusion frames and continuous frames, in this paper we intro-
duce continuous k-fusion frames in Hilbert spaces. Similarly to the
c-fusion frames, dual of continuous k-fusion frames may not be de-
fined, we however define the Q-dual of continuous k-fusion frames.
Also some new results and the perturbation of continuous k-fusion
frames will be presented.

1. Introduction

After presentation of frames by Duffin and Schaeffer in [10], they have
been generalized and expanded as g-frames, c-frames, fusion frames, k-
frames etc (see [11, 14, 16, 22]). Frames of subspaces or fusion frames
which are the main topic of this paper, were discussed by Casazza and
Kutyniok in [5]. They could define frames for closed subspaces of given
Hilbert spaces with the help of the orthogonal projections. Then, fusion
frames were presented in the continuous case which are called c-fusion
frames, by Faroughi and Ahmadi in [13] and [11]. In 2012, Găvruta
presented frames for operators (or k-frames) in [16] while studying about
the atomic systems with respect to a bounded operator k which had been
introduced by Fechtinger andWerther in [15] and showed that the atomic
systems for k are equivalent with the k-frames. Recently, Arabyani and
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Arefijamaal have presented k-fusion frames and their duals in [1] and we
generate them in the continuous case.

Recently, the researchers are interested in combining different types
of frames with each other, which lead to c-fusion frames, g-c-frames,
c-g-frames, ck-frames, k-g-fusion frames and etc. For this reason and
the importance of continuous frames in harmonic analysis, the purpose
of this paper is to introduce and review some of the continuous k-fusion
frames which are the result of a combination of c-frames and k-fusion
frames. In this Section, we review some definitions and theorems in
frames and operator theory. In Section 2, we introduce continuous k-
fusion frames and the frame operator. In Section 3, we define Q-dual for
continuous k-fusion frame and express some results about them. Finally,
in Section 4, perturbation of these frames will be studied.

Throughout this paper, H, K, H1 and H2 are Hilbert spaces, J is a
subset of Z, µ is a positive measure and (X,µ) is a measure space, πV
is the orthogonal projection from H onto a closed subspace V ⊂ H and
B(H,K) is the set of all bounded and linear operators from H to K. If
H = K then B(H,H) will be denoted by B(H).

Definition 1.1 (frame). Let {fj}j∈J be a sequence of members of H.
We say that {fj}j∈J is a frame for H if there exist 0 < A ≤ B < ∞ such
that for each f ∈ H

A ∥f∥2 ≤
∑
j∈J

|⟨f, fj⟩|2 ≤ B ∥f∥2 .

Definition 1.2 (k-frame). Let {fj}j∈J be a sequence of members of H
and k ∈ B(H). We say that {fj}j∈J is a k-frame for H if there exist
0 < A ≤ B < ∞ such that for every f ∈ H

A ∥k∗f∥2 ≤
∑
j∈J

|⟨f, fj⟩|2 ≤ B ∥f∥2 .

If k = IH , then {fj}j∈J is a frame for H.

Definition 1.3 (c-frame). Let F : X → H be a mapping such that the
mapping x → ⟨h, F (x)⟩ ofX to C is measurable (i.e. weakly measurable)
for each h ∈ H. F is called a c-frame forH if there exist 0 < A ≤ B < ∞
such that for each h ∈ H

A ∥h∥2 ≤
∫
X
|⟨h, F (x)⟩|2 dµ ≤ B ∥h∥2 .

Definition 1.4 (fusion frame). Let W := {Wj}j∈J be a family of closed
subspaces of H and v := {vj}j∈J be a family of weights (i.e. vj > 0 for
any j ∈ J). We say that W is a fusion frame with respect to v for H if
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there exist 0 < A ≤ B < ∞ such that for all h ∈ H

A ∥h∥2 ≤
∑
j∈J

v2j
∥∥πWj (h)

∥∥2 ≤ B ∥h∥2 .

For fusion frames, the analysis and the synthesis operators are defined
by:

TW,v :

∑
j∈J

⊕Wj


ℓ2

→ H, TW,v(f) =
∑
j∈J

vjfj ,

and

T ∗
W,v : H →

∑
j∈J

⊕Wj


ℓ2

, T ∗
W,v({fj}j∈J) = {vjπWjfj}j∈J.

Hence, the fusion frame operator is given by, for all f ∈ H,

SW,v(f) = TW,vT
∗
W,v(f)

=
∑
j∈J

v2jπWj (f).

Now, we present some theorems in operator theory which will be needed
in the next sections.

Lemma 1.5 ([9]). Let L1 ∈ B(H1,H) and L2 ∈ B(H2,H). Then the
following assertions are equivalent:

(I) R(L1) ⊆ R(L2);
(II) L1L

∗
1 ≤ λL2L

∗
2 for some λ > 0;

(III) there exists u ∈ B(H1,H2) such that L1 = L2u.

Moreover, if the above conditions are valid then there exists a unique
operator u such that

(a) ∥u∥2 = inf{α > 0 | L1L
∗
1 ≤ αL2L

∗
2};

(b) kerL1 = keru;

(c) R(u) ⊆ R(L∗
2).

For the proof of the following lemma, we refer to [5].

Lemma 1.6. Let V ⊆ H be a closed subspace and u be a linear bounded
operator on H. Then

πV u
∗ = πV u

∗πuV .

If an operator u has closed range, then there exists a right-inverse
operator u† (pseudo-inverse of u) in the following sense (see [8]):
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Lemma 1.7. Let u ∈ B(K,H) be a bounded operator with closed range
Ru. Then there exists a bounded operator u† ∈ B(H,K) for which

uu†x = x, x ∈ Ru.

Lemma 1.8. Let u ∈ B(K,H). Then the following assertions holds:

(I) Ru is closed in H if and only if Ru∗ is closed in K;
(II) (u∗)† = (u†)∗;
(III) The orthogonal projection of H onto Ru is given by uu†;
(IV) The orthogonal projection of K onto Ru† is given by u†u;
(V) On R(u), the operator u† is given explicitly by u† = u∗(uu∗)−1.

2. Continuous k-Fusion Frames

Throughout this paper, H is the collection of all closed subspaces of H
and k ∈ B(H). Suppose that F : X → H and we denote by L 2(X,F )
the class of all weakly measurable mappings f : X → H (i.e. for all
h ∈ H, the mapping x → ⟨f(x), h⟩ is measurable) such that for any
x ∈ X, f(x) ∈ F (x) and ∫

X
∥f(x)∥2 dµ < ∞.

It can be a Hilbert space with the inner product defined by

⟨f, g⟩ =
∫
X
⟨f(x), g(x)⟩ dµ, f, g ∈ L 2(X,F ).

Definition 2.1. Assume that F : X → H such that for each h ∈ H, the
mapping x → πF (x)(h) is measurable (i.e. is weakly measurable) and

v : X → R+ be a measurable function. Then F is called a continuous
k-fusion frame (or ck-fusion frame) with respect to v for H if there exist
0 < A ≤ B < ∞ such that for each h ∈ H

(2.1) A ∥k∗h∥2 ≤
∫
X
v2(x)

∥∥πF (x)(h)
∥∥2 dµ ≤ B ∥h∥2 .

Since each ck-fusion frame is a c-fusion Bessel, so the synthesis, anal-
ysis, and ck-fusion frame operators are defined. Indeed, the synthesis
operator is defined weakly as follows (for more details see [13]):

TF : L 2(X,F ) → H,

TF (f) =

∫
X
vf dµ,

where for each h ∈ H

⟨TF (f), h⟩ =
∫
X
v(x) ⟨f(x), h⟩ dµ.
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The analysis operator is given by

T ∗
F : H −→ L 2(X,F ),

T ∗
F (h) = vπF (h).

Finally, the ck- fusion frame operator SF := TFT
∗
F is defined by

SF : H −→ H,

SF (h) =

∫
X
v2πF (h) dµ.

Hence for each h1, h2 ∈ H

⟨SF (h1), h2⟩ =
∫
X
v2(x)

⟨
πF (x)h1, h2

⟩
dµ.

Notice that for each h ∈ H

⟨SF (h), h⟩ = ∥T ∗
F (h)∥

2

=

∫
X
v2(x)

∥∥πF (x)(h)
∥∥2 dµ

≥ A ∥k∗h∥2

= ⟨Akk∗h, h⟩ .
Therefore,

Akk∗ ≤ SF ≤ BI.

By Lemma 1.5, we can conclude that R(k) ⊆ R(TF ).
The ck-fusion frame operator (like the k-fusion frame operator) SF

is not invertible. In the following remark a condition for invertibility is
presented:

Proposition 2.2. If k ∈ B(H) has closed range, then the operator SF

is an invertible operator on a subspace of R(k) ⊂ H.

Proof. For any h ∈ R(k), we have

∥h∥2 =
∥∥∥(k†|R(k))

∗k∗h
∥∥∥2

≤
∥∥∥k†∥∥∥2 . ∥k∗h∥2 .

Now, we obtain

A
∥∥∥k†∥∥∥−2

∥h∥2 ≤ ⟨SF (h), h⟩ ≤ B ∥h∥2 ,

which implies that SF : R(k) → SF (R(k)) is a homeomorphism, fur-
thermore, for any h ∈ SF (R(k)), we have

(2.2) B−1 ∥h∥2 ≤
⟨
(SF |R(k))

−1(h), h
⟩
≤ A−1

∥∥∥k†∥∥∥2 ∥h∥2 .
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□

Remark 2.3. We saw that SF ∈ B(H) and SF is positive and self-
adjoint. Since B(H) is a C∗-algebra, then

(S−1
F )∗ = (S∗

F )
−1 = S−1

F ,

whenever k ∈ B(H) has closed range. Thus, S−1
F is self-adjoint and

positive too. Now, for any h ∈ SF (R(k)), we can write

⟨kh, h⟩ =
⟨
kh, SFS

−1
F (h)

⟩
=
⟨
SF (kh), S

−1
F (h)

⟩
=

∫
X
v2(x)

⟨
πF (x)(kh), S

−1
F (h)

⟩
dµ

=

∫
X
v2(x)

⟨
S−1
F

(
πF (x)(kh)

)
, h
⟩
dµ.

Proposition 2.4. Suppose that µ is a σ-finite measure and F is a ck-
fusion frame for a dense subset V of H with bounds A and B, respec-
tively. Then F is a ck-fusion frame for H with same bounds.

Proof. Suppose that F is not a c-fusion Bessel mapping for H. Then,
there exists h ∈ H such that∫

X
v2(x)

∥∥πF (x)(h)
∥∥2 dµ > B ∥h∥2 .

Assume that {Xn}∞n=1 be a sequence of measurable and mutually disjoint
subsets of X such that X = ∪∞

n=1Xn and µ(Xn) < ∞ for each n ∈ N.
Let

∆m = {x ∈ X : m ≤ ∥f(x)∥ < m+ 1, ∀f ∈ L 2(X,F )}, m ≥ 0.

It is easy to check that ∆m ⊆ X is a measurable set for each m ≥ 0 and
X = ∪∞

m=0 ∪∞
n=1 (Xn ∩∆m). Therefore,

∞∑
m=0

∞∑
n=1

∫
Xn∩∆m

v2(x)
∥∥πF (x)(h)

∥∥2 dµ > B ∥h∥2 .

Thus, there exist finite subspaces I, J such that

(2.3)
∑
m∈I

∑
n∈J

∫
Xn∩∆m

v2(x)
∥∥πF (x)(h)

∥∥2 dµ > B ∥h∥2 .

Let {hj}∞j=1 be a sequence in V such that limj→∞ hj = h. So, for any
j ≥ 1, we have∑

m∈I

∑
n∈J

∫
Xn∩∆m

v2(x)
∥∥πF (x)(hj)

∥∥2 dµ ≤ B ∥hj∥2 ,
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and by the Lebesgue’s Dominated Convergence Theorem, it is a contra-
diction with (2.3) and F is a c-fusion Bessel mapping for H. Now, the
analysis operator T ∗

F is well-defined for H. Let h ∈ H be arbitrary and
{hj}∞j=1 be a sequence in V such that limj→∞ hj = h; then

A ∥k∗hj∥2 ≤ ∥T ∗
F (hj)∥

2 .

Therefore, if j → ∞, we obtain

A ∥k∗h∥2 ≤ ∥T ∗
F (h)∥

2

=

∫
X
v2(x)

∥∥πF (x)(h)
∥∥2 dµ,

and the proof is completed. □

Proposition 2.5. Let u ∈ B(H1,H2) be an invertible operator and F
be a c-fusion Bessel mapping with respect to v for H1 with the bound B.
Then uF is a c-fusion Bessel mapping with respect to v for H2.

Proof. By applying Lemma 1.6 and the fact that u is invertible, for each
h ∈ H2, we have∫

X
v2(x)

∥∥πuF (x)(h)
∥∥2 dµ =

∫
X
v2(x)

∥∥πuF (x)(u
−1)∗u∗(h)

∥∥2 dµ

=

∫
X
v2(x)

∥∥πuF (x)(u
−1)∗πF (x)u

∗(h)
∥∥2 dµ

≤
∥∥u−1

∥∥2 ∫
X
v2(x)

∥∥πF (x)u
∗(h)

∥∥2 dµ

≤ B
∥∥u−1

∥∥2 ∥u∥2 ∥h∥2 .
□

Theorem 2.6. Let k ∈ B(H) has closed range and F be a ck-fusion
frame for H with respect to v with bounds A and B, respectively. Then

(I) If πR(k)F is a c-fusion Bessel mapping, then k†F is a c-fusion
frame for R(k∗);

(II) If u ∈ B(H) is an invertible operator, then uF is a c(uk)-fusion
frame for H;

(III) If u ∈ B(H) is an invertible operator and ku = uk, then uF is
a ck-fusion frame for H;

(IV) If u ∈ B(H) and R(u) ⊆ R(k), then F is also a cu-fusion
frame.

Proof. (I). Let h ∈ R(k∗) and x ∈ X, then by Lemma 1.6, we have∫
X
v2(x)

∥∥∥πk†F (x)(h)
∥∥∥2 dµ =

∫
X
v2(x)

∥∥∥πk†F (x)k
∗(k†)∗(h)

∥∥∥2 dµ
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=

∫
X
v2(x)

∥∥∥πk†F (x)k
∗πkk†F (x)(k

†)∗(h)
∥∥∥2 dµ

≤ ∥k∥2
∫
X
v2(x)

∥∥∥ππR(k)F (x)(k
†)∗(h)

∥∥∥2 dµ.

Hence, by the assumption, k†F is a c-fusion Bessel mapping. On the
other hand, there exists A > 0 such that

A ∥h∥2 = A
∥∥∥k∗(k∗)†h∥∥∥2

≤
∫
X
v2(x)

∥∥∥πF (x)(k
∗)†(h)

∥∥∥2 dµ

=

∫
X
v2(x)

∥∥∥πF (x)(k
∗)†πk†F (x)(h)

∥∥∥2 dµ

≤
∥∥∥k†∥∥∥2 ∫

X
v2(x)

∥∥∥πk†F (x)(h)
∥∥∥2 dµ,

and (I) holds.
(II). Let u ∈ B(H) be an invertible operator. By Proposition 2.5, uF is
a c-fusion Bessel mapping for H. So, by applying Lemma 1.6, for each
h ∈ H, we obtain

A ∥k∗u∗h∥2 ≤
∫
X
v2(x)

∥∥πF (x)u
∗(h)

∥∥2 dµ

=

∫
X
v2(x)

∥∥πF (x)u
∗πuF (x)(h)

∥∥2 dµ

≤ ∥u∥2
∫
X
v2(x)

∥∥πuF (x)(h)
∥∥2 dµ,

and (II) is completed.
(III). By (II) , it is clear.
(IV). Via Lemma 1.5, there exists λ > 0 such that uu∗ ≤ λ2kk∗. Thus,
for any h ∈ H

∥u∗h∥2 = ⟨uu∗h, h⟩
≤ λ2 ⟨kk∗h, h⟩

= λ2 ∥k∗h∥2 .

It follows that

A

λ2
∥u∗h∥2 ≤

∫
X
v2(x)

∥∥πF (x)(h)
∥∥2 dµ,

and this shows that F is a cu-fusion frame. □

Theorem 2.7. Let k be a closed range operator and F be a c-fusion
frame with respect to v for R(k∗). Then kF is a ck-fusion frame for H.



CONTINUOUS k-FUSION FRAMES IN HILBERT SPACES 47

Proof. Assume that B is an upper bound for F and h ∈ H. We have
h = f + g which f ∈ R(k) and g ∈ R(k)⊥. Thus∫

X
v2(x)

∥∥πkF (x)(h)
∥∥2 dµ =

∫
X
v2(x)

∥∥∥πkF (x)(k
†)∗k∗f

∥∥∥2 dµ

=

∫
X
v2(x)

∥∥∥πkF (x)(k
†)∗πk†kF (x)k

∗f
∥∥∥2 dµ

≤
∥∥∥k†∥∥∥2 ∫

X
v2(x)

∥∥∥ππR(k†)F (x)k
∗f
∥∥∥2 dµ

≤
∥∥∥k†∥∥∥2 ∫

X
v2(x)

∥∥πF (x)k
∗f
∥∥2 dµ

≤ B
∥∥∥k†∥∥∥2 ∥k∥2 ∥h∥2 .

Hence, kF is a c-fusion Bessel fusion mapping. On the other hand, there
exists A > 0 such that for any h ∈ H

A ∥k∗h∥2 ≤
∫
X
v2(x)

∥∥πF (x)k
∗(h)

∥∥2 dµ

=

∫
X
v2(x)

∥∥πF (x)k
∗πkF (x)(h)

∥∥2 dµ

≤ ∥k∥2
∫
X
v2(x)

∥∥πkF (x)(h)
∥∥2 dµ,

and the proof is completed. □

The following result follows immediately from Theorem (2.7) and the
fact that R(k∗) ⊆ H.

Corollary 2.8. Let k be a closed range operator and F be a c-fusion
frame with respect to v for H. Then kF |R(k∗) is a ck-fusion frame for
H.

3. Q-Duality of Continuous k-fusion Frames

In this section, we shall define the duality of ck-fusion frames and
present some properties of them.

Definition 3.1. Suppose that F is a ck-fusion frame with respect to v
for H. A c-fusion Bessel mapping G with respect to w is called the Q-
dual ck-fusion frame of F (or cQk-dual for F ) if there exsits a bounded
linear operator Q : L 2(X,F ) → L 2(X,G) such that

(3.1) TFQ
∗T ∗

G = k.

The following theorem presents some conditions which are equivalent
to the ones given in (3.1).
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Theorem 3.2. Let G be a cQk-dual for F . The following conditions
are equivalent:

(I) TFQ
∗T ∗

G = k;
(II) TGQT ∗

F = k∗;
(III) for each h, h′ ∈ H, we have⟨

kh, h′
⟩
=
⟨
T ∗
G(h), QT ∗

F (h
′)
⟩

=
⟨
Q∗T ∗

G(h), T
∗
F (h

′)
⟩
.

Proof. The proof is straightforward. □
Example 3.3. Suppose that H = R2 with the standard base {e1, e2}
and

B := {x ∈ R2 : ∥x∥ ≤ 1},
equipped with the Lebesgue measure λ form a measure space. Suppose
{B1, B2} is a partition of B where λ(B1) ≥ λ(B2) > 1. Let H =
{W1,W2} which W1 = span{e1} and W2 = span{e2}. Define

F : B −→ H,

F (x) =

{
W1, x ∈ B1,

W2, x ∈ B2,

and

v : B −→ [0,∞),

v(x) =

{
1√

2λB1
, x ∈ B1,

1√
λB2

, x ∈ B2.

Put
ke1 = e2, ke2 = e1,

therefore, F is weakly measurable and is a ck-fusion frame with respect
to v with frame bounds 1

2 and 1. If we define

G : B −→ H,

G(x) =

{
W2, x ∈ B1,

W1, x ∈ B2,

then G is also a ck-fusion frame with the same bounds of F . Let

Q : L 2(B, F ) −→ L 2(B, G),

Q(x) =

{
2e2, x ∈ B1,

e1, x ∈ B2.

So, Q is a linear bounded operator. Now, we have

TGQT ∗
F e1 = e2 = k∗e1,
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and
TGQT ∗

F e2 = e1 = k∗e2.

Thus, G is a Q-dual of F by Theorem 3.2.

Theorem 3.4. If G is a cQk-dual for F , then G is a ck∗-fusion frame
with respect to w for H.

Proof. Let h ∈ H and B be an upper bound of F . Therefore

∥kh∥4 = |⟨kh, kh⟩|2

= |⟨TFQ
∗T ∗

G(h), kh⟩|
2

= |⟨T ∗
G(h), QT ∗

F (kh)⟩|
2

≤ ∥T ∗
G(h)∥

2 ∥Q∥2B ∥kh∥2

= ∥Q∥2B ∥kh∥2
∫
X
w2(x)

∥∥πG(x)(h)
∥∥2 dµ.

Now, by definition, the proof is completed. □
Corollary 3.5. If Cop and Dop are the optimal bounds of G, respectively,
then

Cop ≥ B−1
op ∥Q∥−2, Dop ≥ A−1

op ∥Q∥−2,

in which Aop and Bop are the optimal bounds of F , respectively.

We want to show a necessary condition on Q which satisfies the above
definition. For that, we need the following lemma in [20].

Lemma 3.6. Let F be a c-fusion Bessel frame with respect to v for H
with bounds of B and dimH < ∞. Then

A ≤
∫
X
v2(x) dµ ≤ B dimH.

Theorem 3.7. Let G be a cQk-dual for F with upper bounds of BG and
BF , respectively. If n := dimH < ∞, then

∥Q∥ ≥ ∥kh∥2

n ∥k∥ ∥h∥2
(BFBG)

− 1
2 .

Proof. Let h ∈ H. By (III) in Theorem 3.2, we can write

∥kh∥2 ≤ ∥T ∗
Gh∥ ∥Q∥ ∥T ∗

Fkh∥

= ∥Q∥
(∫

X
w2(x)

∥∥πG(x)h
∥∥2 dµ

) 1
2
(∫

X
v2(x)

∥∥πF (x)kh
∥∥2 dµ

) 1
2

≤ ∥Q∥ ∥k∥ ∥h∥2
(∫

X
w2(x) dµ

) 1
2
(∫

X
v2(x) dµ

) 1
2

.

Now, by Lemma 3.6 the proof is completed. □
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Suppose that F is a ck-fusion frame with respect to v for H. Since
SF ≥ Akk∗, then by Lemma 1.5, there exists an operator
u ∈ B

(
H,L 2(X,F )

)
such that

(3.2) TFu = k.

By this operator, we may construct some cQk-duals for H.

Theorem 3.8. Let F be a ck-fusion frame with respect to v for H. If

u is an operator as in (3.2) and F̂ (x) := u∗uF (x), for all x ∈ X, is a

c-fusion Bessel mapping with respect to v, then F̂ is a cQk-dual for F .

Proof. We define the mapping

Φ0 : R(T ∗
F̂
) → L 2(X,F ),

Φ0(T
∗
F̂
h) = uh.

Then Φ0 is well-defined. Indeed, if h1, h2 ∈ H and T ∗
F̂
h1 = T ∗

F̂
h2, then

π
F̂
(h1 − h2) = 0. Thus

h1 − h2 ∈ (F̂ )⊥ = R(u∗)⊥ = keru,

then uh1 = uh2. It is clear that Φ0 is bounded and linear. Therefore, it
has a unique linear extension (also denoted by Φ0) to R(T ∗

F̂
). Define Φ

on L 2(X, F̂ ) by setting

Φ =

{
Φ0, on R(T ∗

F̂
),

0, on R(T ∗
F̂
)
⊥
,

and let Q := Φ∗. This implies that Q∗ ∈ B
(
L 2(X, F̂ ),L 2(X,F )

)
and

TFQ
∗T ∗

F̂
= TFΦT

∗
F̂

= TFu

= k.

□
Proposition 3.9. Let F be a ck-fusion frame with optimal bounds of
Aop and Bop, respectively and k has closed range. Then

Bop = ∥SF ∥ = ∥TF ∥2 , Aop = ∥u0∥−2 ,

in which u0 is a unique solution of equation (3.2).

Proof. By using Lemma 1.5, the equation (3.2) has a unique solution as
u0 such that

∥u0∥2 = inf{α > 0 : kk∗ ≤ αTFT
∗
F }

= inf{α > 0 : ∥k∗h∥2 ≤ α ∥T ∗
Fh∥

2 , h ∈ H}.
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Now, we obtain

Aop = sup{A > 0 : A ∥k∗h∥2 ≤ ∥T ∗
Fh∥

2 , h ∈ H}

=
(
inf{α > 0 : ∥k∗h∥2 ≤ α ∥T ∗

Fh∥
2 , h ∈ H}

)−1

= ∥u0∥−2 .

□

4. Perturbation of ck-fusion Frames

The perturbation of frames have been discussed by Cazassa and Chris-
tensen in [4]. For k-fusion frames, it is studied by Arabyani and Arefi-
jamaal in [1]. We aim to present it for ck-fusion frames.

Theorem 4.1. Let F be a ck-fusion frame with respect to v ∈ L 2(µ) for
H with bounds A and B, respectively, G : X → H be weakly measurable
and w : X → R+ be a measurable function. If for some 0 < λ1, λ2 < 1
and ε > 0∥∥(v(x)πF (x) − w(x)πG(x)

)
(h)
∥∥ ≤ λ1

∥∥v(x)πF (x)(h)
∥∥+ λ2

∥∥w(x)πG(x)(h)
∥∥

+ εv(x) ∥k∗h∥ ,
for any h ∈ H and x ∈ X such that

(4.1) ε <
(1− λ1)

√
A

∥k∥

(∫
X
v2(x) dµ

)− 1
2

,

then G is a ck-fusion frame with respect to w with bounds(√
A(1− λ1)(∥k∥ − 1)

∥k∥ (1 + λ2)

)2

,

(
(1 + λ1)

√
B + (1− λ1)

√
A

(1− λ2)

)2

.

Proof. Suppose that h ∈ H and x ∈ X. We have(∫
X

w2(x)
∥∥πG(x)(h)

∥∥2 dµ

) 1
2

=

(∫
X

∥∥w(x)πG(x)(h)− v(x)πF (x)(h) + v(x)πF (x)(h)
∥∥2 dµ

) 1
2

≤
(∫

X

{
(1 + λ1)

∥∥v(x)πF (x)(h)
∥∥+ λ2

∥∥w(x)πG(x)(h)
∥∥+ εv(x) ∥k∗h∥

}2
dµ

) 1
2

≤ (1 + λ1)

(∫
X

∥∥v(x)πF (x)(h)
∥∥2 dµ

) 1
2

+ λ2

(∫
X

∥∥w(x)πG(x)(h)
∥∥2 dµ

) 1
2

+ ε ∥k∗h∥
(∫

X

v2(x) dµ

) 1
2

.
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Using (4.1) we have∫
X
w2(x)

∥∥πG(x)(h)
∥∥2 dµ ≤

(
(1 + λ1)

√
B + (1− λ1)

√
A

(1− λ2)

)2

∥h∥2 .

This means that G is a c-fusion Bessel mapping with respect w. Now,
for the lower bound, we can write(∫

X

w2(x)
∥∥πG(x)(h)

∥∥2 dµ

) 1
2

=

(∫
X

∥∥w(x)πG(x)(h)− v(x)πF (x)(h) + v(x)πF (x)(h)
∥∥2 dµ

) 1
2

≥
(∫

X

{
(1− λ1)

∥∥v(x)πF (x)(h)
∥∥− λ2

∥∥w(x)πG(x)(h)
∥∥− εv(x) ∥k∗h∥

}2
dµ

) 1
2

≥ (1− λ1)

(∫
X

∥∥v(x)πF (x)(h)
∥∥2 dµ

) 1
2

− λ2

(∫
X

∥∥w(x)πG(x)(h)
∥∥2 dµ

) 1
2

− ε ∥k∗h∥
(∫

X

v2(x) dµ

) 1
2

.

Thus∫
X
w2(x)

∥∥πG(x)(h)
∥∥2 dµ ≥

(√
A(1− λ1)(∥k∥ − 1)

∥k∥ (1 + λ2)

)2

∥k∗h∥2 ,

and the proof is completed. □

In case of µ(X) < ∞, we can show a simple case of perturbation in
the following proposition.

Proposition 4.2. Let F be a ck-fusion frame with respect to v for H
with bounds A and B, respectively and G : X → H be weakly measurable.
If for each h ∈ H and x ∈ X∥∥v(x) (πF (x) − πG(x)

)
(h)
∥∥ ≤ ε ∥k∗h∥ ,

for some 0 < ε < µ−1
√
A and µ := µ(X) < ∞, then G is a ck-fusion

frame with respect to v for H with bounds

(A− µ2ε2), (B + µ2ε2 ∥k∥2).

Proof. Let h ∈ H and x ∈ X, then∫
X
v2(x)

∥∥πG(x)(h)
∥∥2 dµ ≤

∫
X
v2(x)

∥∥πF (x)(h)
∥∥2 dµ

+

∫
X
v2(x)

∥∥(πF (x) − πG(x))(h)
∥∥2 dµ
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≤
(
B + µ2ε2 ∥k∥2

)
∥h∥2 .

Therefore, G is a c-fusion Bessel mapping. On the other hand∫
X
v2(x)

∥∥πG(x)(h)
∥∥2 dµ ≥

∫
X
v2(x)

∥∥πF (x)(h)
∥∥2 dµ

−
∫
X
v2(x)

∥∥(πF (x) − πG(x))(h)
∥∥2 dµ

≥
(
A− µ2ε2

)
∥k∗h∥2 .

This completes the proof. □

5. Conclusions

The study of the ck-fusions shows that the emphasis on the measure
spaces introduces a new idea, although some similar properties with the
discrete case are raised. Moreover, due to the nature of measure spaces,
we have to use new techniques for new results. Especially, the topic of
the dual of frames which is important for frame applications, has been
specified completely for the ck-fusions. Observance of perturbation for
ck-fusions are raised and the required results have been obtained. For
an open problem in the continuation of this research work, the problem
of the optimal deletion of the measure spaces and reproduction of the
ck-fusions and the design of Kadison-Singer problem can be mentioned
(see [7, 18]).

Acknowledgements: We gratefully thank the referee for carefully read-
ing of the paper and for the suggestions that greatly improved the pre-
sentation of the paper.

References

1. F. Arabyani Neyshaburi and A.A. Arefijamaal, Characterization
and Construction of k-Fusion Frames and Their Duals in Hilbert
Spaces, Results. Math., (2018) to appear.

2. H. Blocsli, H.F. Hlawatsch and H.G. Fichtinger, Frame-Theoretic
analysis of oversampled filter bank, IEEE Trans. Signal Processing.,
46 (1998), pp. 3256- 3268.

3. E.J. Candes and D.L. Donoho, New tight frames of curvelets and
optimal representation of objects with piecwise C2 singularities,
Comm. Pure and App. Math., 57 (2004), pp. 219-266.

4. P.G. Casazza and O. Christensen, Perturbation of Operators and
Application to Frame Theory, J. Fourier Anal. Appl., 3 (1997), pp.
543-557.

5. P.G. Casazza and G. Kutyniok, Frames of Subspaces, Contemp.
Math., 345 (2004), pp. 87-114.



54 V. SADRI, R. AHMADI, M. A. JAFARIZADEH AND S. NAMI

6. P.G. Casazza, G. Kutyniok and S. Li, Fusion Frames and dis-
tributed processing, Appl. comput. Harmon. Anal., 25 (2008), pp.
114–132.

7. P.G. Casazza and J.C. Tremain, Consequences of The Mar-
cus/Spielman/Srivastava Solution of The Kadison-Singer Problem,
New Trends in Appl. Harm. Anal., (2016), pp. 191-213.

8. O. Christensen, Frames and Bases: An Introductory Course (Ap-
plied and Numerical Harmonic Analysis), Birkhaüser, 2008.
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