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On Approximate Solutions of the Generalized Radical Cubic

Functional Equation in Quasi-β-Banach Spaces

Prondanai Kaskasem1, Aekarach Janchada2 and Chakkrid Kin-eam3∗

Abstract. In this paper, we prove the generalized Hyers-Ulam-
Rassias stability of the generalized radical cubic functional equation

f
(

3
√

ax3 + by3
)
= af(x) + bf(y),

where a, b ∈ R+ are fixed positive real numbers, by using direct
method in quasi-β-Banach spaces. Moreover, we use subadditive
functions to investigate stability of the generalized radical cubic
functional equations in (β, p)-Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations was initiated by Ulam in
1940 [29] arising from concerning the stability of group homomorphisms.
These questions form the object of the stability theory. If the answers
are affirmative, we say that the functional equation for homomorphisms
is stable. In 1941, Hyers [18] provided a first affirmative partial answer
to Ulam’s problem for the case of approximately additive mapping in
Banach spaces. In 1978, Rassias [24] provided a generalization of Hy-
ers’s theorem for linear mappings by considering an unbounded Cauchy
difference. In 1994, a generalization of Rassias’s results was developed
by Găvruţa [14] by replacing the unbounded Cauchy difference by a gen-
eral control function. For more information on that subject and further
references we refer to a survey paper [6] and to a recent monograph on
Ulam stability [7].
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Throughout this paper, let N,R,R+ and C be the set of natural num-
bers, the set of real numbers, the set of positive real numbers and the
set of complex numbers, respectively. We consider some basic concepts
concerning quasi-β-normed spaces and some preliminary results. We fix
a real number β with 0 < β ≤ 1 and let K denotes either R or C. Let X
be a linear space over K. A quasi-β-norm ∥· ∥ is a real-valued function
on X satisfying the following conditions:

(1) ∥x∥ ≥ 0 for all x ∈ X and ∥x∥ = 0 if and only if x = 0;
(2) ∥λx∥ = |λ|β∥x∥ for all λ ∈ K and all x ∈ X;
(3) There is a constant K ≥ 1 such that ∥x + y∥ ≤ K(∥x∥ + ∥y∥)

for all x, y ∈ X.

The pair (X, ∥· ∥) is called a quasi-β-normed space if ∥· ∥ is a quasi-β-
norm on X. The smallest possible K is called the modulus of concavity
of ∥· ∥. A quasi-β-Banach space is a complete quasi-β-normed space. A
quasi-β-norm ∥ · ∥ is called a p-norm on X if ∥x + y∥p ≤ ∥x∥p + ∥y∥p
for some 0 < p ≤ 1 and for all x, y ∈ X. In this case, a quasi-β-Banach
space is called a (β, p)-Banach space. We refer for more details on quasi-
β-normed spaces and (β, p)-Banach spaces to [4, 16, 21, 26–28].

In 2009, Rassias and Kim [25] generalized the results obtained for
Jensen type mappings and established new theorems about the Hyers-
Ulam stability for general additive functional equations in quasi-β-Banach
spaces. In the same year, Gordji and Parviz [17] established the Hyers-
Ulam-Rassias stability of the quadratic functional equation

(1.1) f(
√

x2 + y2) = f(x) + f(y),

in Banach spaces. Later, Kim et al. [22] introduced and solved the
generalized radical quadratic functional equation and the generalized
radical quartic functional equation:

f(
√

ax2 + by2) = af(x) + bf(y),

f(
√

ax2 + by2) + f(
√

|ax2 − by2|) = 2a2f(x) + 2b2f(y),

where a, b ∈ R+ are fixed. Moreover, they proved some results in 2-
normed spaces and then the stability by subadditive and subquadratic
functions in p-2-Banach spaces for these functional equations. In 2012,
Kim, Cho and Gordji [23] investigated the generalized Hyers-Ulam-
Rassias stability of the functional equation (1.1) and

(1.2) f(
√

x2 + y2) + f(
√

|x2 − y2|) = 2f(x) + 2f(y),

in quasi-β-Banach spaces and discussed the stability by using subaddi-
tive and subquadratic functions for the functional equations (1.1) and
(1.2) in (β, p)-Banach spaces.
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In 2002, Jun and Kim [19] introduced the following functional equa-
tion

(1.3) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x).

It is easy to see that the function f(x) = cx3 is a solution of the func-
tional equation (1.3). The equation (1.3) is called a cubic functional
equation and every solution of the equation (1.3) is said to be a cubic
function. Moreover, they established the general solution and the gener-
alized Hyers-Ulam stability for the equation (1.3) in the spirit of Găvruţa
[14]. Recently, Alizadeh and Ghazanfari [2] introduced the radical cubic
functional equation

(1.4) f( 3
√

x3 + y3) = f(x) + f(y),

and showed that if f is a function from R into a linear space X satisfying
the functional equation (1.4), then f satisfies the functional equation
(1.3). They used a direct method to prove the Hyers-Ulam stability
of the functional equation (1.4) in quasi-β-Banach spaces and estab-
lished the stability by using contractively subadditive mappings and
expansively subquadratic mappings for functional equation 1.4 in (β, p)-
Banach spaces. Furthermore, we refer to [1–3, 9–13, 15, 20] for stability
results of radical functional equations in various spaces and to [5, 8] for
recent monograph on Ulam stability.

The purpose of this paper, we prove the generalized Hyers-Ulam-
Rassias stability of the generalized radical cubic functional equation
(shortly in GRCE)

(1.5) f
(

3
√
ax3 + by3

)
= af(x) + bf(y),

where a, b ∈ R+ are fixed, by using direct method in quasi-β-Banach
spaces and establish the stability results by using contractively subaddi-
tive mapping and expansively subquadratic mappings for the functional
equation (1.5) in (β, p)-Banach spaces.

2. Stability of the Functional Equation (1.5) in
Quasi-β-Banach Spaces

In this section, we prove the generalized Hyers-Ulam-Rassias stability
of the generalized radical cubic functional equation (1.5).

Let X be a normed space and ϕ : R2 → R+ ∪ {0} be a function. A
function f : R → X is called a ϕ-approximately generalized radical cubic
function if

(2.1)
∥∥∥f ( 3

√
ax3 + by3

)
− af(x)− bf(y)

∥∥∥ ≤ ϕ(x, y),

for all x, y ∈ R, where a, b ∈ R+ are fixed.
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Theorem 2.1. Let X be a quasi-β-Banach space and f : R → X be a
ϕ-approximately generalized radical cubic function with a + b ̸= 1. If a
function ϕ : R2 → R+ ∪ {0} satisfies

Φ(x) :=

∞∑
j=0

(
K

(a+ b)β

)j

ϕ
(
(a+ b)

j
3 x, (a+ b)

j
3 x
)
< ∞,(2.2)

and

(2.3) lim
n→∞

(
1

a+ b

)βn

ϕ
(
(a+ b)

n
3 x, (a+ b)

n
3 y
)
= 0,

for all x, y ∈ R, then there exists a unique mapping F : R → X satisfying
the functional equation (1.5) and the inequality

∥f(x)− F (x)∥ ≤ K

(a+ b)β
Φ(x),(2.4)

for all x ∈ R.

Proof. Setting y = x in (2.1), we get∥∥∥∥f(x)− 1

a+ b
f
(
(a+ b)

1
3 x
)∥∥∥∥ ≤ 1

(a+ b)β
ϕ(x, x),(2.5)

for all x ∈ R. Replacing x by (a+ b)
m
3 x in (2.5), we obtain that∥∥∥∥ 1

(a+ b)m
f
(
(a+ b)

m
3 x
)
− 1

(a+ b)m+1
f
(
(a+ b)

m+1
3 x

)∥∥∥∥
≤ 1

(a+ b)β(m+1)
ϕ
(
(a+ b)

m
3 x, (a+ b)

m
3 x
)
,

for all x ∈ R and m ∈ N. Then, by an iterative process, we get∥∥∥∥f(x)− 1

(a+ b)m
f
(
(a+ b)

m
3 x
)∥∥∥∥(2.6)

≤ K

(a+ b)β

m−1∑
j=0

(
K

(a+ b)β

)j

ϕ
(
(a+ b)

j
3x, (a+ b)

j
3x
)
,

for all x ∈ R. From (2.6) and for any l,m ∈ N with m > l ≥ 0, we have∥∥∥∥ 1

(a+ b)l
f
(
(a+ b)

l
3 x
)
− 1

(a+ b)m
f
(
(a+ b)

m
3 x
)∥∥∥∥

≤ K

(a+ b)β

∞∑
j=l

(
K

(a+ b)β

)j

ϕ
(
(a+ b)

j
3x, (a+ b)

j
3x
)
,

for all x ∈ R. By (2.2) and taking the limit l → ∞ in the above

inequality, the sequence
{

1
(a+b)n f

(
(a+ b)

n
3 x
)}∞

n=1
is a Cauchy sequence
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in quasi-β-Banach space X. So, it converges in X. We define a function
F : R → X by

F (x) = lim
n→∞

1

(a+ b)n
f
(
(a+ b)

n
3 x
)
,

for all x ∈ R. Next, we consider∥∥∥F ( 3
√

ax3 + by3)− aF (x)− bF (y)
∥∥∥

≤ lim
n→∞

1

(a+ b)βn
ϕ
(
(a+ b)

n
3 x, (a+ b)

n
3 y
)
= 0,

for all x, y ∈ R. Therefore F ( 3
√

ax3 + by3) = aF (x) + bF (y), i.e. F
satisfies the functional equation (1.5) on R.

Next, we assume that there exists another mapping G : R → X which
satisfies the functional equation (1.5) and (2.4). Since G satisfies (1.5),

we have G(x) = 1
(a+b)nG

(
(a+ b)

n
3 x
)
for all x ∈ R and for all n ∈ N.

Similarly, we also have F (x) = 1
(a+b)nF

(
(a+ b)

n
3 x
)
for all x ∈ R and

for all n ∈ N. Next, for any n ∈ N, we consider

∥F (x)−G(x)∥

(2.7)

=

∥∥∥∥ 1

(a+ b)n
F
(
(a+ b)

n
3 x
)
− 1

(a+ b)n
G
(
(a+ b)

n
3 x
)∥∥∥∥

=
1

(a+ b)βn
∥∥F ((a+ b)

n
3 x
)
− f

(
(a+ b)

n
3 x
)
+ f

(
(a+ b)

n
3 x
)
−G

(
(a+ b)

n
3 x
)∥∥

≤ 1

(a+ b)βn
K
(∥∥F ((a+ b)

n
3 x
)
− f

(
(a+ b)

n
3 x
)∥∥

+
∥∥f ((a+ b)

n
3 x
)
−G

(
(a+ b)

n
3 x
)∥∥)

≤ K
1

(a+ b)βn
2K

(a+ b)β

∞∑
j=0

(
K

(a+ b)β

)j

ϕ
(
(a+ b)

j+n
3 x, (a+ b)

j+n
3 x
)

≤ 2K2

(a+ b)β

(
K

(a+ b)β

)n ∞∑
j=0

(
K

(a+ b)β

)j

ϕ
(
(a+ b)

j+n
3 x, (a+ b)

j+n
3 x
)

≤ 2K2

(a+ b)β

∞∑
j=0

(
K

(a+ b)β

)j+n

ϕ
(
(a+ b)

j+n
3 x, (a+ b)

j+n
3 x
)

≤ 2K2

(a+ b)β

∞∑
j=n

(
K

(a+ b)β

)j

ϕ
(
(a+ b)

j
3x, (a+ b)

j
3x
)
,

for all x ∈ R. Taking the limit n → ∞ in (2.7), we get that

lim
n→∞

∥F (x)−G(x)∥
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≤ 2K2

(a+ b)β
lim
n→∞

∞∑
j=n

(
K

(a+ b)β

)j

ϕ
(
(a+ b)

j
3x, (a+ b)

j
3x
)

= 0,

for all x ∈ R. We obtain that ∥F (x) − G(x)∥ = 0, so F (x) = G(x) for
all x ∈ R. Therefore, F is unique. □

Lemma 2.2. Let a, b ∈ R+, p, q ∈ R+ ∪ {0}, 0 < β ≤ 1 and K ≥ 1. If

a+ b ̸= 1 and p, q < β − log(a+b)K, then K(a+ b)
p+q−3β

3 < 1.

Proof. Since p, q < β − log(a+b)K, we get

p+ q < 2(β − log(a+b)K) < 3(β − log(a+b)K),

that is,

log(a+b)K +
p+ q − 3β

3
< 0.

Therefore, we obtain that

0 > log(a+b)K +
p+ q − 3β

3

= log(a+b)K +
p+ q − 3β

3
log(a+b)(a+ b)

= log(a+b)K + log(a+b)(a+ b)
p+q−3β

3

= log(a+b)

(
K(a+ b)

p+q−3β
3

)
.

Hence we have

K(a+ b)
p+q−3β

3 < 1. □

Corollary 2.3. Let X be a quasi-β-Banach space, p, q ∈ R+∪{0}, ε ≥ 0
and f : R → X be a function satisfying the following inequality∥∥∥f ( 3

√
ax3 + by3

)
− af(x)− bf(y)

∥∥∥ ≤ ε|x|p|y|q,

for all x, y ∈ R where p, q < β − log(a+b)K. Then there exists a unique

mapping F : R → X satisfying the functional equation (1.5) and the
following inequality

∥f(x)− F (x)∥ ≤ εK

(a+ b)β
· |x|p+q

1− (a+ b)
p+q
3

−β
,

for all x ∈ R.
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Proof. The result follows from Theorem 2.1 by taking ϕ(x, y) = ε|x|p|y|q
for all x, y ∈ R. We have

∞∑
j=0

(
K

(a+ b)β

)j

ϕ
(
(a+ b)

j
3 x, (a+ b)

j
3 x
)

= ε|x|p+q

[
1 +K(a+ b)

p+q−3β
3 +

(
K(a+ b)

p+q−3β
3

)2
+
(
K(a+ b)

p+q−3β
3

)3
+ · · ·

]
,

for all x ∈ R. By Lemma 2.2, we have K(a+ b)
p+q−3β

3 < 1. Therefore

∞∑
j=0

(
K

(a+ b)β

)j

ϕ
(
(a+ b)

j
3 x, (a+ b)

j
3 x
)
=

ε|x|p+q

1−K(a+ b)
p+q−3β

3

< ∞,

for all x ∈ R. Next, we obtain

lim
n→∞

1

(a+ b)βn
ϕ
(
(a+ b)

n
3 x, (a+ b)

n
3 y
)
=ε|x|p|y|q lim

n→∞

(
(a+ b)

p+q−3β
3

)n
,

for all x, y ∈ R. Since (a+ b)
p+q−3β

3 < 1
K < 1, we have

lim
n→∞

1

(a+ b)βn
ϕ
(
(a+ b)

n
3 x, (a+ b)

n
3 y
)
= 0,

for all x, y ∈ R. By Theorem 2.1, there exists a unique mapping F : R →
X satisfying the functional equation (1.5) and the following inequality

∥f(x)− F (x)∥ ≤ K

(a+ b)β

∞∑
j=0

(
K

(a+ b)β

)j

ϕ
(
(a+ b)

j
3 x, (a+ b)

j
3 x
)

=
εK

(a+ b)β
· |x|p+q

1−K(a+ b)
p+q−3β

3

,

for all x ∈ R. □
Corollary 2.4. Let X be a quasi-β-Banach space, p, q ∈ R+∪{0}, ε ≥ 0
and f : R → X be a function satisfying the following inequality∥∥∥f ( 3

√
ax3 + by3

)
− af(x)− bf(y)

∥∥∥ ≤ ε(|x|p + |y|q),

for all x, y ∈ R where p, q < β − log(a+b)K. Then there exists a unique

mapping F : R → X satisfying the functional equation (1.5) and the
following inequality

∥f(x)− F (x)∥ ≤ εK

(a+ b)β
·

(
|x|p

1−K(a+ b)
p
3
−β

+
|x|q

1−K(a+ b)
q
3
−β

)
,
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for all x ∈ R.

Proof. The result follows from Theorem 2.1 by taking ϕ(x, y) = ε(|x|p+
|y|q) for all x, y ∈ R. We have

∞∑
j=0

(
K

(a+ b)
β

)j

ϕ
(
(a+ b)

j
3 x, (a+ b)

j
3 x
)

=
∞∑
j=0

(
K

(a+ b)
β

)j

ε
(∣∣∣(a+ b)

j
3x
∣∣∣p + ∣∣∣(a+ b)

j
3x
∣∣∣q)

= ε

[
|x|p

(
1 +K(a+ b)

p−3β
3 +

(
K(a+ b)

p−3β
3

)2
+
(
K(a+ b)

p−3β
3

)3
+ · · ·

)
+|x|q

(
1 +K(a+ b)

q−3β
3 +

(
K(a+ b)

q−3β
3

)2
+
(
K(a+ b)

q−3β
3

)3
+ · · ·

)]
,

for all x ∈ R. By Lemma 2.2, we have K(a + b)
p−3β

3 < 1 and

K(a+ b)
q−3β

3 < 1. Therefore, we obtain that

∞∑
j=0

(
K

(a+ b)
β

)j

ϕ
(
(a+ b)

j
3 x, (a+ b)

j
3 x
)

= ε

(
|x|p

1−K(a+ b)
p
3−β

+
|x|q

1−K(a+ b)
q
3−β

)
< ∞,

for all x ∈ R. Next, we have

lim
n→∞

1

(a+ b)βn
ϕ
(
(a+ b)

n
3 x, (a+ b)

n
3 y
)

= lim
n→∞

1

(a+ b)βn
ε
(∣∣(a+ b)

n
3 x
∣∣p + ∣∣(a+ b)

n
3 y
∣∣q)

= ε
(
|x|p lim

n→∞

(
(a+ b)

p−3β
3

)n
+ |y|q lim

n→∞

(
(a+ b)

q−3β
3

)n)
,

for all x, y ∈ R. Since (a+ b)
p−3β

3 < 1
K < 1 and (a+ b)

q−3β
3 < 1

K < 1, we have

lim
n→∞

1

(a+ b)βn
ϕ
(
(a+ b)

n
3 x, (a+ b)

n
3 y
)
= 0,

for all x, y ∈ R. By Theorem 2.1, there exists a unique mapping F : R → X
satisfying the functional equation (1.5) and the following inequality

∥f(x)− F (x)∥ ≤ K

(a+ b)β

∞∑
j=0

(
K

(a+ b)
β

)j

ϕ
(
(a+ b)

j
3 x, (a+ b)

j
3 x
)

=
εK

(a+ b)β
·
(

|x|p

1−K(a+ b)
p
3−β

+
|x|q

1−K(a+ b)
q
3−β

)
,

for all x ∈ R. □



ON APPROXIMATE SOLUTIONS OF GRCE IN QUASI-β-BANACH SPACES 77

Theorem 2.5. Let X be a quasi-β-Banach space and f : R → X be a
ϕ-approximately generalized radical cubic function with a + b ̸= 1. If a
function ϕ : R2 → R+ ∪ {0} satisfies

Φ(x) :=

∞∑
j=1

(
K(a+ b)β

)j
ϕ

(
x

(a+ b)
j
3

,
x

(a+ b)
j
3

)
< ∞,(2.8)

and

lim
n→∞

(a+ b)βnϕ

(
x

(a+ b)
n
3

,
y

(a+ b)
n
3

)
= 0,

for all x, y ∈ R, then there exists a unique mapping F : R → X satisfying
the functional equation (1.5) and the following inequality

(2.9) ∥f(x)− F (x)∥ ≤ K

(a+ b)β
Φ(x),

for all x ∈ R.

Proof. By the same argument as we used in the proof of Theorem 2.1,
we have the inequality (2.5). Replacing x by x

(a+b)
1
3
in (2.5), we have∥∥∥∥∥f(x)− (a+ b)f

(
x

(a+ b)
1
3

)∥∥∥∥∥ ≤ϕ

(
x

(a+ b)
1
3

,
x

(a+ b)
1
3

)
,(2.10)

for all x ∈ R. Replacing x by x

(a+b)
m
3

in (2.10), we have∥∥∥∥∥(a+ b)mf

(
x

(a+ b)
m
3

)
− (a+ b)m+1f

(
x

(a+ b)
m+1

3

)∥∥∥∥∥
≤(a+ b)mβϕ

(
x

(a+ b)
m+1

3

,
x

(a+ b)
m+1

3

)
,

for all x ∈ R and m ∈ N. Then, by an iterative, we get∥∥∥∥f(x)− (a+ b)mf

(
x

(a+ b)
m
3

)∥∥∥∥(2.11)

≤ K

(a+ b)β

m∑
j=1

(
K(a+ b)β

)j
ϕ

(
x

(a+ b)
j
3

,
x

(a+ b)
j
3

)
,

for all x ∈ R. From (2.11) and for any l,m ∈ N with m > l ≥ 0, we have∥∥∥∥∥(a+ b)lf

(
x

(a+ b)
l
3

)
− (a+ b)mf

(
x

(a+ b)
l
3

x

)∥∥∥∥∥
=

K

(a+ b)β

m∑
j=l

(
K(a+ b)β

)j
ϕ

(
x

(a+ b)
j
3

,
x

(a+ b)
j
3

)
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≤ K

(a+ b)β

∞∑
j=l

(
K(a+ b)β

)j
ϕ

(
x

(a+ b)
j
3

,
x

(a+ b)
j
3

)
,

for all x ∈ R. By (2.8) and taking the limit l → ∞ in the above

inequality, the sequence

{
(a+ b)nf

(
x

(a+b)
n
3

)}∞

n=1

is a Cauchy sequence

in quasi-β-Banach space X. So, it converges in X. We define a mapping
F : R → X by

F (x) = lim
n→∞

(a+ b)nf

(
x

(a+ b)
n
3

)
,

for all x ∈ R. Next, we consider∥∥∥F ( 3
√
ax3 + by3)− aF (x)− bF (y)

∥∥∥
≤ lim

n→∞
(a+ b)βnϕ

(
x

(a+ b)
n
3

,
y

(a+ b)
n
3

)
= 0,

for all x, y ∈ R. Therefore F ( 3
√

ax3 + by3) = aF (x) + bF (y), that is F
satisfies the functional equation (1.5) on R.

Next, we assume that there exists another mapping G : R → X which
satisfies the functional equation (1.5) and (2.9). Since G satisfies (1.5),

we have G (x) = (a + b)nG

(
x

(a+b)
n
3

)
for all x ∈ R and for all n ∈ N.

Similarly, we have F (x) = (a+ b)nF

(
x

(a+b)
n
3

)
for all x ∈ R and for all

n ∈ N. Next, for any n ∈ N, we consider

∥F (x)−G(x)∥ ≤ 2K2

(a+ b)β

∞∑
j=n

(
K(a+ b)β

)j
ϕ

(
x

(a+ b)
j
3

,
x

(a+ b)
j
3

)
,

(2.12)

for all x ∈ R. Taking the limit n → ∞ in (2.12), we get that

lim
n→∞

∥F (x)−G(x)∥

≤ 2K2

(a+ b)β
lim
n→∞

∞∑
j=n

(
K(a+ b)β

)j
ϕ

(
x

(a+ b)
j
3

,
x

(a+ b)
j
3

)
= 0,

for all x ∈ R. We obtain that ∥F (x) − G(x)∥ = 0, so F (x) = G(x) for
all x ∈ R. Therefore, F is unique. □

Lemma 2.6. Let a, b ∈ R+, p, q ∈ R+ ∪ {0}, 0 < β ≤ 1 and K ≥ 1. If

a+ b ̸= 1 and 3(β + log(a+b)K) < p+ q, then K(a+ b)
3β−(p+q)

3 < 1.



ON APPROXIMATE SOLUTIONS OF GRCE IN QUASI-β-BANACH SPACES 79

Proof. Since 3(β + log(a+b)K) < p+ q, we get

0 >
3β − (p+ q)

3
+ log(a+b)K

=
3β − (p+ q)

3
log(a+b)(a+ b) + log(a+b)K

= log(a+b)(a+ b)
3β−(p+q)

3 + log(a+b)K

= log(a+b)

(
K(a+ b)

3β−(p+q)
3

)
.

Hence we obtain that K(a+ b)
3β−(p+q)

3 < 1. □
Corollary 2.7. Let X, p, q be as Corollary 2.3 and ε ≥ 0. If f : R → X
be a function satisfying the following inequality∥∥∥f ( 3

√
ax3 + by3

)
− af(x)− bf(y)

∥∥∥ ≤ ε|x|p|y|q,

for all x, y ∈ R where 3(β + log(a+b)K) < p + q, then there exists a

unique mapping F : R → X satisfying the functional equation (1.5) and
the following inequality

∥f(x)− F (x)∥ ≤ εK2

(a+ b)β
· |x|p+q

(a+ b)
p+q
3

−β −K
,

for all x ∈ R.

Proof. The proof follows from Theorem 2.5 by taking ϕ(x, y) = ε|x|p|y|q
for all x, y ∈ R. We have
∞∑
j=1

(
K(a+ b)β

)j
ϕ

(
x

(a+ b)
j
3

,
x

(a+ b)
j
3

)

=
∞∑
j=1

(
K(a+ b)β

)j
ε

∣∣∣∣∣ x

(a+ b)
j
3

∣∣∣∣∣
p+q

= εK(a+ b)
3β−(p+q)

3 |x|p+q

[
1 +K(a+ b)

3β−(p+q)
3 +

(
K(a+ b)

3β−(p+q)
3

)2
+
(
K(a+ b)

3β−(p+q)
3

)3
+ . . .

]
,

for all x ∈ R. By Lemma 2.6, we have K(a+ b)
3β−(p+q)

3 < 1. Therefore

∞∑
j=1

(
K(a+ b)β

)j
ϕ

(
x

(a+ b)
j
3

,
x

(a+ b)
j
3

)
=

εK(a+ b)
3β−(p+q)

3 |x|p+q

1−K(a+ b)
3β−(p+q)

3

=
εK|x|p+q

(a+ b)
p+q−3β

3 −K
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=
εK|x|p+q

(a+ b)
p+q
3

−β −K
< ∞,

for all x ∈ R. Next, we consider

lim
n→∞

(a+ b)βnϕ

(
x

(a+ b)
n
3

,
y

(a+ b)
n
3

)
=ε|x|p|y|q lim

n→∞

(
(a+ b)

3β−(p+q)
3

)n
,

for all x, y ∈ R. Since (a+ b)
3β−(p+q)

3 < 1
K < 1, we have

lim
n→∞

(a+ b)βnϕ

(
x

(a+ b)
n
3

,
y

(a+ b)
n
3

)
= 0,

for all x, y ∈ R. By Theorem 2.5, there exists a unique mapping F : R →
X satisfying the functional equation (1.5) and the following inequality:

∥f(x)− F (x)∥ ≤ K

(a+ b)β

∞∑
j=1

(
K(a+ b)β

)j
ϕ

(
x

(a+ b)
j
3

,
x

(a+ b)
j
3

)

=
εK2

(a+ b)β
· |x|p+q

(a+ b)
p+q
3

−β −K
,

for all x ∈ R. □
Corollary 2.8. Let X, p, q be as Corollary 2.4 and ε ≥ 0. If f : R → X
be a function satisfying the following inequality∥∥∥f ( 3

√
ax3 + by3

)
− af(x)− bf(y)

∥∥∥ ≤ ε(|x|p + |y|q),

for all x, y ∈ R where 3(β + log(a+b)K) < p + q, then there exists a
unique mapping F : R → X satisfying the functional equation (1.5) and
the inequality

∥f(x)− F (x)∥ ≤ εK3

(a+ b)β
·

(
|x|p

(a+ b)
p
3
−β −K

+
|x|q

(a+ b)
q
3
−β −K

)
,

for all x ∈ R.

Proof. The result follows from Theorem 2.5 by taking ϕ(x, y) = ε(|x|p+
|y|q) for all x, y ∈ R. We have

∞∑
j=1

(
K(a+ b)β

)j
ϕ

(
x

(a+ b)
j
3

,
x

(a+ b)
j
3

)

=

∞∑
j=1

(
K(a+ b)β

)j
ε

(∣∣∣∣∣ x

(a+ b)
j
3

∣∣∣∣∣
p

+

∣∣∣∣∣ x

(a+ b)
j
3

∣∣∣∣∣
q)

= ε

[
K(a+ b)

3β−p
3 |x|p

(
1 +K(a+ b)

3β−p
3 +

(
K(a+ b)

3β−p
3

)2
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+
(
K(a+ b)

3β−p
3

)3
+ · · ·

)
+K(a+ b)

3β−q
3 |x|q

(
1 +K(a+ b)

3β−q
3 +

(
K(a+ b)

3β−q
3

)2
+
(
K(a+ b)

3β−q
3

)3
+ · · ·

)]
,

for all x ∈ R. By Lemma 2.6, we have K(a + b)
3β−p

3 < 1 and K(a +

b)
3β−q

3 < 1. Therefore

∞∑
j=1

(
K(a+ b)β

)j
ϕ

(
x

(a+ b)
j
3

,
x

(a+ b)
j
3

)

= ε

(
K(a+ b)

3β−p
3 |x|p

1−K(a+ b)
3β−p

3

+
K(a+ b)

3β−q
3 |x|q

1−K(a+ b)
3β−q

3

)

= εK

(
|x|p

(a+ b)
p
3
−β −K

+
|x|q

(a+ b)
q
3
−β −K

)
< ∞,

for all x ∈ R. Next, we have

lim
n→∞

(a+ b)βnϕ

(
x

(a+ b)
n
3

,
y

(a+ b)
n
3

)
= lim

n→∞
(a+ b)βnε

(∣∣∣∣ x

(a+ b)
n
3

∣∣∣∣p + ∣∣∣∣ y

(a+ b)
n
3

∣∣∣∣q)
= ε

(
|x|p lim

n→∞

(
(a+ b)

3β−p
3

)n
+ |y|q lim

n→∞

(
(a+ b)

3β−q
3

)n)
,

for all x, y ∈ R. Since (a + b)
3β−p

3 < 1
K < 1 and (a + b)

3β−q
3 < 1

K < 1,
we have

lim
n→∞

(a+ b)βnϕ

(
x

(a+ b)
n
3

,
y

(a+ b)
n
3

)
= 0,

for all x, y ∈ R. By Theorem 2.5, there exists a unique mapping F : R →
X satisfying the functional equation (1.5) and the following inequality

∥f(x)− F (x)∥ ≤ K

(a+ b)β

∞∑
j=1

(
K(a+ b)β

)j
ϕ

(
x

(a+ b)
j
3

,
x

(a+ b)
j
3

)

=
εK2

(a+ b)β
·

(
|x|p

(a+ b)
p
3
−β −K

+
|x|q

(a+ b)
q
3
−β −K

)
,

for all x ∈ R. □
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3. Stability of the functional equation (1.5) in (β, p)-Banach
spaces

Now, we investigate the stability of the functional equation (1.5) in
(β, p)-Banach spaces by using contractive subbadditive and expansively
superadditive functions.

We recall that a subadditive function is a function φ : A → B, having
a domain A and a codomain (B,≤) that are both closed under addition,
with the following property:

ϕ(x+ y) ≤ ϕ(x) + ϕ(y),

for all x, y ∈ A. Now we say that a function ϕ : A → B is contractively
subadditive if there exists a constant L with 0 < L < 1 such that

ϕ(x+ y) ≤ L (ϕ(x) + ϕ(y)) ,

for all x, y ∈ A. Then ϕ satisfies the property ϕ(2x) ≤ 2Lϕ(x) and so
ϕ(2nx) ≤ (2L)nϕ(x). It follows by the contractively subadditive condi-
tion of ϕ that ϕ(λx) ≤ λLϕ(x) and so ϕ

(
λix
)
≤ (λL)iϕ(x) for all i ∈ N,

for all x ∈ A and for all positive integers λ ≥ 2.
Similarly, w say that a function ϕ : A → B is expansively superaddi-

tive if there exists a constant L with 0 < L < 1 such that

ϕ(x+ y) ≥ 1

L
(ϕ(x) + ϕ(y)) ,

for all x, y ∈ A. Then ϕ satisfies the property ϕ(x) ≤ L
2 ϕ(2x) and

so ϕ
(

x
2n

)
≤
(
L
2

)n
ϕ(x). We observe that an expansively superaddi-

tive mapping ϕ satisfies the following properties ϕ(λx) ≥ λ
Lϕ(x) and

so ϕ
(
x
λi

)
≤
(
L
λ

)i
ϕ(x), for all i ∈ N, for all x ∈ A and for all positive

integers λ ≥ 2.

Theorem 3.1. Let X be a (β, p)-Banach space and f : R → X be
a ϕ-approximately generalized radical cubic function. Assume that the
following conditions are valid:

(i) the function ϕ is contractive subadditive with constant L satis-
fying (a+ b)1−3βL < 1;

(ii) a+ b is a positive integer with a+ b ≥ 2.

Then there exists a unique mapping F : R → X satisfying the functional
equation (1.5) and the following inequality

(3.1) ∥f(x)− F (x)∥ ≤ (a+ b)3β

p
√

(a+ b)3βp − ((a+ b)L)p
Φ(x),

for all x ∈ R, where

Φ(x) =
K

(a+ b)β
ϕ(x, x) +

(
K

(a+ b)β

)2

ϕ
(
(a+ b)

1
3x, (a+ b)

1
3x
)
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+

(
K

(a+ b)β

)3

ϕ
(
(a+ b)

2
3x, (a+ b)

2
3x
)
.

Proof. By the same argument as we used in the proof of Theorem 2.1,
for any m ∈ N, we can show that∥∥∥∥f(x)− 1

(a+ b)m
f
(
(a+ b)

m
3 x
)∥∥∥∥

≤ K

(a+ b)β

m−1∑
j=0

(
K

(a+ b)β

)j

ϕ
(
(a+ b)

j
3x, (a+ b)

j
3x
)
,

for all x ∈ R. For m = 3, we have∥∥∥∥f(x)− 1

(a+ b)3
f ((a+ b)x)

∥∥∥∥(3.2)

≤ K

(a+ b)β
ϕ(x, x) +

(
K

(a+ b)β

)2

ϕ
(
(a+ b)

1
3x, (a+ b)

1
3x
)

+

(
K

(a+ b)β

)3

ϕ
(
(a+ b)

2
3x, (a+ b)

2
3x
)
,

for all x ∈ R. Then (3.2) takes the following form

(3.3)

∥∥∥∥f(x)− 1

(a+ b)3
f ((a+ b)x)

∥∥∥∥ ≤ Φ(x),

for all x ∈ R. By an iterative process, we have∥∥∥∥ 1

(a+ b)3m
f ((a+ b)mx)− 1

(a+ b)3(m+1)
f
(
(a+ b)m+1x

)∥∥∥∥
≤ 1

(a+ b)3mβ
Φ((a+ b)mx) ,

for all x ∈ R and m ∈ N. For any m, l ∈ N, 0 ≤ l < m, we have

∥∥∥∥ 1

(a+ b)3l
f
(
(a+ b)lx

)
− 1

(a+ b)3m
f ((a+ b)mx)

∥∥∥∥p
(3.4)

≤
m−1∑
j=l

∥∥∥∥ 1

(a+ b)3j
f
(
(a+ b)jx

)
− 1

(a+ b)3(j+1)
f
(
(a+ b)j+1x

)∥∥∥∥p

≤
m−1∑
j=l

1

(a+ b)3jβp
Φ
(
(a+ b)jx

)p
≤ Φ(x)p

m−1∑
j=l

(
(a+ b)1−3βL

)jp
,
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for all x ∈ R. Indeed, for any j ∈ N, we have

1

(a+ b)3jβp
Φ
(
(a+ b)jx

)p
=

1

(a+ b)3jβp

[
K

(a+ b)β
ϕ((a+ b)jx, (a+ b)jx)

+

(
K

(a+ b)β

)2

ϕ
(
(a+ b)

1
3 (a+ b)jx, (a+ b)

1
3 (a+ b)jx

)
+

(
K

(a+ b)β

)3

ϕ
(
(a+ b)

2
3 (a+ b)jx, (a+ b)

2
3 (a+ b)jx

)]p
≤ 1

(a+ b)3jβp

[
K

(a+ b)β
((a+ b)L)jϕ(x, x)

+

(
K

(a+ b)β

)2

((a+ b)L)jϕ((a+ b)
1
3x, (a+ b)

1
3x)

+

(
K

(a+ b)β

)3

((a+ b)L)jϕ((a+ b)
2
3x, (a+ b)

2
3x)

]p
=

1

(a+ b)3jβp

[
((a+ b)L)j

(
K

(a+ b)β
ϕ(x, x)

+

(
K

(a+ b)β

)2

ϕ((a+ b)
1
3x, (a+ b)

1
3x)

+

(
K

(a+ b)β

)3

ϕ((a+ b)
2
3x, (a+ b)

2
3x)

)]p
=

1

(a+ b)3jβp
(
((a+ b)L)jΦ(x)

)p
≤ Φ(x)p

(
(a+ b)1−3βL

)jp
,

for all x ∈ R. Since (a + b)1−3βL < 1, we get
(
(a+ b)1−3βL

)jp
< 1 for

all j ∈ N. Then, the geometric series converges

∞∑
j=0

(
(a+ b)1−3βL

)jp
=

1

1− ((a+ b)1−3βL)
p < ∞.

From the inequality (3.4), we have∥∥∥∥ 1

(a+ b)3l
f
(
(a+ b)lx

)
− 1

(a+ b)3m
f ((a+ b)mx)

∥∥∥∥p(3.5)
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≤ Φ(x)p
m−1∑
j=l

(
(a+ b)1−3βL

)jp
≤ Φ(x)p

∞∑
j=l

(
(a+ b)1−3βL

)jp
,

for all x ∈ R. Taking the limit l → ∞ in (3.5), we obtain that

lim
l→∞

∥∥∥∥ 1

(a+ b)3l
f
(
(a+ b)lx

)
− 1

(a+ b)3m
f ((a+ b)mx)

∥∥∥∥p
≤ Φ(x)p lim

l→∞

∞∑
j=l

(
(a+ b)1−3βL

)jp
= 0.

Then the sequence
{

1
(a+b)3n

f ((a+ b)nx)
}

is a Cauchy sequence in the

(β, p)-Banach space X. So, it converges in X. We define a function
F : R → X by

F (x) = lim
n→∞

1

(a+ b)3n
f ((a+ b)nx) ,

for all x ∈ R. Then we get that∥∥∥F ( 3
√

ax3 + by3)− aF (x)− bF (y)
∥∥∥ ≤ϕ(x, y)p lim

n→∞

(
(a+ b)1−3βL

)np
= 0,

for all x, y ∈ R. Then F ( 3
√

ax3 + by3) = aF (x) + bF (y), i.e. F satisfies
the functional equation (1.5) on R. It follows form (3.4) with l = 0 and
taking the limit m → ∞, that we have

∥f(x)− F (x)∥p ≤ Φ(x)p
1

1− ((a+ b)1−3βL)p
,

so,

∥f(x)− F (x)∥ ≤ (a+ b)3β

p
√

(a+ b)3βp − ((a+ b)L)p
Φ(x),

for all x ∈ R.
Next, we assume that there exists another mapping G : R → X which

satisfies the functional equation (1.5) and (3.1). Since G satisfies (1.5),
we have

(3.6) G(x) =
1

(a+ b)n
G
(
(a+ b)

n
3 x
)
,

for all x, y ∈ R and for all n ∈ N. Form (3.6), for n = 3, we have

(3.7) G(x) =
1

(a+ b)3
G ((a+ b)x) ,
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for all x ∈ R. Replacing x in (3.7) by (a+ b)x, we have

G ((a+ b)x) =
1

(a+ b)3
G
(
(a+ b)2x

)
,

so,
1

(a+ b)3
G ((a+ b)x) =

1

(a+ b)6
G
(
(a+ b)2x

)
,

for all x ∈ R. Continuing this process, we have

G (x) =
1

(a+ b)3n
G ((a+ b)nx) ,

for all x ∈ R and for all n ∈ N. Next, for any n ∈ N, we have

∥F (x)−G(x)∥p ≤ 2Φ(x)p

1− ((a+ b)1−3βL)p

((
(a+ b)1−3βL

)p)n
(3.8)

for all x ∈ R. Taking the limit n → ∞ in the inequality (3.8), we obtain
that F (x) = G(x) for all x ∈ R, so F is unique. This completes the
proof. □

Theorem 3.2. Let X be a (β, p)-Banach space and f : R → X be a
ϕ-approximately generalized radical cubic functional equation. Assume
that the following conditions are valid:

(i) the function ϕ is expansively superadditive with constant L sat-
isfying (a+ b)3β−1L < 1;

(ii) a+ b is a positive integer with a+ b ≥ 2.

Then there exists a unique mapping F : R → X satisfying the functional
equation (1.5) and the following inequality

∥f(x)− F (x)∥ ≤ (a+ b)3β

p
√
((a+ b)L−1)p − (a+ b)3βp

Φ(x),

for all x ∈ R, where

Φ(x) =
K

(a+ b)β
ϕ(x, x) +

(
K

(a+ b)β

)2

ϕ
(
(a+ b)

1
3x, (a+ b)

1
3x
)

+

(
K

(a+ b)β

)3

ϕ
(
(a+ b)

2
3x, (a+ b)

2
3x
)
.

Proof. It follows from (3.3) of the proof of Theorem 3.1 that∥∥∥∥f ( x

a+ b

)
− 1

(a+ b)3
f(x)

∥∥∥∥ ≤ Φ

(
x

a+ b

)
,

and so

(3.9)

∥∥∥∥(a+ b)3f

(
x

a+ b

)
− f(x)

∥∥∥∥ ≤ (a+ b)3βΦ

(
x

a+ b

)
,
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for all x ∈ R. For any m ∈ N, replacing x by x
(a+b)m in (3.9), we have∥∥∥∥(a+ b)3f

(
x

(a+ b)m+1

)
− f

(
x

(a+ b)m

)∥∥∥∥ ≤ (a+b)3βΦ

(
x

(a+ b)m+1

)
,

and so∥∥∥∥(a+ b)3(m+1)f

(
x

(a+ b)m+1

)
− (a+ b)3mf

(
x

(a+ b)m

)∥∥∥∥
≤ (a+ b)3(m+1)βΦ

(
x

(a+ b)m+1

)
,

for all x ∈ R. Using an iterative process, we have

∥∥∥∥(a+ b)3lf

(
x

(a+ b)l

)
− (a+ b)3mf

(
x

(a+ b)m

)∥∥∥∥p
(3.10)

≤
m−1∑
j=l

∥∥∥∥(a+ b)3jf

(
x

(a+ b)j

)
− (a+ b)3(j+1)f

(
x

(a+ b)j+1

)∥∥∥∥p

≤
m−1∑
j=l

(a+ b)3(j+1)βpΦ

(
x

(a+ b)j+1

)p

≤ Φ(x)p
m−1∑
j=l

(
(a+ b)3β−1L

)(j+1)p
,

for all x ∈ R. Since (a + b)3β−1L < 1, we get
(
(a+ b)3β−1L

)(j+1)p
< 1

for all j ∈ N. Then we have
∞∑
j=0

(
(a+ b)3β−1L

)(j+1)p
=

(a+ b)3βp

((a+ b)L−1)p − ((a+ b)3β)
p < ∞.

From inequality (3.10), we have∥∥∥∥(a+ b)3lf

(
x

(a+ b)l

)
− (a+ b)3mf

(
x

(a+ b)m

)∥∥∥∥p(3.11)

≤ Φ(x)p
m−1∑
j=l

(
(a+ b)3β−1L

)(j+1)p

≤ Φ(x)p
∞∑
j=l

(
(a+ b)3β−1L

)(j+1)p
,

for all x ∈ R. Taking limit l → ∞ in (3.11), we obtain that

lim
l→∞

∥∥∥∥(a+ b)3lf

(
x

(a+ b)l

)
− (a+ b)3mf

(
x

(a+ b)m

)∥∥∥∥p
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≤ Φ(x)p
∞∑
j=l

(
(a+ b)3β−1L

)(j+1)p

= 0,

for all x ∈ R. Then the sequence
{
(a+ b)3nf

(
x

(a+b)n

)}
is a Cauchy

sequence in the (β, p)-Banach space X. So, it converges in X. We
define a function F : R → X by

F (x) = lim
n→∞

(a+ b)3nf

(
x

(a+ b)n

)
for all x ∈ R. The remaining follows from the proof of Theorem 3.1.
This completes the proof. □
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